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THE JACKKNIFE ESTIMATE OF VARIANCE

By B. EFrRoN AND C. STEIN

Stanford University

Tukey’s jackknife estimate of variance for a statistic S(X,, Xz, ---, X»)
which is a symmetric function of ii.d. random variables X,, is investigated
using an ANOVA-like decomposition of S. It is shown that the jackknife
variance estimate tends always to be biased upwards, a theorem to this effect
being proved for the natural jackknife estimate of Var S(Xi, X, .-, Xn-1)
based on X, Xz, - -+, X,

1. Introduction. The Quenouille-Tukey jackknife, as described in Miller (1974), gives
useful nonparametric estimates of bias and variance. Suppose S(Xi, Xs, -+, X») is a
statistic of interest,where X;, X,, ..., X,, are independent and identically distributed
observable random variables, and S(X;, X3, - - -, X,,) is invariant under permutation of the
arguments. The jackknife estimate of variance, V/m S(X1,X;, - - -, Xy), is defined in terms
of the quantities

(1.1) S(i)ES(XI’ X2) "‘,-Xi—la Xi+1) Tty Xn),
the value of S when X; is deleted from the sample,

A~ n—1 n 2
(1.2) VAR S(X1, Xz, -++, Xa) = =1 [Sw — Su 15
where
(1.3) S =Yik18a/n.

Formula (1.2) is often used as a variance estimate for the jackknife version of S, defined as
nS — (n — 1)S(.), but here we will be thinking of it either as a variance estimate for S itself,
or perhaps more appropriately for Si.).

Notice that V/A% is deﬁged entirely with respect to samples of size n — 1, rather than
n. It is useful to think of VAR S(Xj, X, - - -, X,,) as estimating the true variance Var S(X;,
Xz, -+, X,) in two distinct steps, (i) a direct estimate of Var S(Xi, Xs, -+, X.—1) the
variance for sample size n — 1, and (ii) a modification to go from sample size n — 1 to

sample size n. The direct estimate is
(1.4) VAR S(Xi, Xo, vy Xno1) = 31 [Sw — Sy T,

and the sample size modification is

—1 ~
(1.5) VAR S(Xi, Xo, -+, Xn) =Ll—;L—VARS(X1,X2, coe, Xum1),

which together give (1.2). Notice that ﬁﬁ S(Xi1, X,, -+, X,—1) is a function of all n
variables S(X;, Xz, + -+, X»).

Our main result is that the jackknife estimate of variance (1.4) is conservative in
expectation,
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THE JACKKNIFE ESTIMATE OF VARIANCE 587

(1.6) E(VARS(X1, Xz, -+, Xn_1)} = Var S(Xi, « -+, Xa1)

for any symmetric function S(Xi1, Xz, - - -, X,—1). As a matter of fact, neither symmetry nor
identical distributions for the X; are essential, as shown in Cotament 4 of Section 2. We
will also discusss (1.5), and show that under certain conditions, in particular if Sis a U
statistic, this step produces a further conservative bias in the jackknife variance estimate,
though the results are not as satisfactory here.

The main tool in verifying (1.6) is an ANOVA-like decomposition of S(Xi, Xz, - - -, X,,),
described in Section 2, which is a simple extension of the “Hajek projection”, Hajek (1968).
Colin Mallows, in lectures and an unpublished paper (1975), has developed closely related
methods. All of these ideas connect with Hoeffding’s (1948) well known work on U
statistics. (See also Rubin and Vitale (1980) for a similar development.) A simple formula
for the bias in (1.6) is derived from the ANOVA decomposition.

Much of jackknife theory concerns statistics S which are smooth functions of the
empirical probability distribution. Section 3 relates this concept to the ANOVA decom-
position of S, particularly focusing on quadratic functionals, which are useful in under-
standing the approximations involved in jackknife estimates, both for bias and for variance.
This approach is quite similar to that of Hinkley (1978), as are the results of Section 5.
The rationale behind (1.5) is examined in Section 4. Section 5 suggests a bias correction
technique for the jackknife variance estimate. The “bootstrap”, which is a generalization
of the jackknife described in Efron (1979a); is examined briefly in Section 6.

2. ANOVA decomposition of S(Xi, X3, ¢+, X,). A random variable S(Xi, X,
..., X,) which is a function of n independent random variables X;, Xz, ---, X, can be
decomposed into “main effects”, “interactions”, “higher order interactions”, etc., in a
manner directly analogous to the decomposition of a complete n-way ANOVA table. Here
we do not have to assume that the X; are identically distributed, nor that S is symmetrically
defined with respect to its n arguments. The only assumption is that ES ? < . Taking
advantage of this wide generality, an extended version of the main result (1.6) is given in
Comment 4.

The quantities involved in the decomposition, and their corresponding ANOVA names

are

2.1) w=ES,
grand mean;
(2.2) Ai(xi)) =E{S|Xi=x:} — s,

ith main effect;
(2.3) B (xi, %) =E{S|Xi=x;, Xo =2} — E{S|Xi = x:} — E{S|Xi =xv} +
ii’th second order interaction; etc.

DECOMPOSITION LEMMA. The random variable S(X1, X, -+ -, X.) can be expressed
as

(24) S(X1, Xz, -+, Xn) = p + X Ai(Xi) + Ticw Bir (X3, Xiv)
+ Yicir<ir Coprin (X, X, Xir) + -+ + H(X1, X, -+ -, X)),
where all 2* — 1 random variables on the right side of (2.5) have mean zero and are

mutually uncorrelated with each other.

Proor. Following through definitions (2.1)-(2.4), the coefficient of u on the right side
of (24) is
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(2.5) 1—(’1’)+('2‘>—<§>-.-=(1—1)"=o.

Likewise the coefficient of E{S|X;)} is (1 — 1)*~! = 0, the coefficient of E{S|X;, X;/} is

(1 — 1) 2 = 0, etc. The last term in (2.4) H(X;, ---, X5), itself has first term S(X;,

X,, -+, X,), which is the only term not cancelling out. This verifies expression (2.4).
Notice that

(2.6) EAi(X;) =E{E(S|X) —p} =0.
A similar calculation shows that
2.7 E{Bu(X;,X:)|Xi} = E{Cuii(Xi, Xir, Xiv) | X, Xi'}
=... E{HX:,Xs, --+, Xn) | X1, X2, + -+, X0u1) =0,

and likewise E { B, (X;, X;') | X;:} = 0, etc. Together, (2.6) and (2.7) imply that all the
random variables on the right side of (2.4) have mean zero and correlation zero, which
completes the proof of the lemma. Note that p + Y71 A;(X;) is the Hajek projection of
S(X1, X, -+, X»), Hajek (1960). Expansion (2.4) is unique in the sense that once given
properties (2.6)-(2.7), the terms p, A;, By, Ciiiv, -+ - must be given by expressions (2.1)-
(2.3).

We now return to the situation where X;, X,, - - -, X,, are i.i.d,, and S(X1, Xz, - -+, X5)
is symmetrically defined in its arguments. In this case the functions A4;(.), By (-, *), - - do
not depend upon the subscripts i, i’, i”, - -+, and we can indicate them as A(-), B(-, -),
. ... It will be helpful, for reasons stated in Section 3, to rescale and rename quantities as

follows,
a; = a(X;) = nA(X)), = B(Xi, Xiv) = n*B(X;, Xv),
yiir = (X, Xir, Xir) = n® C(Xi, Xor, Xiv), + o+ .

(2.8)

Expansion (2.4) now becomes

1 1
S(Xi, Xo, v+, Xn) =+ =X ai + = Di<ir B
(2.9) n n

1 1
+ o Sicirwin Yirin + oo + w N1,2,3,---,n+

Example. IfS(Xi, Xz, -++,X,) = ¥%-1 (Xi — X)?/n, where X = Y1 X;/n, and if the
X; have mean ¢ and variance o, then p =—n—;—1 o, a(Xy) ="_;_l [(X: — &% — &),

B(Xi, Xi) = —2(X; — §)(Xi- — £), and all the higher order terms equal zero.
Expansion (2.9), which is similar to a form Colin Mallows has suggested in unpublished
lectures, leads to an easy proof of (1.6). Define

(210) o2=Vara(X;), o%=VarB(X,Xs), o>=Vary(X,X:,Xi),---

Then using the fact that the terms in (2.9) are uncorrelated, we get

62 (n-1)\ ok n—1)\ o2 o2
(2.11) VarS(Xl,Xg,---,X,.)——n—+< 1 '2—’?4' 2 ﬁ+"°+ﬁ.
For any two indices i and i’, the difference of the deleted sample values Sq; and S is,
by (2.9), equal to

1 1 .
Sw = Sy = o= lav — ] +WE}’ " [Bij — Byl
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(2.12)
1

+ UL———I)SZ%) Crivpr = yor 1+« -5

where the notation ¥ **? indicates summation avoiding the values i and i’. This implies
that

Q.= _oi  (n-2\_oi _ (n-2 o2
(2.13) E[S(,) ,)]—2[(n_1)2+< 1 )(n_1)4+< 9 )TIL_—T)G-'_.“:l'

Since, by elementary algebra, VAR S(X, Xy +++, Xu-)) = T%1 [Sey — SuHP =
(1/n) Yi<i’ [Sw) — Su I, equation (2.13) gives :

2
O«

n-—1

n—2 o5 n—2 o
+ —F 4 — 4 ...
() w2 ) el
This, when compared with formula (2.11), for sample size n — 1, verifies inequality (1.6),
and gives a simple expression for the difference between the two sides.

©2.14) E{VARS(X, X, -, Xo1)} =

THEOREM 1.
(2.15) E{VARS(Xy, Xz, -+, Xa1)} — Var S(X;, Xz, -+ + , Xa1)

1/n-2 OE 2 (n—2 03
= —_— - —_— 4 e ,
2< 1 )(n—1)3 3( 2 )(n—l)5
there being n — 2 terms on the right side of (2.15).

Comment 1. The variances 63, 02, - - - appearing in (2.15) refer to the expansion (2.9)
for S(X1, Xz, -+, Xu-1), not for S(Xi, Xa, -+, X,). Section 3 discusses this point in more
detail.

Comment 2. For linear functionals, i.e., S statistics such that the higher order terms
Biir, Yirir - ++ are all zero, the right-hand side of (2.15) equals zero, and so the jackknife
variance estimate is unbiased. For a quadratic functional, one having all third and higher
n—2

2
the quadratic term, in (2.11), to Var S(Xy, Xy, - - -, X,-1). In other words, the jackknife
variance estimate doubles the quadratic term in expectation. A correction is suggested in
Section 5. In general, the quadratic term is doubled, the cubic term tripled. etc.

6%/(n — 1)°, which equals the contribution of

order terms equal to zero, the bias is

Comment 3. Let p = ES(Xi, X, -+, X,-1), and consider the identity Y, [Sq) — SuT
= Y [Si — pI* — n[S., — p]* Taking expectations gives

(2.16) EY [Sw — S\ J* = n Var Si) — n Var Sq,).

Equation (5.21) of Hoeffding (1948), applied with m = n — 1, gives

(2.17) nVar S.) =< (n — 1) Var Sy).

Together, (2.16) and (2.17) imply (1.6)." Expansion (2.9) is closely related to Hoeffding’s
theory; the quantities 81, 82, 83, - - - which play a crucial role in his proofs are multiples of

1We are indebted to Akimichi Takemura for pointing out this connection, and also to Mark
Chesters for discussions relating to Comment 4.
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02, 0% o, ..., respectively. Expansion (2.9) is somewhat more convenient to work with,
and yields one line proofs of Hoeffding’s important theorems 5.1 and 5.2.

Comment 4. We can use expansion (2.4) to prove a more general version of (1.6):

THEOREM 2. For any statistic S(X1, Xz, - - -, X,,) having finite second moment, where
S is not necessarily symmetrically defined in its arguments and the X; are independent
but not necessarily identically distributed,

1
(2.18) E 2?=1 [Se — S(.)]2 = ; 27—1 Var S = % Var S,).

ProoF. First assume that y; = ES;) =0,i=1, 2, -.., n. Define Diff = (n — 1) } Var
Su — n? Var S, and let I, I, III be the three terms, from lgft to right, in (2.18). Taking

expectations in ¥ [Sy) — S —% Y 8% = {(n—1) ¥ S — n®S%,}/n gives I-1I = Diff/n,
while, directly, II-III = Diff/ {n(n — 1)}. We now show that Diff = 0.

Still assuming y; = 0, expansion (2.4) for S(; can be written
(2.19) Sw=Y«¢Si¢

where % indexes the 2" — 2 nonempty proper subsets of {1, 2, -- -, n}. For example, with
i=1and €= {2, 8}, Si¢ = B23(X>, Xs) in the expansion (2.4) of S;). The random variables
S;¢ satisfy (i) ES;¢ =0, (ii) S;¢ = 0if i € %, and by (2.8), (iii) ESi¢ Si¢ =0if € # ¥'.

Define S, ¢ = 3 Si«, and notice that ES. ¢ S. ¢ = 0 for % # %'. Therefore E n*> S, =
E Y (8%, and likewise E(n — 1) 3 S%) = E Y« [(n — 1) 3: S¥¢], so

(2.20) Diff = E Y [(n — 1) ¥ S?¢ — S%4).

Letting n« be the number of elements in %, and S¢ = S, «/(n — ny),
(2.21) Diff =E Y« [(ne— 1) 3 Sie + (n — n¢) Yiee (Sie — Se)?],
which verifies Diff = 0.

Finally, notice that if we drop the assumption that the S(; have means p; = 0, the second
and third terms in (2.18) are unchanged, while the first term is increased by the amount
3 (i — p.)% p. = Ypi/n. This completes the proof of Theorem 2.

Essentially the same proof yields (2.18) in the following more general context: Let (£,
%, P) be a probability space and %, - - -, %, independent sub o-algebras of %. For i €
{1, .-+, n} let Z” be the smallest o-algebra containing all %, for j # i, and let S be a
A% -measurable real random variable with E S} < «.

3. Functions of the empirical probability distribution. Most of the theoretical
work relating to the jackknife concerns statistics which are smooth functions s(F') of the
empirical probability distribution ¥, putting mass 1/n at each value X;. A typical example
is the sample variance S(Xi, X, - +, X») = Y41 (X; — X)*/n, while the “unbiased” version
Y2, (X; — X)*/(n — 1) is not of form s(F).

By considering the case where the sample space % of the X; is finite, say Z = {1, 2,
.++, L}, we can describe the condition S(Xi, «--, X») = s(F) in concrete terms. Define
fi=Prob{X; =1}, Y1 fi=1,and let f = (fi, fz, - -+, fo) be the vector of probabilities.
Likewise, let the empirical probabilities be the observed proportions fi=#{X;=1}/n, and
letf= (A, f2, - - -, fu) be the empirical probability vector. The possible values of f compose
the L-dimensional simplex

3.1) S={(vivy=0, N v =1},
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while f can occur only at certain lattice points of %,
In this case, a “smooth function of the empirical probability distribution” is a statistic

(3.2) S(X:, Xz, « -, Xa) = s(f),

where s(-) is defined continuously on % The statistic S ¥%; (X; — X)?/(n — 1) cannot be
of this form since doubling the number of observed X,’s at each value of / changes S
without changing f Huber (1977) gives an enlightening description of the continuity
properties desirable in a good statistic. A statistic of the form s (f) is automatically defined
for every sample size, not just for the n we happen to have. This is a handy property for
jackknife calculations, where it is necessary to change the sample size, at least by one, to
get the variance and bias estimates.
The simplest form of (3.2) is a linear functional,

(3.3) s) =s(f) + £ —fHu i

where u = (uy, uy, - -+, uy) is a fixed, known vector. Since
1
(3.4) F-Hu=Y - fHu= o Y1 (ux, — Eu)

where Eu = 2’1;1 [, (3.3) can be written as

1
(3.5) S(X1, Xz, -+, Xu) = s(f) =p+—Ti

using the definitions
(3.6) u=s(f) and a=a(X;=1)=uw — Eu.

The a; have mean zero under f, and so (3.5) is of the form (2.9).

The jacknife works perfectly for linear functionals (3.3), in the sense that it produces
the obvious unbiased estimate of variance, VAR S(X1, Xay -+, Xu) = Y0 fillu — )%/
(n— 1), where & = Y7, fi;. In order to examine the effects of nonlinearity on the jackknife,
it is natural to consider quadratic functionals, say

3.7) s(f) =s(f) + £ —Hu +% f-vdE -1,

v being a given symmetric L X L matrix. Hinkley (1978) considers a similar class of
functionals.
Some straightforward algebraic manipulation gives expansion (2.9) for a quadratic
functional (3.7). Let 1 = (1, 1, - .-, 1), and define
(3.8) U=su—-1fu, V=v-11fv—-vfl+1(fvf)l,
A() = Vu/2, EA=Yiifis()).

Then (3.7) can be written as

1 1
(3.9) S(X;, Xz, -+, X)) =s(f) =p™ + > 3 a™(X;) + 2 i< B(Xi, Xiv),
where

A(l) — EA
w20 1y = Vi

(3.10) p™ = s(f) + Ené’ a™() = U,

Comment 5. Letting f = (1 — €)f + ee,, e; the Ith coordinate vector, we get
ds(f)
de

€=0

= U,

(3.11)
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so that the coordinates of U ave the influence function of s(-), see Huber (1977). Likewise
the coordinates of V are the second order influence function. The normalization in (2.8),
by powers of n, results in «a(-) approaching the first order influence function as
n — oo, (-, -) approaching the second order influence function, etc. In other words, (2.9)
approaches the standard von Mises expansion as n — o, see Hinkley (1978).

Comment 6. The jackknife estimate of bias is

S
(3.12) BIAS S(X1, Xz, +++, Xa) = (n — 1)(S.) — S).
For the quadratic functional (3.7), equation (2.9) implies that
(3.13) BIAS SX,, X, -+, Xo) =2 B
n 2n
where
(3.14) A; = AXi), A =YL Ai/n, B..= Y ,Bii'/<,2l> .

Equation (3.13) says that the expectation of BTKS SX,, Xz, ---, X,), for _a_quadratic
functional, equals EA/n = u™ — s(f) = ES(Xi, Xa, -- -, X,) — s(f), so that BIA/S\is itself
unbiased for the bias of S(X;, X,, ---, X,) in estimating s(f). The variance of BIAS is

2 2
s _ EA (]
(3.15) Var BIAS = i +—2n3(n m_
where
(3.16) oa = Var A, = Y5, fi[A() — EAPA

Expression (3.15) follows from (3.13) because the A; are mutually uncorrelated with each
other and also with all the S;;.

Comment 7. Following through definitions (3.8)-(3.10), we see that (3.9) can be written
as

" =y 4 EBX, X) ,
(3.17) 2n
A(X) — EA

BX, X) — EB(X, X)

a?(X) = a™(X) +
2n

= 2™ (X) +

A quadratic functional S can be defined as any statistic having the form (3.10), with p™
and «"(.) obeying (3.17). This definition avoids mentioning the discrete sample space %,
and so is preferred for general discussion.

4. Variance relationships between different sample sizes. The rationale behind
the sample size modification (1.5) is that for many familiar situations S, the true variance
satisfies to a useful degree the approximation

-1
(4‘1) Var(n) = n Var"“”,
n

where Var'’ = Var S(X,, Xa, - - -, X;). For linear functionals S = g +% Y21 i, (4.1) is an

exact equality. Here we will discuss (4.1) for three classes of nonlinear functionals, (i) U
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statistics, (ii) quadratic functionals (3.9), (3.17), and (iii) “Jth order von Mises series,” S
1 1 . . .
=u+ > Yo, + o7 Yi<ir Biir + - - -, where the highest term of the series has coefficient 1/n J

and the functions a(-), 8(-, ), - -+ do not change form as the sample size changes.
Theorem 1 can be rewritten, using definition (1.5), as

(4.2) E VAR = Var®™ + {”T_l Var — Var‘"’} + o(%) ,

where O(1/n?) = 0. For our three classes of nonlinear functionals, it turns out that O(1/
n?) is actually of order 1/n? or smaller, as n goes to infinity, and that the bracketed term
in (4.2) is of order O(1/n®); see Efron and Stein (1979), Section 4. If S is a U statistic of
fixed degree oJ, then for n = J + 1, this follows from Section 5 of Hoeffding (1948). As a
matter of fact, Hoeffding’s results show that the bracketed term is always nonnegative, so
that for U statistics we have

4.3) E VAR = Var™.

Inequality (4.3) also holds for von Mises series (a proof is given in Efron and Stein

(1979)), though in this case the bracketed term in (4.2) can be negative. Note: a slight
. . 1

modification of our definition of a von Mises series, to S = p +% Yo +W—"1’) Ni<ir Buir
+ ..., makes it into a U statistic. The only reason for not beginning this way at definitions
(2.9)-(2.10) is that it makes the connection with polynomial functionals, as at (3.9), (3.17),
slightly more complicated.

For quadratic functionals (3.9), (3.17),

1 n3—n2—3n+la§+2o,m o3
nn—1) n®—n? 2 n  nin-1|"

where o2 = Var A(X) as at (3.16), and 6,4 = Ea(X)A(X), see Efron and Stein (1979). If 6,
= 0 then (4.3) holds for all n; if 6, < 0 then (4.3) holds for sufficiently large n, a sufficient
condition being n — [3/(n — 1)] > —40,4/05.

It is not true, then, that the usual jackknife variance formula (1.2) is always nonnega-
tively biased for Var S(Xi, Xs, - - -, X,.). However for smooth functionals the bias terms are
of high order, O(1/n?), and are positive for sufficiently large n. (The results for quadratic
functionals can be extended to higher polynomial forms.) Specific analytical and numerical
results, for the case of ratio estimation, are given in Rao and Rag,i1971). A more important
question, which this paper does not address, is the variance of VAR itself; see Efron (1979).

(44) E VAR = Var™ +

5. Correcting the bias of the variance estimate. Knowing that the jackknife
variance estimate is always biased upwards, it is natural to look for some correction to
remove this bias. We will consider only quadratic functionals, (3.9), (3.17), and omit
algebraic details, which are straightforward. Hinkley (1978) provides a similar development.

Define S;;;- to be the value of S when both X; and X;- are removed from the original
sample, and let

(5.1 Qi =nS — (n — 1)(Sw + Su») + (n — 2)Su, XN
Then

1
n—2

(5.2) Qi =

A;—A) + (A —A)
n—1 ’

[(Bn" —Bi. —Bi.+B..) —

2 A name coined by Colin Mallows, in unpublished lectures.
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the dot indicating averaging as at (3.14): Bi.= Y jx: By/(n — 1), etc. The @ can be used to
estimate 0%, and thereby eliminate the leading term in the bias of the jackknife variance
estimate, (2.15):

LEMMA. For quadratic functionals,

1 2 _ 0 3 20% 1
(5.3) 5 E[Q:: — @u] = = 1° {1 } +

-2 -1 (n-2)
and
1 e __ Ok _n-3 oi 1
(54) 3 ElQu - @ul =77 {1 n— 2)2} - D=2
The lemma says that
(n—1)7° 2 _ 2
5.5) —Z'—E[Qu" - Q] =05+ 0(1/n)

for any two distinct pairs (7, i') # (j, /). Suppose we evaluate @;;- for all N = n(n — 1)/2
distinct pairs, and let @ be the average of the N values of Q.. Then

A2 _ (n_ 1)2

(5.6) Sp=——7 L[Qu~ QT

is an estimator of o3 having bias O(1/n?). The bias corrected estimate of VAR S(X;, X5,
oo, Xp) is

6.7)  VARC™ S(X,, Xs, - -+, X») = VAR S(Xi, Xe,

1 12
e, Xn) —mZKi’ [Qi — QT

where VAR is given by (1.2), and @ = i Qu/[n(n — 1)/2].

Example. Efron (1979b), pages 462-463, considers the sample correlation coefficient
of 15 pairs of numbers, each pair referring to two characteristics of the 1973 entering class
at an American law school. The data are in Table 1. In this case the statistic of interest,

S(X1, Xs, + -+, X») is the sample correlation coefficient between the two characteristics. S
= .776, and (3.12), (1.2), and (5.7) give

BIAS S(X1, X, - - -, Xi5) = 0.0065
(5.8) VAR S(Xi, Xz, - - -, Xus) = .0203
m(com S(X1, X, - -+, X15) = .0179.

The referee has pointed out that the jackknife itself could be used to remove the bias
in VAR. Doing so gives an estimate similar, but not identical, to VAR“™, More ambitious
unbiasing methods are also available, see Gray and Schucany (1972).

6. The bootstrap. A more general approach to jackknife-like calculations is de-

TABLE 1.
The average LSAT score and undergraduate GPA at 15 American law schools, entering classes of
1973.

School # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LSAT 576 635 558 578 666 580 555 661 651 605 653 575 545 572 594
GPA 3.39 3.30 2.81 3.03 3.44 3.07 3.00 343 3.36 3.13 3.12 2.74 2.76 2.88 2.96
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scribed in Efron (1979a), under the rubric “bootstrap”. The jackknife and the bootstrap
are both examples of resampling schemes, in which the statistician attempts to learn the
sampling properties of a statistic S(X;, X;, - -+, X,.) by recomputing its value for artificial
samples, obtained by distorting the actual sample X1, Xy, .- -, X,. Hartigan (1969, 1971,
1975) and Mallows (1975) have described several other interesting resampling schemes.

Using convenient notation, a vector of weights P* = (P¥, P, ..., P¥), with the P} =
0, Y1 P} =1 leads to a resampled value of S in which the ith observation has weight
P}, compared to its weight 1/n in the real sample. We denote the resampled value as S*
= s(P*). Here we are assuming that S(X;, X,, -, X,) is of functional form, see Efron
(1979a); P* is abbreviated notation for the empirical probability distribution F* putting
mass P} at X;. Notice that s(1/n) = S(X;, Xz, - -+, X,.), the observed value.

The bootstrap considers vectors P* having the distribution

- Mult(n, 1/n)

(6.1) P*
n

(This should be compared with the jackknife, which uses P* equal to all permutations of
©,1/(n - 1), 1/(n = 1), ---, 1/(n — 1)).) Here Mult(n, 1/n) indicates a multinomial
distribution, n draws, probability 1/n for each of the n categories. The vector P* has mean
vector and covariance matrix

(6.2) E,P*=1/n, Cov,P*=1/n%-11/n°

The asterisk is a reminder that these calculations have nothing to do with the inherent
randomness in the data, but rather with probabilities imposed by the statistician.
The bootstrap estimates of bias and variance are

(6.3) BIAS® S(X1, Xs, - -+, X) = B, s(P*) — s(1/n)
and
VAR® S(X,, X, - - -, X») = VAR, s(P*),

E,s(P*) and Var,s(P*) being taken with respect to distribution (6.1). The rationale
behind these estimates is simply this: if the true probability distribution of the X; happens
to equal the empirical distribution (the distribution which puts mass 1/r at each observed
X;) then (6.3) gives exactly the correct bias and variance. The jackknife can be thought of
as a “delta method” approximation to the bootstrap, see Section 5 of Efron (1979a). The
bootstrap idea can be used to give different, more robust, estimates of bias and variance,
see Efron (1979b), but here we will restrict our attention to (6.3), and demonstrate results
similar to those obtained for the jackknife. Proofs are contained in Efron and Stein (1979)
and will not be given here.

Once again we consider quadratic functionals S(X;, X, -+, X,) = p + 1/n o +;12

Yi<i’ Bir. Since the bootstrap only involves samples of size n, the same size as the genuine
sample, there is no need to consider how p and «; depend on n.

THEOREM 3. For a quadratic functional S(X;, Xz, - -+, X,),
n-—1
n

(6.4) BIAS® S(X,, X, - -+, X,) = BIAS S(X,, Xa, - -+, X,),

where BIAS S(X,, X, - - -, X,,) is the jackknife bias estimate (3.13), discussed in Comment
6, Section 3.

THEOREM 4. For a quadratic functional,
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n N (B)
65) E n—lVAR S(Xy, Xz, + -+, Xp) — Var S(Xi, Xz, -+, Xa)

_ c1(n)of + 4c(n) ou + 6c3(n)oi + cs(n)(EA)®
= 3

n? n

2

where, as n — ,

(6.6) ci(n) > 1, i=1,23,4.
Specific values for ci(n), cz(n), cs(n), cs(n) are given in Efron and Stein (1979).

Comment 8. For a linear functional S, (6.5) equals 0. The form of (6.5) facilitates
comparison with the corresponding jackknife result (4.4). The right-hand side of (6.5) can
be either positive or negative, depending mainly on the sign of 0,1 and the latter’s relative
magnitude compared to 63, cf. the remarks following (4.4).
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