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POSTERIOR DISTRIBUTION OF A DIRICHLET PROCESS FROM
QUANTAL RESPONSE DATA'

By P. K. BHATTACHARYA

University of Arizona

The posterior distribution of a Dirichlet process from N quantal responses
at r dosage levels has been recognized by Antoniak as a mixture of Dirichlet
processes. The purpose of this paper is to develop a systematic procedure for
computing finite-dimensional distributions of such mixtures which can be
equivalently expressed as multivariate beta distributions with random param-
eter vectors. It is shown that the sequence of random parameter vectors of
the updated beta posteriors from observations at increasing dosage levels
evolves in a manner which is described by r separate Markov chains. This
description is then used to derive the asymptotic posterior distribution. The
weak limits of the relevant Markov chains are shown to be solutions of certain
stochastic differential equations and the random parameter vector of the
posterior beta distribution is shown to be asymptotically normal, the mean
vector and covariance matrix of which are given by recursion formulas.

1. Introduction. Let X be the tolerance level of an individual to a drug and let F
denote the population cdf of X. Instead of observing a random sample of X, fix r doses
x < ... < x, and assign Na; subjects to x; for making inference about F, where aj, - -,
ar> 0 and Naj, - .-, Na, are integers. The observations Uj;, 1 =i < Naj, 1 <j < r, taking
values 1 or 0 according as the tolerance of the ith individual assigned to the dose x; is less
than or equal to x;, or greater than x;, are called quantal responses.

Ayer, et al. (1955), proposed an estimate of F based on such data. Subsequently, Kraft
and van Eeden (1964) established some general properties of Bayesian methods using
Dirichlet process (DP) priors, while Ramsey (1972) and Wesley (1976), using an algorithm
of Turnbull (1976), developed methods for computing the posterior mode. However, the
problem of evaluating the posterior distribution remained intractable, because these
posteriors are complicated mixtures of DP’s as observed by Antoniak (1974). Ferguson
(1973) showed that with each observation X; the DP parameter a gains a unit mass at X;.
However, with the corresponding quantal response Uj;, the DP parameter gains a unit
mass at a random point whose distribution is easily determined, giving rise to a mixture of
DP’s. With several Uj; the posterior becomes a very complicated mixture. This is also
typical for randomly censored data as shown by Susarla and Van Ryzin (1976) and Blum
-and Susarla (1977).

In this paper we develop a systematic procedure for computing finite-dimensional
distributions of the posterior of a DP from quantal data for which it is enough to work
with multinomial distributions. For making inference about F at the r dosage levels define
0+ ---+6,=F(x),1 <j=rand 6. =1- F(x,). Corresponding to a prior DP («a) for
F,0= (0, ---, 6.1) follows a multivariate beta distribution Be(a) with parameter vector
a=(a, -+, a+1) where a1 + -+ + @; = a(—x, x;], 1 =j < r and a,+1 = a(xr1, ®).
Similarly for the posterior, corresponding to a mixture of DP for F, # will have a
multivariate beta distribution with a random parameter vector. In Section 2, the distri-
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bution of this random vector is described in Theorem 1 in terms of r separate Markov
chains (MC’s).

This result is then used in Section 3 to derive the asymptotic posterior distribution
when the information content of the prior as well as the number of observations at each
dose is large, as would be the case if for large N, Nai, ---, Na, quantal responses are
observed at the r doses along with Na, complete observations. The asymptotic posterior
distribution is determined by the asymptotic distribution of the random parameter vector
of the multivariate beta posterior. Using a theorem of Strook and Varadhan (1969), the
weak limits of the relevant MC’s are shown to be solutions of certain stochastic differential
equations (Theorem 2), from which the asymptotic distribution of the random parameter
vector is obtained (Theorem 3). The slightly more general problem of determining the
posterior of F on an arbitrary finite set is discussed in Remarks 1 and 2 following Theorems
1 and 3.

2. Exact distribution of the random parameter vectors of the successive beta
posteriors. Uj; are independent Bernoulli variables taking values 1 and 0 with proba-
bilities 6, + --- + 6, and 6,1 + --- + 6,41 respectively, 1 < i =< Nua;, 1 <j =r, where o, >
0, Naq, are integers, and 8 = (6, - - -, 6,.1) is an unknown probability vector following a
multivariate beta prior Be(c) with parameter vector ¢ = (¢, + -+, ¢r4+1), ¢; > 0. Let m; =
Y% Uy and n; = Nay — m;. Clearly m; is sufficient for 8 in Uji, ---, U, n,;. For each j,
rearrange the U,’s so that the first m; are 1’s and the last n; are 0’s.

The posterior distribution of @ given m,, --., m; is a beta distribution with a random
parameter vector »;. In this section we shall express »;, 1 < < r, in terms of a sequence of
artificial random vectors forming r distinct MC’s {5, = »;(0), »;(1), -+, »;(No;) = »;}, 1 =
J = r. These chains are described as follows. For j = 1, #, = ¢ and »;(k) represents the
random parameter vector of the posterior given Uy, -+, U, for 0 = k < Na;. Forj > 1,
the jth chain is initiated by choosing #; from the conditional distribution of »;_; given m;;
subsequently, »;(k) represents the random parameter vector of the posterior given
Uji, - -+, Uy, obtained from the prior Be(#;) conditioned on »;.

We begin with a random variable Y taking values in {1, - .-, r + 1} with probability
vector # following a prior distribution Be(a), a nonrandom, of which the pdf with respect
todd =db, ...dois

£a(0) = (T(X7" a) /T[T Tlan)} TI1" 077, bre1=1—X16.

Let e; be the (r + 1)-dimensional /th coordinate vector, J a proper subset of {1, ...,
r + 1} and A; a random vector with

(1) PlA;=e]=pla,a+e)=a/Yicsa, le d.

Since g.(0)-6, = (a:/Z?” Q1) gare(0) = Ea(e’)gﬂ‘fe/(o)’
the posterior of 8 given Y € J is

dP(0 | J) = Yics Ea(0)8are(0) dO/Vics Eal(0)) = ga+a ,(0) d6.

Now suppose the prior of # is Be(r;) where » is a random vector with Py, = a] =
ITy(a), a € Sy, Sy being a finite (or countable) set withY "' a; = c for all a € S;. Then the
posterior of @ given Y € J is

dP@ | J) =Yaes, Plvo=a | YEJ]dP@|vi=a,YEJ)
= Dues, Plvo=a| Y € J]ga:a,(0) df
by the previous case, and
Plvo=a|Y € J] = Io(a)Ea(Tics 01)/ Yaes, [To(@) Ea(Y e 61)
= To(a)(S1es @)/ Taes, Mo(@)(Ties ar) = Tlo(a), say.
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Thus letting S1 = {a + e;|]a € Sy, /€ J} and [1;(b) = Y aes, flo(a)p(a, b) for b € S;, where
pl(a, b) is given by (1), we have

dP(0]J) = Taes, [o(@)ga+a (0) dB
= Yaes, o(a) Yiesp(a, a + €))guse (8) d
= Yses, 111 (b)gn(8) db,

which shows that the posterior of 6 is Be(r,), where »; is a random vector with P[r; = b]
= I, (b) for b € S;. Moreover, Yi*' b, = ¢ + 1 for all b € S;, which allows the above
argument to be extended in the following manner.

Suppose the prior of 8 is Be(r) as above and let Y;, Y5, ... be iid. as Y. If Ji,
Js, --- are proper subsets of {1, ..., r + 1}, then we use the above argument repeatedly
to see that the posterior of 8 given Y; € Ji, ..., Y; € J; is Be(»;) where the distributions
of the random vectors »; are described recursively by the formulas:

P[v; = b] = ILi(b) = Yees,_, [lii(a)pii(a, b), bES;,
Si={a+e|laEeS._, € J},

pi-i(a, a+e)=a/Y e, a, LEJ,,

[i-i(a) = Mi1(@)(Ties, @)/ aes, , Mir(@)(Ties, @), @ € Sy

In particular, if »o = a*, ie. So = {a*} and if JJi, J;, ... are such that),c,s,, a; are
constants foralla€e S;,1=0,1, .-, then [I,=1II;,i=0,1,...in the above formulas. In
such a case, »; has the same distribution as »¥, where {»f, i =0, 1, ...} is a MC with
transition probabilities pi(a, b) = P[r%, = b | »} = a] starting at a*. We use this idea in

the following lemma.

LEMMA 1. The posterior of 8 from the prior Be(a*) and Na; quantal responses at the
Jjth dose of which the firsi m;are 1 and the last n; = Na; — m, are 0 is Be(v;a-(Na;)), where
{vjar(k), 0 < k < Nao;} is a MC starting at a* and having transition probabilities

I,.(a, a + (e 0)) = ai/ Y1 as, 1=l<j0sk=m—1,
(2)
Myi(a,a+ 0;f)) =a/Yitia, Jj+lslsr+1l,m=k=Ng-1,

where e;; and f;, are the j- and (r + 1 — j)-dimensional lth coordinate vectors.

ProoF. The observations Uj; with Y ¥y Uj; = m; are equivalent to Y; € J;, 1 =i < Naj,
with;={1, .-+, j},1=si=mjand J;={j+ 1, ..., r+ 1}, mj + 1 < i < Nag,. Clearly
Y2l a;and ¥ eg,., a; are constants for all a € S;, 0 < i = Na,; — 1 and the argument of the
above paragraph becomes applicable. This proves the lemma.

We now extend this lemma to the case when the prior distribution of 8 is Be(»,—,) where
v;_, is a random vector taking values in S}*; with probabilities II;-; (a) = P[r;-, = a],
where S§ = {c} and forj =1,

Sf={c+A|A  arenonnegative integers, 1A =NYiiald.

LEMMA 2. If in the hypothesis of Lemma 1 the prior distribution of 0 is Be(v;-1) as
above, then in the conclusion, the posterior of 8 is Be(v;(Nq;)), where {v;(k), 0 < k < Na;}
is a MC with the same transition probabilities as in Lemma 1, but having initial
distribution ﬁj given by

f(a) = Py = a| XY Ui = m)]
(3) =Il,_1(a)¥,(a, m;)/Yaesy, [1-1(a)¥(a, m),
¥;(a, mj) = {I‘(Z';;I a + mj)/r‘(zj=1 a)} - (DX ajur + ) /TR @)}
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Proor. The posterior of 8 given m; is
dP(0‘Zf:(? IJJ: = mj) = Za&sfx P[V_,;l = a] ZiN:;’ ljﬁ = m,'] dP(0] v,-1 = a, E,I-ia]’ U,‘i = mj).
For arbitrary a* € Sf., dP(@ | v, = a*, Y% U; = m,) is Be(v-(Naj)) by Lemma 1,

while straightforward calculations reduce

Py = a3l Ui =m] =T,-(a) f £a(0) (T 0)™0(T72)1 00 dB/

Yaesy, [1-i(a) fga(0)(2"=1 0:)" (L1241 6:)™ dO

to the form given in (3). This completes the proof.
We now arrive at the main result of this section.

THEOREM 1. If the prior distribution of 6 is Be(c), ¢ nonrandom, then the posterior
distribution of 8 given m,, - - -, m; is Be(v;), where v;, 1 =j < r, are described by r distinct
MC’s

{l;,‘= l’j(O), l’,‘(l), ---,v,-(Na,-) = V,‘}, 1< er.
Let I1, and 11, denote respectively the initial distribution and the distribution of v;(Nay)
at the end of the jth chain, and let 11, denote the transition probability of the jth chain
at its kth step. Then I1,(c) = 1, I1; is obtained from I1,_ for j = 2 by (3), and I, are
given by (2).

Proor. The theorem follows from Lemma 2 by induction.

REMARK 1. Taking ¥/, 6,=F(x;),1<j<rand .., =1— F(x,) wherex,; < --- < x,

are the dosage levels, we can find the posterior joint distribution of F(x;), - --, F(x,) from
Theorem 1. To find the joint distribution of F on y; < --. <y, in general, suppose { yi,
-+, ¥4} includes {x;, ---, x,} as a subset and let 1 = y(1) < ... < y(r) < s be such that

xj =y, and define8f + .- +0f = F(y),1=l=<sandf¥; =1— F(y,). As before, let
m, denote the number of positive responses among Na; observations at the jth dosage
level. Then Theorem 1 extends as follows. Starting with a (s + 1)-dimensional prior Be(c*)
for 8%, let ¥ ;) = &y, m¥,y = mj,n¥,;, =n,, 1 <j=<r, and for all / other than y(1), .. -,
y(r), set af =m} =nf =0. Now Theorem 1 applies to the posterior of 8* given
mft, ..., m¥. Of course, some of the MC’s will be nonexistent and if the /th chain is such,
then H[-] = ﬁ/ = H[.

3. Asymptotics. For the asymptotics, we shall take ¢ = Nagp = Nao(p1, - -+, pre1)
where p; > 0 with ¥7"' p; = 1 and write
Ai=aw+a+ - + aj,
(4) Pi=%0p,  AN=WO, -, N, Ai=pJ/P,
Q=1=P;, =, -, ras), W=p+/Q

for 1 <j<r. Assume that m, = ¥~ Uj; differs from Na, P, by an order of vVN. For example,
this will be the case when the prior summarizes the information of Nay complete obser-
vations. Specifically,

(5) ;= m}N' = NajP,- + Nl/z‘/} and n; = n}N’ = N(X/Qj - NI/ZVI'.
For deriving the asymptotic distributions, normalize the first j coordinates of »,;(k) as

X, (k) = XV (k) = N™V[}(k) = (NA;1 P, + BA], 0<k=m,



DIRICHLET POSTERIOR FROM QUANTAL RESPONSES 807

(6a)
Xi(m; + k) = X;(m;), lsk=n
and the last r + 1— j coordinates of v;(k) as
Y, (k) = Y (k) = N™'?[s] (0) — NA; Qu], 0sk=m,
(6b)
Y;(m;+ k) = N"[p} (m; + k) — (NA;- Q) + )], l<k=n,

where v; (k) = (v1(R), - - -, v;(R)), v] (k) = (vj41(R), - - -, v, rc1(k)) and 4,, P}, Q;, A, u;, m;
and n; are given by (4) and (5). The reason for such normalization is that according to our
arrangement of the Uj;, vj(m; + k) remains unchanged for 0 < £ < n; and», (k) remains
unchanged for 0 < k < m,. Putting X, (k) and Y, (k) together, the (r + 1)-dimensional MC’s

(7a) Z/(k) = Z}N)(k) = (X,(k), Y,(k)), O0<k=< NOlj, 1 $j$ r,
are obtained as the normalized version of {v;(k)}. Finally, »; and #; are normalized as
(7b) Z; =7 = N, — NAjp), Z,=2"=N"%% — NA,_.p).

As in the case of /™, 5™ and {»{¥’(k)}, denote the distributions of Z\"’, Z/™ and the
transition probabilities of (Z™NM(k)} as TIV) TT/™ and I1” respectively. Observe that
though »; = »;(Nq;), their normalized versions Z; and Z;(Ne;) are related by the formula

(G Z; = Z;(Noy) + V;(A;; — ),
which is easily obtained by using (4)-(7). The connection between the distributions IT,-; of
Z; ., and 1I; of Z; will be obtained by transforming formula (3) to obtain
11,(2) = I,-1(2) ¥} (z, m)) Yoo, im(2) ¥ ) (2, my),
9) ‘I’,* (z, m,-) = \I'j(NAj_lp + N‘/Qz, m,),
Zio1={N""*a— NA,_,p)|a € S}.}.
To study the weak convergence of the MC’s {Z"’(k)}, transform {X;(%k)} and {Y;(k)}
to continuous time 0 = ¢t <1 as
§,-(t) = }N'(t) = ([m,t] +1- m,t)Xj([mjt]) + (m,-—t - [th])Xj([mjt] +1)
;) =07 (0) = ((nt] + 1 = )Y, (m; + [n2])
+ (n;t — [njt])Y,-(mj + [njt] + 1).
It will be shown that the mutually independent processes £/’ (¢) andn{"’(t) starting at
x* and y*, converge weakly to £f(¢) and %} (¢) respectively, which are solutions of
appropriate stochastic differential equations. Hence conditionally, givenZ{™ (0) = (x*;
v*), Z¥ (Nay) —w (£ (1), 37 (1)). The asymptotic posterior distribution will be derived
from the solutions of these stochastic differential equations. Since {£™ (t)} and {n/"(¢)}
are independent, we shall treat them separately.
Weak convergence of MC’s to diffusion has been studied by Skorokhod (1965) and later

(under simpler conditions) by Strook and Varadhan (1969) We shall use Theorem 10.3 of
Strook and Varadhan for our purpose. Since

IX}N}(k +1) — X}N'(k) | <= N2 maxi<;< |e,-1 - )\jl = N_l/z(l + M,|2)‘/2

with probability 1, it is enough to analyze the limiting behavior of the conditional mean
vector and product-moment matrix of the increment X' (& + 1) — XV'(k) given XV =
x. Moreover, the sum of the j coordinates of X"’ (k) remains constant for all %, so for
£M (0) = X (0) starting at x*, it is enough to restrict attention to those x for which
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Y91 2 =Y, x}. For these x it can be verified that
EX™M(k+1) - x| XM (k) = x] = b(k/my, x)/m; + B(N; k, X),
E[XME+1) —x)® XMk +1) —x)| XN (k) =x] = A(k/m;, x)/m; + R(N; k, x),
with the vector b(¢, x) and the matrix A(¢, x) given by
(10) b(t, x) = aj(x = \; T1, x1) /(A1 + ayt), Alt, x) = P, K()),

where K(A)) is the covariance matrix of a multinomial distribution with probability vector
Aj, ie,, K(A;) has A (1 — ;) on its diagonal and —A;A;i- for its off-diagonal elements, while
m™ | B(N; k,x) | and m!™’ | R(N; k,x) | are uniformly bounded and tend to 0 as N —
o uniformly for £ = 0 and x in compact sets. Theorem 10.3 of Strook and Varadhan (1969)
thus becomes applicable and ¢/ (t) —, £} (t), where {£ (¢), 0 < ¢ < 1)} is a diffusion
starting at x * with drift coefficient vector b(¢, x) and diffusion matrix A(¢, x) given by (10).
Let €;(Aj) and ¢:(A;), 1 = I = j — 1 denote the normalized eigenvectors and the
corresponding eigenvalues of the positive semidefinite matrix K(A;) of rank j — 1. Write

(11) K'*(\j) = &(X)Diag(vo: (),

where ¢(A;) is the j X (j — 1) matrix whose /th column is £;(\;). Then the diffusion £ (¢)
can be expressed as the solution of the stochastic differential equation

(12a)  dE} () = aj(Ajmr + ait) TH{ES () = (Thor TN} dt + () K} (N)) AW (8)
starting at x*, where W(¢) is a (j — 1)-dimensional standard Brownian motion (see

Gikhman and Skorokhod (1969), pages 402-403). In the same manner, 7/"(¢) —. 7} (¢)
which can be expressed as the solution of

(12b)  dn}(®) = aj(Aj-1 + ) () (8) — (T2 y ) dt — (@)K} () dW'(2)

starting at y*, where K'/*(g,) is a (r + 1 — j) X (r — j) matrix defined analogously as
K'*(A\;) and W'(¢) is a (r — j)-dimensional standard Brownian motion independent of
Wi(t).

The stochastic d.e.’s (12a) and (12b) are linear equations of a particularly simple form
for which explicit solutions can be obtained by standard methods (see Theorem 8.2.2 of
Arnold (1974)). The solution of (12a) starting at x* is

() =1+ GADX* — AT xF)A;
t

+ (Aj- + ajt)(aij)l/zKl/z(Aj) f (Ajo + ()ljS)-1 dW(s).

0
Hence £ (t) follows a j-dimensional (singular) normal distribution with mean vector
(1 + GA)X* — A (S PN,

and covariance matrix o;P;j(1 + o;A71t)tK(A;). Similarly, 5} (¢) follows a (r + 1 — j)-
dimensional normal distribution with mean vector and covariance matrix given by replacing
P;, N;, x* and ¥, x} by @, m;, y* and Y7217 y} respectively in the above formulas.
Furthermore, £ (£) and 7} (¢) are independent. Using these results in conjunction with
(8), we have the following theorem.

THEOREM 2. Conditionally, given Z\™' = z* = (x*,y*), ZV =, Z} = (£5(1) + V;A;
7/ (1) — V,u), which follows a (r + 1)-dimensional singular normal distribution with

EZ}) =1+ AN y*) — AL (S= xPA; (857 yHp) + ViR =),

) = . a1y | PEA) 0
Covtz) = a1 +aarty [PAM 00
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To find the limiting distribution of Z* (which will give us the limiting posterior
distribution), these conditional weak convergences have to be pieced together. For this we
need to know (a) how the distribution of Z*) changes to that of Z"’ asymptotically and
(b) how the weak convergence of the distribution of Z* and that of the conditional
distribution of Z{™ given Z{ combine to yield the weak convergence of the marginal
distribution of Z\"'. These questions are dealt with below.

For j = 2, extend ¥} (z, m;) to all z € R for which its formula is meaningful and set

¥ ¥ (z, m;) = 0 elsewhere in R"*'. Rewrite (9) as

dlIM(z) = gV(2z) dIN(2)/ |  g™'(z) dI1Y) (2),
R+t

g (z) = e"INNUALTA;)YPQTIV I (2, my).

The sequence of nonnegative functions {g!™’} is uniformly bounded by Kexp[V3/
(20;P;Q;)] where K, is a constant not depending on N or z, and g{*'(z) converges to the
bounded continous function

A V? y : ALV’
13 (z) = - i
(13) &@ =" eXp[2a,-P,-Q,- AP\ Y T

uniformly for z in compact sets. Hence I1{"’ —,, I1, defined by

(14) dll;(z) = g(z) dll,-\(z)/ | g (z) dT1,\(2),

Rr+1

where I, is the weak limit of IT{"}. This answers question (a).

To answer (b), denote the conditional weak convergence of Theorem 2 by ﬁ}N’(- | z)
—u ﬁ,(- | z) which is uniform for z in compact sets by Corollary 10.2 of Strook and
Varadhan (1969) and note that I1,(- | z) is continuous a.e. (I1,) in z. This conditional weak
convergence can, therefore, be combined with the weak 1) —, [T, for Z/>' to yield the
weak limit of the marginal distribution IT{" of Z"' as I1, defined by

(15) I,(B) = J [1;(B|2) dfl,(z)
Rr+!

for (r + 1)-dimensional Borel sets B.
Finally we need the following lemma to carry out the computation required for formulas
(13) and (14).

LEMMA 3. Let Il denote a d-dimensional (possibly singular) normal distribution
with mean vector M = (M,, ---, My) and covariance matrix £ = ((0;;)). For —o < a <
®, b>0and 1 <k =d, define

dl1(z) = exp[—(20) (k1 2. — @)?] dII(z)/f exp[—(20) "' (ki 21 — @)?] dI1(z).
R4
Ther} Misa c{-dimensional (possibly singular) normal distribution with mean vector M
= (M, ---, M) and coveriance matrix £ = ((3;')) given by
M. =M+ (2f=1 au)(b + 2f=1 2?’=1 o) Na — 2’1;1 M),
Gy = Oy — (2f=1 Ou)(zf;l a;1)(b + Elt;l 2?’=1 o)™

Proor. II is the conditional distribution of Z given X = a where the marginal
distribution of Z is IT and the conditional distribution of X given Z is univariate normal



810 P. K. BHATTACHARYA

with mean Y%, Z; and variance b. The lemma now follows from the properties of
multivariate normal distributions.
We now state and prove our final result.

THEOREM 3. For 1 =j < r, the posterior distribution of 8 given {U,;, 1 =i =< Naj, 1
< j’ =< j} with respect to Be(Naop) is Be(v/') where v{"’ is an (r + 1)-dimensional
random vector and Z{' = N7'*(p™ — NA,p) is asymptotically normally distributed

with mean vector M, = (M;,, - -+, M;,.:) and covariance matrix Z; = ((0;;')) given by the
recurston formulas:
o Vi,i=1 2 _ 0 0
M= { Vi, 2<isr+170 ag Zi = A, |:0 Q1K(ﬂ1)}
N —1 Oj—1.
M;=M, .\, + Zl L - (A V- 0‘/21: j-1,0)

AAJ 1PQ,+(!,2[__ 2[ —1 Oj-1,1

o (Yet a1 (Yhey 0j=1.0)
AA PR+ o Yoy Yo O

0jii* = Oj—14i" —

A_,‘-]M_, = A,‘Mj + (A ;1V,' —Q; 2’1,_ 51 l)(Alv l"/

. P;K(\; 0
Af_12,= OI,A,'Aj—l [ ’ 0( !) QjK(ﬂj)

where S; = ((s;i")), T; = ((t,i)) are given by

] + A?ij - lX,‘A,‘S,‘ + ()l,2 Tj,

Nii et Gt + Nji Yher Gty I1=sii'<)j

Sjiir = 9 Mii—j ij;] Grit + Nji X5 61000, l=sisj, j+l=si'=sr+1
Wiir—j it Gt + Njiej Y7501 G, J+l=sni'sr+1

(}\ji}\ji’ Yot et Gy I=ii'=s]J

tii = ‘\ Ajz,”j,i'4j2{=l S o, l=si=sj,j+1l=si'=r+1
TSI Y08 B WAL RN, JYTR JHl=sii=sr+],

where K(\;) and K(w;) are given by (11) and V; = N™*(XX Uy — Ny P)).

ProoF. The asymptotic normality of Z{¥’ and the formulas for M, and Z, are obtained
by an application of Theorem 2 to the MC {Z‘N '(k), 0 = k = Na;} starting at 0. Having
established the asymptotic distribution of Z\"?, apply (13), (14) and Lemma 3 to show
that Z' is asymptotically normal with mean vector M; = (M,,, ---, M,,.;) and £, =
((d,,4-)) as given by this theorem. Now applying Theorem 2 in conjunction with these
formulas for lﬁ,- and £, and (15), the asymptotic normality of Z!"’ and the formulas for M,
and Z; follow after a little simplification. This completes the proof.

REMARK 2. As we mentioned at the end of Remark 1, from Theorem 3 we may also
find the asymptotic posterior joint distribution of F(y), - - -, F(y,) for a set of points y, <

- <y, of which the dosage levels x; < - - - < x, form a proper subset. For this all we have
to do is to take a; = 0 and V; = 0 for all / for which y, is not one of the dosage levels.

4. Acknowledgement. The suggestions made by a referee were very helpful in
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clarifying some misleading statements in the original version which improved the presen-
tation of Section 2.
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