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CONDITIONAL EXPONENTIAL FAMILIES AND A
REPRESENTATION THEOREM FOR ASYMPTOTIC INFERENCE!

By PauL D. FEIGIN

Technion-Israel Institute of Technology

Conditional exponential families of Markov processes are defined and a
representation of the score function martingale is established for the important
conditionally additive case. This result unifies those obtained separately for
different examples and provides the key to asymptotic normality results for
the maximum likelihood estimate.

1. Introduction. In developing a theory of parametric inference for stochastic pro-
cess models, one particular type of example led to the consideration of families of processes
which seemed to represent the Markov process analogue of exponential families. This
analogue was recognized by Heyde and Feigin (1975) and further referred to in the papers
of Feigin (1978) and Heyde (1978). Here we propose to give a more precise definition of
this conditional exponential family (CEF) analogue and to prove some important general
properties of these families which are a consequence of their underlying exponential family
structure.

The main result shows that what were originally defined as CEF’s by Heyde and Feigin
(1975) are more properly considered as conditionally additive exponential families (which
cover all the examples discussed in the above references) and for these the asymptotic
normality and related properties of the maximum likelihood estimate follow from a
common representation of the score function. These results significantly unify the analysis
of inference questions for quite distinct processes which nevertheless fall into this class of
families.

The basic definitions in the spirit of the work of Barndorff-Nielsen (1978) are given in
Section 2, the theory for the conditionally additive families is developed in Section 3, and
some examples are briefly discussed in Section 4.

2. Conditional exponential families. We will develop the theory for the vector
parameter case in this section, adopting the dot * to denote vector derivatives with respect
to the vector parameter 6.

Suppose X = {Xo, X1, - - -} is a time-homogeneous Markov chain with possible transition
probability densities (with respect to a given measure » on R?) denoted by f(y|x; 8). We
assume that X is defined on the measurable space (2, #) and let {Py; § € 6} denote the
family of corresponding probability measures on (2, &%) for which

PyX, EA|Xp1=2x) = f f(y]x; 0)v(dy)
A

holds for each Borel A C R? and all n = 1. We denote by %, the o-field generated by {Xo,
-+, X,}. We will say that

A. {(X, P,); § € 6C R*} is a conditional exponential family of Markov processes if
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(2.1) f(y|x; 8) = b(x, y)exp{a(8)-m(y, x) — B0, x)}
where for each fixed x, m(-, x) and b(-, x) are measurable.
We assume that the P, distribution of X, is independent of § and write down the
likelihood
Ln(0) = [[[=1 b(X., Xi-1)lexp{a(f) - Yim1 m(Xi, Xi1) — Xi=1 B0, Xi-1)}
and the score function (the derivative of the log likelihood)
(2.2) Un(0) = in(8) = T {a(@)m(X;, Xie1) — B0, Xi-1)}

where the * denotes differentiation with respect to 6 so that a(@) is a matrix.
We assume that we are working with the canonical parameterization a(d) = 6, and that,
independently of x,

0= {0: f b(y, x)e"™> My(dy) < 00} .

THEOREM 1. Suppose {(X, Py); 0 € O} is a conditional exponential family of Markov
processes and 0 € int O (the intgrior of ©). Then foralln =1
(i) Eg[m(X,, Xo1) | Fo-1] = B0, Xn-1)

and '
(ii) the conditional covariance matrix of U.(0), 1.(8) say, is given by
(2.3) L(0) = 3 Eo[ui@)ul(0)| Fii] = —1:(0) = 31 B(6, Xiv),

where ui(0) = Uf8) — U1(0) for all i = 1. If in addition E.3(6, X;_1) exists for each
i =1 then
(iii) {U.(8), %; n =1} is a zero-mean, square-integrable P,-martingale.

REMARK. The conditional expectations in (i) and (ii) are defined even if the relevant
variables are not integrable, see Neveu (1965, page 121).

ProoF. On recalling that a(@) = @ results (i) and (ii) follow from the properties of
ordinary exponential families, see Barndorff-Nielsen (1978, Chapter 8). The integrability
of B(6, X,-1) ensures that U,(d) is square-integrable, hence integrable, whereupon the
martingale property follows on substituting (i) into (2.2). 0

REMARK. Theorem 1 is a particular case of more general martingale properties of the
score function, see Feigin (1976) for example.

Furthermore, in the scalar case we can show the existence of another martingale which
is useful in the analysis of CEF’s. Provided ,3(0, X;—1) # 0 and if we set

(2.4) V(@) = [I1 (m(X:, Xim1)/B 6, Xiz1)),

the above theorem shows that {V,(0), %; n = 1} is a Ps,-martingale. If it is also positive,
then the fact that it has unit expectation ensures, via the martingale convergence theorem,
that

(2.5) V.(0) — V(0) as. [P,

for some V(#). In fact, we find that (2.5) can also hold even when V() is not positive.
Suppose O is open. This may be called the regular case. From the ordinary exponential
family theory (Barndorff-Nielsen, 1978) we know that © is convex and that
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(2.6) B(-, x) : 6 > int C,

is one-to-one and invertible where C. = cl conv{m(y, x) : y € supp(»)}. If we want to
determine when U,(f) = 0 has a unique solution §, (the maximum likelihood estimate,
MLE) we need to consider particular forms of 8(-, -). In the next section we specialize to
the scalar parameter case and consider a very useful factorization of 8(-, -).

3. Conditionally additive exponential families. In the sequel we treat the case of
one dimensional ¢ only. The class of conditionally additive exponential families (CAEF’s)
is what Heyde and Feigin (1975) simply called CEF’s. The definition of a CAEF is:

B. {(X, Py); 0 € 6} is a conditionally additive exponential family if it is a CEF
(Definition A) and

(3.1) B8, x) = y(6)h(x)

where the set of possible values of A(x) contains either (i) a subset of the integers containing
{1} or (ii) an interval (0, 8) for some § > 0.

Under Definition B, © coincides with dom y = {6 : | y(f) | < »}. We assume that © is
open, i.e., we are in a regular situation—and may choose A(-) nonnegative (since 3(6, x)
= 0) and rescaled if necessary to achieve (i).

The word additive is used in the term CAEF because, on considering the Laplace
transform of m(X;, X;_:) conditionally on X, ;, we find

3.2) ox,_,(8) = Eglexp[tm(X;, Xi-1)]| #ie1] = exp[{y(0 + ) — v(6)}h(Xi-1)]

which has the form (conditional on X;_,) of the Laplace transform of Yy x,_,) where Yis an
additive process. If in Definition B case (i) obtains then the process Y is to be considered
in discrete time as the sequence of partial sums of independent identically distributed
components, each with cumulant transform y(6 + £) — y(6). For case (ii) it follows that
v(d + ¢) — y(0) is the cumulant transform of an infinitely divisible distribution whereupon
Y may be regarded as the corresponding additive process. In either case we will refer to Y
as an additive process.

It is the Markov structure and this conditional additivity that makes the representation
so useful in obtaining asymptotic properties of the score function and hence of the MLE.
When the MLE exists the following lemma establishes its relationship to the score function.

) LEMMA 2. Suppose {(X, Ps); 6 € 0} is a CAEF and O is open. If, for some n, the MLE
0, exists then for all 0 € 6
(33) Un(0) = Ha{7(6,) — 7(8)) = L(O) (7(4) — ¥(8)) /%(0)
where H, = Y7 h(Xi_).

Proor. The condition that © be open ensures that the family satisfies (i) and (ii) of
Theorem 1 for all § € 6. The MLE 4, exists if and only if

M, = 37 m(Xi, Xiw1) € (Hayy, Hayy)

where (y., yy) is the range of the one-to-one function ¥ defined on 6; and then 4, satisfies
(34) Hoy(0:) = M.

These results follow from ordinary exponential theory applied to the likelihood L.(6)
with 8(6, X, ) replaced by y(0)h(X,-,), see Barndorff-Nielsen (1978, Theorem 9.13). The
first equality in (3.3) then follows from (2.2) and the second from Theorem 1 (ii). 0
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REMARK. It can be shown that with probability tending to 1 as n tends to infinity,
M,./H, € (v;, yy) for all m > n (unless {m(X;, X;_,)} is degenerate). Hence the eventual
existence of §, is assured and therefore the conditions of the lemma present no restrictions
as far as asymptotic theory is concerned.

The form (3.3) and limit theory for the U, provide the desired asymptotic properties of
the MLE. Provided U,/H, — 0 a.s., 6, will be strongly consistent; and since y(-) is
continuous, a weak limit theorem for U, () suitably normalized will translate into one for
(6, — 6). What is most useful in the latter enquiry is the following very explicit represen-
tation of U,(0).

THEOREM 3. Suppose {(X, P,); 8 € 6} is a CAEF, O is open and that, for a.a. x[v],
m(-, x) is invertible. Then there exists an additive process Y = {Y,; s = 0} (possibly on
an enlarged space) with *

(3.5) LI{U9), Ha); n = 1} | Pyl = L[{(Ya,, Ha); n = 1} | P]
where {H,] is a sequence of Markov times for Y. £(Q| P) denotes the law of @ under P.

ProoF. The proof is constructive. Suppose (£, % Py) is rich enough to have all the
variables we require. In fact, the process Y is defined on it so that it is independent of the
X process and also satisfies E, {exp(tY,)} = exp{s[y(d + t) — y(0)]}. We suppose X, is set
at Xo. Defining

H,= Y% h(Xi1)
we start by choosing X; to solve
mXi, Xo) = Yg,
and then successively choosing the X, by solving
m(Xn, Xo-1) = Yg, — Y&,_,.

It is clear that the bivariate Markov chain

7 m(Xn,Xn—l)
)
_ m(X,, Xn-1)
(- (%)

and t!'len," since m(+, X;—1) is invertible, we may conclude that £(Xi, - - -, X, | Py) = L(Xi,
+++, X, | Ps). From this (3.5) follows where we write

and Y, = Y, — 7(6)s.

If case (i) in Definition B pertains then s takes only integer values in the proof. If X, is
set such that A(X,) = 0 then set X; = X; as well as X, = X, and continue the construction
by choosing X; to solve

has the same joint laws as

m(X,, X1) = Yau,. ]

Theorem 3 provides us with the tool which will give us the general central limit theorem
for inference for CAEF’s. Namely,
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THEOREM 4. If {(X, Py) 0 € 6}, O open, is a CAEF satisfying
(i) for a.a. x[v] m(-, x) is invertible
(ii) 3 a sequence of constants C.(f) 1 o such that

3.7) H,/Cy(0) 5> W()[P]
for some random function W(8), W(6) > 0 a.s. [Ps]; then 8, is strongly consistent and
(3.8) L{TY*0) (0. — 8), C1(0)H,) | Py} —> L(Z, W*(8))

where Z and W*(0) are independent, Z ~ N(0, 1) and W*(0) has the same distribution
as does W(8) under P,.

REMARK. In the examples, the extra condition (ii) is verified by considering the
martingale V,(6) of (2.4).

Proor. (3.7) ensures that H, — « a.s. so that
3.9 I.'(0)U.(0) - 0 as. [Py]

from the representaation (3.5) and the strong lavy for additive processes. From (3.3) we then
conclude that y(6,) — () a.s. and thus 6, — @ as. since y(-) is invertible. The
representation (3.5) also allows us to write

(3.10) L{H;UL) | Py) = L(H:*Tx,| Py}

as well as conclude that C;*(6) H,> W(8)[Ps]. This last condition is exactly that required
to ensure

(3.11) L(H*Yi | Ps) — N(O, (6)),

a result which is a straightforward generalization of random-sum central limit theory, see
for example Billingsley (1968, page 145) and Csorg6 and Fischler (1973). Moreover the
convergence in (3.11) is Renyi mixing so that

LI(¥(0)H,)*Yx,, C.1(0)H,) | Ps]l > £(Z, W*(9)),

where Z and W*() are independent. Translating back to U,(¢) and H, via Theorem 3,
(3.5), and considering a one term Taylor expansion of ¥(f,) about v(6) in (3.3) together
with the continuity of ¥(4), we find that (3.8) follows and the theorem is proved. [

This single theorem unifies the asymptotic analysis for the supercritical branching pro-
cesses, the first-order autoregressive process (see Feigin, 1978, Heyde, 1978), and a
generalized autoregressive process example to be discussed in the sequel.

The asymptotic normality is here derived as a consequence of (3.5) which follows from
the somewhat restrictive condition (3.1) of Condition B. As suggested by a reviewer, it
would be of interest to weaken (3.1) and try to establish (3.8) via an approximate version
of (3.5).

If, in the conditions of Theorem 4, W(#) is a nondegenerate random variable, then the
CAEF is an example of what has been termed a regular nonergodic stochastic process
(Basawa, 1977 and Basawa and Koul, 1979). For this class, the conclusion of Theorem 4 is
usually assumed while we have shown that it holds quite generally for CAEF’s.

Finally, we refer the reader to Feigin and Reiser (1979) for a discussion of inference and
conditional inference for regular nonergodic processes.

4. Examples. For the two examples discussed in Feigin (1978) we will simply identify
the appropriate additive processes. In the branching process example, the {H,} is an
integer sequence and the additive sequence {Y,} may be considered to be
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Y.=3%tn

where each 7; has the offspring distribution. The development presented here also allows
us to deal with the situation in which the number of ancestors, X, is a random variable
with infinite expectation in which case the U, are not integrable and hence, strictly, do not

form a martingale.
In the first-order autoregressive process, the additive process ¥, is standard Brownian

motion.
In both these examples condition (3.7) can be checked via the martingale V,, of (2.4).
We now look at another example of a CAEF. Suppose that conditionally on X;—; = x, X;
has a gamma distribution with parameters x and 6, i.e.,

f(y|x;8) =67y "e/T(x), y=0.
The process may be thought of as an example of the followir}g model
YXi) = ¢(0, Xi-1) + &(Xi1)
which is a generalization of the autoregressive process
X =0X;,+e¢,
where the notation €;(X,_;) denotes that the distribution of &, may depend on X,-:. Here

5L(0) = 3% {(Xi-1 — 1) log X; — log I'(X;—1) — 60X, + X, log 6}

Un(a) = — :l=1 (Xl - %Xi_l) = (Z;Ll Xi_l)(g: — %)
v0) = —log6,  7(6) = _71, 0 = (0, )

and the martingale V,.() is equivalent to
Vo.(0) = 0"X,/Xo— V(0) as.

by the martingale convergence theorem. It is therefore clear that H, = Y1 Xi1 satisfies
(3.7) when 8 < 1, by the Toeplitz lemma, and we conclude that

L0 H*0, — 6), 0"H,) | Py} — L(Z, W*(9))

by Theorem 4, when the true value of 6 lies in (0, 1). Note that for § > 1, H, — H< xa.s.
so that the information does not increase to infinity with increased observation. Just as in
the subcritical branching process there is then no hope of estimating 8 consistently from
a single realization.

Acknowledé'ment. We are grateful to a referee for suggesting improvements in the
exposition.
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