The Annals of Statistics
1981, Vol. 9, No. 2, 318-333

ASYMPTOTIC OPTIMALITY OF INVARIANT SEQUENTIAL
PROBABILITY RATIO TESTS'

By TzE LEUNG LAl

Columbia University

It is well known that Wald’s SPRT for testing simple hypotheses based on
ii.d. observations minimizes the expected sample size both under the null and
under the alternative hypotheses among all tests with the same or smaller error
probabilities and with finite expected sample sizes under the two hypotheses.
In this paper it is shown that this optimum property can be extended, at least
asymptotically as the error probabilities tend to 0, to invariant SPRTs like the
sequential ¢-test, the Savage-Sethuraman sequential rank-order test, etc. In
fact, not only do these invariant SPRT's asymptotically minimize the expected
sample size, but they also asymptotically minimize all the moments of the
sample size distribution among all invariant tests with the same or smaller
error probabilities. Modifications of these invariant SPRTs to asymptotically
minimize the moments of the sample size at an intermediate parameter are
also considered.

1. Introduction. LetZ;, Z,,...beii.d. random variables with a common distribution
P. Wald’s sequential probability ratio test (SPRT) of testing the null hypothesis H: P = P,
versus K: P = P; stops sampling at stage

(1.1) r=inf(n=1:R,=ZA or R,=<B}, (inf ¢ = ),
where A > 1 > B > 0 are two stopping bounds and
(1.2) R =TI", (P:(2)/po(Z))

is the likelihood ratio, p; being the density of P; with respect to some common dominating
measure @ (i # 0, 1). When stopping occurs, H or K is accepted according as R, < B or R,
= A. The choice of the stopping bounds is dictated by the error probabilities « = Py[R,
= A]and B8 = PR, < B]. Wald [14] has shown that a and B are related to A and B by the
following inequalities:

(1.3) as=A"'(1-p), B=B(1-a),

and that equalities would hold in (1.3) if there is no overshoot. Ignoring overshoots, (1.3)
gives approximate determinations of A and B in terms of the error probabilities, and the
ease of defining the test given the error probabilities is one of the attractive properties of
Wald’s SPRT.

The above idea of Wald has been generalized in the literature to obtain sequential tests
-of composite hypotheses Hy: P € %, versus H,: P € 2, when these composite hypotheses
can be reduced to simple ones by the principle of invariance. If G is a group leaving the
problem invariant, then the distribution of a maximal invariant depends on P only through
its orbit. Therefore, if % and 2, form two distinct orbits and only invariant sequential tests
are considered, then the hypotheses become simple (cf. Chapter 6 of [4]). Hence in analogy
with Wald’s SPRT, we can again stop at stage 7 given by (1.1) but with R, now defined by

(14) Rn =p1n(Tn)/p0n(Tn),
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where the random vector T, is a maximal invariant with respect to G based on the first n
observations and pi, is the density of this maximal invariant under H;(i = 0, 1). This
extension of Wald’s SPRT still preserves the simple inequalities (1.3) (which are approxi-
mate equalities ignoring overshoots), and therefore the stopping bounds A and B in (1.1)
can again be approximately determined in terms of the error probabilities when R, in (1.1)
is the likelihood ratio of the maximal invariant as defined by (1.4) (cf. [4], page 89)
Classical examples of these tests, called invariant sequential probability ratio tests (cf. [4),
are the sequential ¢-test, the sequential T>-test, the sequential F-test, and the Savage-
Sethuraman sequential rank-order test. These examples will be considered in Sections 2
and 3.

A remarkable property of Wald’s SPRT for testing H versus K with error probabilities
« and B is that it minimizes both EoN and E:N (N being the sample size) among all tests
(sequential or not) for which

(1.5) Py[rejecting H] < a, P, [rejecting K] < B,

and for which EoN and E\N are both finite. This optimum property of Wald’s SPRT, first
established by Wald and Wolfowitz [15], is a justification of its use at least for testing
simple hypotheses. The proof of this optimum property depends heavily on the fact that
since Zi, Z,, ... are iid, log R, (where R, is defined by (1.2)) is a sum of i.i.d. random
variables. The argument breaks down when R, is the likelihood ratio of a maximal
invariant as defined by (1.4), in which case {log R,.} is no longer a random walk. Therefore,
the Wald-Wolfowitz theorem on the optimum property of Wald’s SPRT does not extend
to cover invariant SPRTSs, and it has been an open problem as to what kind of optimum
properties, if any, these invariant SPRTs have (cf. [4], pages 146-147 and 292, and [17]).
Unlike Wald’s SPRT which simply involves the first exit time of a random walk from a
finite interval, the stopping time 7 of an invariant SPRT is very difficult to analyze. In fact
a major part of the literature on invariant SPRTs has been concerned with the problem of
termination with probability 1 and with the stronger property of exponential boundedness
of 7 (see [17] for a survey of the present status of the subject). Only recently have
110asymptotic approximations to the moments of = been obtained (cf. [3], [6], [7], [8], [10],
asymptotic approximations to the moments of 7 been obtained (cf. [3], [6], [7], [8], [10],
[12]).

In Section 2 below we shall obtain a first-order asymptotic analogue of the Wald-
Wolfowitz theorem for a large class of invariant SPRTs including all the classical examples
as special cases. More specifically, we shall show that such an invariant SPRT for testing
H, versus H; with error probabilities @ and 8 asymptotically (a « + 8 — 0) minimizes all
the moments of the sample size distribution (both under Hy and under H;) for invariant
tests of H, versus H; with error probabilities not exceeding « and 8. Our asymptotic
analogue of the Wald-Wolfowitz theorem in fact extends well beyond invariant SPRTs. As
an illustration of its wide applicability, we shall apply it in Section 2 to study the SPRT of
H:0= 6, versus K : § = 6, when the observations Z;, Zs, . . . form a finite-order autoregressive
stationary Gaussian sequence with unknown mean level 6.

Let Zi, Z,, ... be iid. N(6, 1) random variables. As is well known, although Wald’s
SPRT for testing H:0 = 6, versus K:6 = 6; has optimum expected sample size at these
parameter values, its expected sample size becomes substantially larger when 6 is around
the midpoint % (6, + 6,), and there exists a simple modification of the SPRT, due to
Anderson [1], which has a much smaller expected sample size than that of the SPRT at %
(6o + 6:). We shall show in Section 3 that a similar phenomenon also holds for the
sequential ¢-test, the sequential F-test, the sequential 7 %-test, and the SPRT for the mean
level of an autoregressive Gaussian sequence. Moreover, we shall examine the more general
problem of asymptotically minimizing the moments of the sample size at an intermediate
parameter without the i.i.d. structure.

In Section 4, we shall study the problem of higher-order asymptotic optimality; and it
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will be shown that ignoring overshoots, invariant SPRTs such as the sequential ¢-test in
fact asymptotically minimize the expected sample size up to the o (1) term (both under H,
and under H;) among all invariant tests with the same or smaller error probabilities. This
result is obtained by developing full asymptotic expansions of lower bounds for the
expected sample size of invariant sequential tests and extending the classical lower bounds
of Wald [14] from the i.i.d. case to a much more general setting.

2. An asymptotic analogue of the Wald-Wolfowitz theorem with applications
to invariant SPRTs. Throughout the sequel we shall use the following notation. Let
X1, X5, . .. be a sequence of random variables defined on the same underlying measurable
space (2, #). Let %, be the sub-o-field of # generated by Xj, ..., X,. Let @ be a o-finite
measure on (2, %) and let @, be the restriction of @ to %,. Let P, i = 0, 1, be two
probability measures on (£, %) such that under P; (Xj, ..., X,) has a joint density p:,
(x1, ..., x,) with respect to @, for every n = 1. A (nonrandomized) test (either sequential
or fixed sample size) of Hy: P = P, versus H;: P = P; based on the sequence {X,} can be
characterized by

(i) a stopping rule N relative to {£#,}, i.e., a positive extended integer valued random
variable N such that {N = n} € %, for all n, and

(ii) a terminal decision rule d(= d (X, ..., X)) which accepts either H, or H; upon
stopping.

The test will be denoted by (N, d). We shall consider the class 7 (a, 8) of tests (N, d)
which satisfy prescribed bounds 0 < «, 8 < % on the error probabilities, i.e.,

2.1) Py[(N, d) rejects Hp] < a, Pi[(N, d) rejects Hi] < B.

We shall let S(A, B) denote the SPRT of H, versus H; based on the sequence {X,} and
having stopping bounds A > B > 0, i.e., S(A, B) stops sampling at stage T given by (1.1)
but with R, now defined by

(2.2) R, =pln(X1, C) Xn)/pOn(XI’ ceey Xn)’

and accepts H, or H; when stopping occurs according as R, < B or R, = A.

If « and B are the error probabilities of S(A, B), then the inequalities in (1.3) hold (cf.
[4], page 89). Regarding (1.3) as approximate equalities by neglecting overshoots leads to
the approximations

(2.3) A= (1-B)a, B=B/(1-a).

We note that the approximate solutions for A and B in (2.3) are asymptotic to «™* and 8
respectively as a« + 8 — 0. Moreover, (1.3) implies that S(a™", 8) satisfies the error
constraints (2.1).

In the special case where X, Xy, . .. are iid., {log R,} is a random walk and the Wald-
Wolfowitz theorem on the optimality of the SPRT S(A, B) in this ii.d. case depends
heavily on the random walk structure. As {log R,} is no longer a random walk when X,
Xa, ... are not i.i.d., our method is to replace the random walk structure by the property
that {log R.} is asymptotically stable in the following sense. First note that when Xi, X5,
... are i.i.d., by the strong law of large numbers,

(2.4) n'log R, — A as. [P:],

where A, = E, {log(p1(X.)/po(X.))} so that Ay < 0 and A; > 0 if P,[ po(X1) # p:1(X,)] > O for
i = 0, 1. It turns out that for the applications which we shall consider, this stability
property still holds (with constants Ay < 0 and A; > 0O defined differently) although Xj,
Xo, ... are no longer i.i.d. The stability of {log R.} is sufficient to imply the asymptotic
optimality of the SPRT in the sense of the following theorem.
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THEOREM 1. Defining R, as the likelihood ratio in (2.2), assume that there exist finite
constants Ao < 0 and A\ > 0 such that (2.4) holds for i =0, 1.

(i) ForO0< a, B< 1, let T(a, B) be the class of all (nonrandomized) tests (sequential
or fixed sample size) of Hy: P = P, versus H,:P = P; based on the sequence {X,} and
satisfying (2.1). Then for every0 <é<1l,asa+ B8 — 0,

(2.5a) infiva)e 78PN > 8|log B /|Ae|]— 1,
and
(2.5b) inf(N,d,Ey(a,,;,Pl[N >4 | log o | /}\1] — 1.

(i) For0<a,B<1,let A, 3> B, g >0 be so chosen that (2.1) holds for S(A..z, Ba,g)
and

(2.6a) logA,p~loga™, logB.,z~logB as a+pfB—0.
Let 7,5 denote the stopping rule of S(Aa,g, Ba,g). Then as a + 8 — 0,
(2.6b) Tap/ |log B] = | Ao| ! a.s. [Po],

and

(2.6¢) Ta8/ |log a| = AT! as. [P1].

Consequently, for every0 <8< 1,asa+ B8— 0,
2.7) inf(zv,d)e 7(a,B)Pi[N > 87‘0,)3] -1 for = 0, 1.

Since the optimality criterion in the Wald-Wolfowitz theorem is about the minimization
of the expected sample size both under H, and under Hj, it is natural to ask whether the
asymptotic optimality of S(A, s,B.z) in the sense of (2.7) above implies the asymptotic
minimization of moments of the sample size. While the almost sure convergence in the
stability property (2.4) does not even guarantee the finiteness of moments of 7,4, it turns
out that in our applications the almost sure convergence in (2.4) can in fact be strengthened
into the notion of r-quick convergence which provides a useful tool in our argument. For
r >0, a sequence {Y,} of random variables is said to converge r-quickly to a constant A
if E(L,)" < o for all a >0, where L, =sup{n =1:| Y, — A| = a} (sup ¢ = 0) (cf. [9]). Note
that Y, — A ass. iff P[L, < ] = 1 for all @ > 0. An r-quick theory for random walks and
for various statistics has been developd in [6], [7], and [9]. In particular, if X;, X, ... are
iid. and A, = E; {log(p1(X1) /po(X1))} is finite, then E, |log( pi1(X1)/po(X1)) | ™! <  is both
necessary and sufficient for the r-quick convergence of n~' log R, to A, under P, (cf. [9]).
Under this stronger mode of convergence of n™! log R,, we obtain from Theorem 1 the
following

COROLLARY 1. With the same notations and assumptions as in Theorem 1, suppose
that (2.4) is strengthened into
(2.8) n'logR,— A\,  r-quickly under P, i=0,1

for some positive constant r. Then for all 0 < B < A, the sample size of S(A, B) has a
finite rth moment under P, and under P,. Moreover, as a + 8 — 0,

(2.9) infw,ae rapBEoN" ~ |Ao| " |log B|" ~ Egthp,  and

inf(N,d,Ey(,,’B,ElN” ~ }\1_’|log (43 |r ~ ElT;,p.

The proof of Theorem 1 and Corollary 1 will be given in Section 3 as a special case of
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a more general result. In the rest of this section, we shall apply Corollary 1 to obtain the
asymptotic analogue of the Wald-Wolfowitz theorem for various invariant SPRTs.
Throughout the sequel we shall use the notation a, for the arithmetic mean of n numbers
ag, ..., Q.

EXAMPLE 1. (Sequential t-test). Let Z, Zi, Z,, ... be i.id. normal N(u, 0% random
variables. The two hypotheses here are H;:u/o = y:(i = 0, 1), where vo, y; aré given distinct
numbers. A maximal invariant of (Z, ..., Z,) with respect to the group of scale changes
Z;— cZj(c>0)is (X, ..., X,), where X; = Z;/ | Z,|. Hence any invariant test of H, versus
H, is based on the sequence {X.,} (cf. [4], page 301). The likelihood ratio of (Xj, ..., X,)
is of the form

R, = U.(v1)/Un(v0),  where
(2.10) U.(y) = J’ utexpln f(u, Tn,y)du, T, = Z,/{n"' Y7 Z2}'72,
0

flu,y,v) =—%u®+ yyu +log u — % y*
(cf. [16], page 1866). Define
@11) hlyu)=-% Y2+ Y% (v + yu(y?u® + 9% +log{yu + (y2u? + 4%},
¥ (u) = h(y1, u) — h(vo, u).
As shown in [6], page 587, there exists a constant C for which
(2.12) [log R, — n¥(T,)|<C, n=12....

For i =0, 1, since E;| Z|° < o for all s > 0, it follows that under H,, T, — (E.Z)/(E.Z%"*
= v:/(1 + y2)'/2 r-quickly for all » > 0 (cf. [9]), and therefore by (2.12),

(2.13) n"'log R, — ¥ (yvi/(1 + yHYD =\ r-quickly

for all r > 0. For fixed —1 < u < 1, the function A.(y) = h(y, u) (as defined in (2.4)) has
its maximum at y = u/(1 — ©u?*"% This implies that ¥ (yo/(1 +v5 )% <0 and ¥ (y,/ (1 +
v3)2) > 0, i.e., Ao < 0 and A; > 0. Hence the conditions of Corollary 1 are satisfied; and by
Corollary 1, the sequential ¢-test S(A, s, Bap) is asymptotically (as a + 8 — 0) optimal

within the class J(a, B) of invariant sequential tests in the sense that (2.9) holds for all »
> 0.

ExaMPLE 2. (Sequential F-test). Let Z, Z; Z,, ... be ii.d. k-dimensional random
vectors such that Z has the multivariate normal N (u, o%I) distribution. Let y; and Z,.(l =
1,..., k) denote the components of u and Z, respectively. The parametric model assumes
that for some given s < %, ues1 = ... = pp = 0. For some given 1 < g < s, let § =
(Y21 u3)/(ko?), and the hypotheses are Hy:0 = 6, and H;: 0 = 6, where 6o, 8, are distinct
nonnegative constants. Let

r=20 if >0 and 6,>0,
(2.14) =%(1-¢q) if i6>0 and 6,=0,
=%(g—-1) if 6>0 and 6, =0.
For 8, x = 0, define
H,x)=—"%0+"% {0x + (6x)/%(6x + 4%} + log{(6x)"* + (6x + 4)'/?},
(2.15)
G(x) =k{H(6, x) — H(6, x)}.
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Note that H(8, x) = k(6% x'/?), where A is defined in (2.11). Sufficiency and invariance
under some group G of transformations reduce the data to the sequence {X,}, where

(216)  Xo= (X0 Z2) /[ XX 2 + Yo Zi— Zuw)? + S Z3)]

(cf. [17]), and as has been shown in [6], pages 593-595, the likelihood ratio R, = pi(X.)/
DPon(Xy) has the following approximation:

(2.17) |log R, — {n G(X,) +vlogn}|=c n=12...,

where c is a positive constant and » is as defined in (2.14). Under H;(i = 0, 1), since X,, —
8,/(1 + 6;) r-quickly for all r > 0, it follows from (2.17) that

(2.18) : n'log R, — G(6,/(1 + 6:;)) r-quickly

for all r > 0. Since H (8, x) = h(8'2, x'/?), where A is as defined in Example 1, the same
argument as in Example 1 shows that G (6,/(1 +6,)) <0 and G(6,/(1 + 6,)) > 0. Hence by
Corollary 1, the sequential F-test S(A, s, Ba,s) is asymptotically (as a + 8 — 0) optimal
within the class 7 (a, 8) of invariant sequential tests in the sense that (2.9) holds for all »
> 0.

ExaMPLE 3. (Sequential T*-test). Let Z, Zi, Z., ... be iid. N(u, ) k-dimensional
random vectors with £ nonsingular. Letting % = u’ £~ p, the two hypotheses are H;:8 =
0: (i = 0, 1), where 6,, 6, are distinct nonnegative constants. Sufficiency and invariance
under the general linear group GL (k) of linear transformations Z — CZ (C nonsingular)
reduce the data to the sequence {X,}, where

(2-19) Xn = n/(l + Vn), Vn = Z:l S;I Zn,

and Z, and S, are the sample mean vector and the sample covariance matrix (at stage n)
respectively. Hence any invariant test of H, versus H, is based on the sequence {X.}.
Defining » and G as in (2.14) and (2.15), the likelihood ratio R, = pin(V,.)/pox( V) in the
present case also satisfies the approximation (2.17) (see (48) and (55) of [6]). Since X,, —
0:/(1 + 6,) r-quickly for all » > 0 under H;(i = 0, 1), it follows from Corollary 1 that the
sequential T2-test S(Aaz, Bas) is asymptotically (as « + 8 — 0) optimal within the class
J(a, B) in the sense that (2.9) holds for all » > 0.

ExaAMPLE 4. (Sequential rank-order test for Lehmann alternatives). Suppose that Y3,
Y., ... are i.i.d. with a continuous distribution function F, and are independent of Z, Z.,
... which are i.i.d. with a continuous distribution function G. Here F and G are unknown,
and the hypotheses are Hy: G = F and H;: G = F*, where 0 < A 5 1 is a known constant.
Let Fo(x) = n7' 31 Liy,=x, Gu(x) = n7' 31 Iiz=x. At stage n, a maximal invariant with
respect to the group of transformations (Y}, Z;) — (Y(Y;), ¥(Z,)) (¢ being an arbitrary
continuous increasing function) is the vector of ranks of Y3, ..., Y, among Y}, ..., Y,,
Z, ..., Zy, and the likelihood ratio of this maximal invariant is

(2.20) R, =A™(2n))/{n™ [T, [Fu(Y)) + AG(Y)][Fn(%) + AGi(2)]}
(cf. [13]). Define

(2.21) S(A,F,G)=log4A -2 — j log(F(x) + AG(x))(dF(x) + dG(x))."

As shown in [13], S(A, F, F) = Ao(A) <0 and S(A, F, F*) = \(A) >0forall0 < A 5 1.
Moreover, by Lemma 1 of [13], n™! log R, — A{A) r-quickly for every r > 0 under H,
(i=0, 1). Hence by Corollary 1, the Savage-Sethuraman test S (A, 3, B.,g) is asymptotically
(as a + B — 0) optimal within the class J(a, B8) of sequential rank tests in the sense that
(2.9) holds for all r > 0.
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EXAMPLE 5. (Test for the mean level of a Gaussian sequence). Let {X,} be a pth
order autoregressive stationary Gaussian sequence with unknown mean level 6. Thus X,
=Y, + 6, where

(222) Y.= ,81 Yoi+ oo + BpYn—p + Zn, n>p,

and Z,+1, Zp+s, . . . are i.i.d. N(0, 0®) random variables which are independent of Y7, . . ., Y,
with joint density g(yi, ..., y»). We shall assume that o, 81, . .., 8, and g are known, and
without loss of generality, we shall take ¢ = 1. The two hypotheses here are H;:0 = 0:(i
=0, 1), and the likelihood ratio R, with n > p is of the form

log R, = (1 - ,31 — e — Bp)(”l - 00) Z/"L=p+1 ()(, - BIX./_I = = :Bpxj—p)
(2.23) =% (n=p)1—=Bi—--- = B,;)%67 - 60)
+log{g(Xi =6y, ..., X, —01)/g(X: — 6o, . .. , Xp —00)}

(cf. [2], page 184). Letting S, = Y7 Y,, S, is N(0, o2), where 02 = Var S, = 0(n) since
Cov(Yy, Y,) converges to 0 exponentially fast (cf. [2], page 175), and consequently

(2.24) n7'S,— 0  r-quickly for every r> 0.
Since X, = Y, + 0, it follows from (2.23) and (2.24) that under H;(i = 0, 1),
(2.25) nl log Ry — (=1)"™*'(1 = B1 — «++ — B,)%(6: — 80)%/2 r-quickly

for every r > 0. Hence by Corollary 1, the SPRT S(A.p, B.p) is asymptotically (as a + 8
— 0) optimal within the class 7 (a, 8) of sequential tests based on {X.,} in the sense that
(2.9) holds for all r > 0.

3. Sequential tests which are asymptotically optimal at an intermediate pa-
rameter. For the sequential ¢-test S(Aqg, Ba,g) of Example 1, the rth moment of the
stopping rule 7,z at the parameter /o = v is finite for all » > 0 and is given by

E(toply) ~|log a| /¥ (v/A +¥)Y?) i  ¥(y/(L+yH"?) >0,
3.1)
~log B|"/|¥(y/(L+yHA|" if ¥(y/(1+yH) <0,

where ¥ is as defined in (2.11) and E(-|y) denotes expectation with respect to the
probability measure under which Z,, Zs, ... are ii.d. N(u, 6%) with u/o = y (cf. [6]). Since
¥’(u) % 0 for all u, the equation ¥ (y/(1 + y?)?) = 0 has a unique root y*, and y* lies
between v, and y;. By Theorem 3 of [8], as « + 8 — 0 such that |log a| ~ | log 8],

(3.2) E(7hp|v*) ~ Ar|log «|?,

where A, is a positive constant depending on r. Thus, although the sequential ¢-test
asymptotically minimizes the rth moment 'of the sample size at y, and vi, it has an
inordinately large sample size at the least favorable parameter y*. From the minimax point
of view, it is therefore of interest to minimize the rth moment of the sample size at the
parameter y*. The following theorem and its corollary deal with the general problem of
asymptotically minimizing the rth moment of the sample size under a probability measure
P which need not equal P, or P;.

THEOREM 2. For 0 < a, B < 1, let T (a, B) be the class of tests of Hy versus H, as
defined in Theorem 1, and for i = 0, 1, let p,,(x1, . .., X,) denote the joint density (under
H,) of (X3, ..., X,) with respect to Q,. Let P be a probability measure on (Q, ) such that
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under P, (X, ..., X,) has a joint density p.(xi, . .., X,) with respect to @, for every n =
1. Define
(33) R’(:) =pn(X1; ceey Xn)/pm(Xb ceey Xn)» l= 0» 1.

Assume that there exist finite constants no and 1, such that

(3.4) M0 =0, m=0, max{no, m} >0,

and

(3.5) n~'log RY — n; as. [P], i=0,1
(i) Forevery0<é<l,asa+ fB8—0.

(3.6) infvae 7@pP[N > 6 min{|log a|/no, |log B|/n}]1— 1

(where a/0 is defined as « for a > 0).
(ii) For0< a, B <1, let C,,p and D,z be positive constants such that

3.7) log Cop ~ |log a|,log D, g~ |log B| as a+ B— 0.
Define
(3.8) Twp=inf(n=1:R® =C,z or RY =D,z} (inf¢=m).

Let (T, p, d*) be the test which stops sampling at stage T, ; and rejects Hy iff R #’:,B =
Cop. Thenasa+ 8 — 0,

Top
min {|log a|/no, |log B|/m}
and consequently, for every 0 < § < 1,

(3.10) infivaye 7p P[N > 8 Top] — 1.

(3.9) — 1 as. [P],

Moreover, the error probabilities of the test (T.p, d*) satisfy

Py[(Twp, d*) rejects Hyl <= Cis P[(Twp, d*) rejects Hy],

(3‘11) Pl[( Tﬂ,B’ d*) rejeCts Hl] = D;,lﬁ P[(Ta,ﬁ; ti*) rejeCts III]

PrOOF. Let ! =1logRY. Let 0 < § < 1 and § > 1 such that 8§ < 1. Let m be the
greatest integer < 8 min {|log a|/no, |log B|/m1}. Then for (N, d) € I(«, B),

exp(— 1Y) dP

|
{N<w,(N,d)rejects Hy}

(3.12) = exp(— IW) dP

= exp(— Snom) P[N = m, I < §nom, (N, d) rejects Hy].
Since 8nom < 85 |log |, it follows from (3.12) that
P[N <m, (N, d) rejects Ho] < "% + P[N < m, I > §nom]
(3.13)
a4 P[max, < nl” > nom].

Using a similar argument, we also obtain that



326 TZE LEUNG LAI

(3.14) P[N =< m, (N, d) rejects H;] < 8% + P[max <.l > Smm].
From (3.13) and (3.14), it follows that
supw.pesemP[N < m] < o' + 7% + P[max,<.l > Snom]
(3.15)
+ P[maxjcnl’ > pm].

Since j 7' — n; a.s. [P]for i = 0,1 and § > 1, (3.6) follows from (3.15).

The a.s. asymptotic behavior (3.9) of T, s follows easily from (3.5) and (3.7). From (3.6)
and (3.9), (3.10) follows immediately. The bounds in (3.11) for the error probabilities of
(T,p,d*)can be proved by essentially the same standard argument used for Wald’s SPRT.
a

COROLLARY 2. With the same notations and assumptions as in Theorem 2, suppose
that (3.5) is strengthened into
(3.16) n'logRY - n  r-quickly under P i=0,1,

‘or some positive constant r. Then ET, 3 < o, and as a + 3 — 0,
8

(317) inf(N,d,e ﬂa,B)ENr ~ ET,:B ~ (mm{l log o |/7]0, | log ,B | /111} )r,

where E denotes expectation with respect to P.

Proor. Take 0 < § < 1. It follows from (3.6) that as a« + 8 — 0,
(3.18) infvae s, EN™ = 6"(min {|log a| /0, [log B[ /71}) (1 + 0(1)).

First consider the case where 7 > 0 and 7, > 0. Let 0 < a < min{7o, 7:} and define L =
sup{n = 1:maxi=o;|n 1Y — n,| > a} (sup ¢ = 0), wherel’ = log R? . On the event { T,z
—-1>1L},

(mi—a)(Tap—1) < lg‘)“ﬁ_l <log C,p, i=0,

(3.19)
< log D,g, i=1
Since T, s < L + 1 on the complementary event, we obtain from (3.19) that
(3.20) T.p<L+1+min{(n — a) 'log Cap, (m — a) 'log D,pz}.
Since EL" < o by (3.16), (3.20) implies that ETY, s < o and that

(3.21) ET’ s ~ (min{|log'a|/no, |log B|/m})",

in view of (3.7), (3.9), and the dominated convergence theorem. The validity of (3.21) in
the case where 7o = 0 < 7, say, can be proved by applying a similar argument to T,z =
inf{n:RY = D, ;} (= T.z) and noting that (3.21) reduces to ET% s ~ (|log 8|/m:)" in this
case.

From (3.18) (with & 1 1), (3.21), and Remark (i) below, the desired conclusion (3.17)
follows immediately. [0

REMARKS. (i) In view of the bounds in (3.11) for the error probabilities of (7T,,z, d*),
if we take C, 3= a ' and D, s = 7', then (2.1) holds for ( T, s, d*) which therefore belongs
to I (a, B); moreover, (3.7) obviously holds.
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(i) Setting P = P, in Theorem 2(i), we obtain (2.5a) of Theorem 1(i), while (2.5b)
follows from Theorem 2(i) with P = P,. The proof of Theorem 1(ii) and Corollary 1 is
exactly analogous to that of Theorem 2(ii) and Corollary 2.

(iii) When X, X;, Xy, ... are iid., tests of the form (T, z, d*) were first proposed by
Anderson [1] in the case where X is normal under P,, P;, and P, and were recently
extended by Lorden [11] to the case where E {log(p (X)/po(X))}* + E {log(p (X)/pi1(X)))?
< o, Py, Py, and P being mutually distinct. Note that these assumptions of Lorden in the
i.id. case imply that the assumption (3.16) of Corollary 2 is satisfied with r = 1 (cf. [9]).

For the problem in Example 1 of testing Ho:y = yo versus H;:y = y;, where y = p/o (p
and o being the mean and variance of the i.i.d. normal observations Z\, Z, ...), we note
that the assumption (3.16) of Corollary 2 is satisfied for all » > 0 at any parameter y (not
necessarily equal to yo or y1). To see this, let RY = U,(y)/U.(y:), i = 0, 1, where U,(.) is
as defined in (2.10). Replacing (yo, y1) in the argument leading to (2.13) in Example 1 by
(v, v), we obtain that (3.16) holds with

(322) mi=mi(y) =h(y, /A +¥Y)"?) = h(y,, y/(L +yHY2) (>0 for y#7v.),

where 4 is as defined in (2.11). Hence letting n(y) = max{no(y), m( ¥)}, it follows from
Corollary 2 that as « + 8 — 0 such that |log | ~ |log 8],

(3.23) infvayesamnE (N"|y) = (1 + 0(1)) |log a|"/n"(y)

for all r > 0. Moreover, the lower bound in (3.23) is asymptotically attained by the test
(T%p(y), d*) where

(324)  Tup(y) =inf(n=1:Un(y)/Unlyo) = &' or Ui(y)/Ua(y) =87}

The minimum of 7(y) occurs at the root y* of the equation ¥ (y/(1 + y%)?) = 0, where
¥ is as defined in (2.11). Hence in view of (3.23) with y = y* and Lemma 1 below, the test
(To,p(y*), d*) is asymptotically minimax within the class 7 (a, 8) in the sense that for all
r>0

infya)e 7t0,mSUP, E (N |y) ~ E(Ttp (v*) | v*)
(3.25)
~ sup,E(T¢p(v*)|v) as @ + B — 0 such that |log a| ~|log B].

LEMMA 1. LetZ,, Z,, ... beiid. N(y, 0% with p/o = v. Define U,(-) as in (2.10), h as
in (2.11), and let v*, yo, y1, Ta,s(y*) be the same as in (3.25). Define ¥*(u) = h(y* u) —
h(y,u),i=0,1. For a>0, let

Le,, = sup{n = 1:max,—,1 | n 7" 10g(Un(y*)/Un(v.)) = ¥*(v/(1 + y?)?)| > a}
(sup ¢ = 0).
Then for allr > 0 and a >0, sup, E (L., | y) < o, and consequently,

(326)  sup,E(T%(v*)|v) ~ E(Thp(y*) | v*) as a + B— 0 such that |log a| ~ |log B|.

Proor. Let Yy, Yy, ... be iid. N(0, 1). Writing Z, = oY, + p, we can regérd all the
random variables (including L., for all y) as being defined on the same probability space
and generated by the sequence {Y,}. As in (2.12), there exists a constant ¢ for which

(3.27) [1og(Un(y*)/Un(v:)) = n¥X(Tn) | = ¢, n=12...,i=0,1,

where
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_ Z_,, _ Y,, + v
nTYIZ)2 T (nTPRHY = V)P (Y + )Y
The functions ¥ (u), i = 0, 1, are both uniformly continuous for | | < 1, while the function
é(x, y) = y/(x + ¥y is uniformly continuous for 2 = x = % and — < y < . Hence in

view of (3.27), (3.28), and the fact that | T, | < 1, for every a > 0 there exists 0 < b = b(a)
< % such that

(329 sup,Le,=<L,=sup{n=1:|Y.|>b or |[n'¥I(Y,—Y.?~1|>b).

(3.28) T,

We note that the function w(y) = maxi—:¥*(y/(1 + v%'? has its minimum at y*, and
that w(y*) = n(y*), where n(y) = max.—o1m:(y) and n.(y) is as defined in (3.22). Let
T.s(y*|y) denote the stopping rule T.s(y*) = inf{n: Un(y*)/Un(yo) = o' or Un(y*)/
U.(y1) = 87"} when the underlying sequence {Z, = ¢Y, + u} satisfies p/o =y.Let0<a
< w(y*). Since (w(y) — a)”' = (w(y*) — a)”' for all y, it can be shown by the same
argument as in (3.19)-(3.20) that

(3.30)  sup,Tap(y*|y) <sup,La,+ 1+ {w(y*) — a) "' max{|log «, |log B]}.

Since E(T%4(v*) | v*) ~ {|log a|/w(y*)} " as a + B — 0 such that |log a| ~ |log 8], and
since EL% < o for all b > 0 (cf. [9]), the desired conclusion (3.26) follows from (3.29) and
(3.30) (where a can be arbitrarily small). 0

For the k-variate normal models in Examples 2 and 3, we again have a parametric
family {P ()} of distributions (where § = ¥9_, u?)/(ko®) in Example 2 and §° = g’ ¥, pin
Example 3) for an invariantly sufficient sequence {X.}, and it can similarly be shown that
the assumption (3.16) of Corollary 2 is satisfied for all » > 0 by P = P(#f) for every § = 0.
Hence Corollary 2 is applicable and gives asymptotically minimax tests (within the class
T, B)) of Hy:0 = 6, versus Hy:0 = 6. Likewise, it can be shown that Corollary 2 is also
applicable to the problem of testing the mean level of the autoregressive Gaussian sequence
of Example 5.

4. Higher-order asymptotic optimality and extensions of Wald’s lower bounds
for the expected sample size. When X, Xs, . . . are i.i.d., Wald [14] obtained the lower
bounds

[Ao| EoN = (1 — &) log((1 — a)/B) + a log(a/(1 — B)),
4.1)
AMEN = (1 - B) log((1 — B)/a) + B log(B8/(1 — a)),

for the expected sample size E, N of an arbitrary test (N, d) € 7*(a, B), where *(a, B)
={(N,d) € I(a,B):P[N<ow]=1fori=0,1} and A, = E:{log(p:1(X:)/po(X1))}. Ignoring
overshoots, Wald’s SPRT with boundaries, 4, B given by equalities in (1.3) attain the
lower bounds in (4.1) (cf. [14], page 157). As a + 8 — 0 such that a log 8 + 8 log a — 0,
these lower bounds reduce to

infvae 7 wnEoN = |Ao| ™" |log B] + 0(1),
(4.2)
infivae »wnBEIN = A7 |log a| + o(1).

While Wald’s lower bounds (4.1) depend very heavily on the ii.d. structure of {X,}, the
following theorem shows that asymptotic expansions similar to (4.2) actually hold in a
nuch more general setting. As an application, we shall show that invariant SPRTs like the
sequential -test are not only first-order asymptotically optimal in the sense of Corollary
l, but they also attain (like Wald’s SPRT) the Wald-type lower bounds up to the o(1) term
vhen the overshoots are neglected.
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THEOREM 3. With the same notation as in Theorem 1, let 4, C %, C... be a sequence
of sub-o-fields of F such that %, C %, for every n. Suppose that under P; (i = 0,.1), log R,
has a representation of the form

(4.3) log Rn =371 Y, + &,

where Y1, Y, ... are iid. with EY} < o, Y, is %,-measurable and Y., is independent
of %, for every n = 1, and

(4.4) E)Y, =X <0, E Y, =X\ >0,

(4.5) ¢, converges in distribution to some random variable §.

(The random variables Y,, &, and ¢ may depend on i € {0, 1}.) Assume for i = 0, 1 that
there exist constants A, > 0,p > 0,0 < § < 1, and events A, (which may also depend on
i) such that

(4.6) Pi(Un<penrpns Ax) = 0(n™") (A = complement of A),
{| & | I(Nnskzn+pons Ar), B = no} is uniformly integrable under P;,
(4.7)
for some ng (I(A) = indicator functon of A),
(4.8) limp—ol, =0 and PlmaX,senipns | & — & | > Ax] = 0(n7"),
“9) P\[max;<,(log R;) > \in + cn®] + Pi[log R, <Ain — cn®] = o(n™),
4.

Py[minj<,(log R;) < Aon — cn®] + Po[log R, > hon + cn®] = o(n™")
forall c¢>0.

Then as a + B — 0 such that o log B + B log a — 0,
(4.10a) infv.a)e 7temEoN = | Xo| (| log B| + Eoé} + o(1),
(4.10b) inf(v.a)e 7ap) E1N = AT {|log a| — E:£} + o(1).

REMARKS. (i) In view of (4.5) and (4.6), £n I (Np<k<n+ons Ar) converges in distribution to
£ under P;. Hence by (4.7) and Fatou’s lemma, E;|{| < o for i = 0, 1.

(i1) In the case where &, = 0, the conditions (4.5)-(4.8) are obviously satisfied with A,
= Q, and (4.9) holds with % < 8 < 1if E;| Y;|*® < o (cf. [9]). Moreover, since £ = 0, the
bounds (4.10a) and (4.10b) are identical with the Wald bounds in (4.2).

Proor oF THEOREM 3. We shall only prove (4.10b), as the proof of (4.10a) is similar.
Let 0 < ¢ < min(1, p/3} and define

(411)  a=A7'|logal, n=[a-ca’], nA=n+[pn’], L =logR.,
where [ x] denotes the greatest integer < x. We first show that as a + 8 — 0,
(4.12) supvaeAapPi[N < n, (N, d) rejects Hy] = o(a™").

Using a similar argument as in (3.12), we obtain that for (N, d) € I (a, 8)

P\[N = n, (N, d) rejects Ho, In< A n + Y Ajen’]
(4.13)
= aexp(hn + % Aen®) = exp{—(% Aic + o(1))a’}, by (4.11).

Since Pi\[N = n, In > X o + % Aen®) = Pi[max;<,l; > Ain + % Aien’] = o(a™') by (4.9),
(4.12) follows from (4.13).
Define
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(4.14) A= (NkpAr) N {maxp<e=r| & — & | =< As} N {lz=|log a| + A1 ¢ a®}.

Since \; A=A e 2’ =|log a| + {Ai(p — 2¢) + 0(1)} a® and p — 2¢ > ¢, it follows from (4.6),
(4.8), and (4.9) that asa + 8 — 0,

(4.15) P(A) =o(a™).
Define Qnq = {N > n, (N, d) rejects Ho}. By (4.12),
(4.16) sSup(v.are AapP1(@ na) = o(a™)

as a + B — 0 such that B log a — 0 (and therefore 8 = o(a™")). On A N Qwa, | évns — & | =
A,, where N A 1z denotes min { N, 72} . Therefore, letting S, =Y -, (Y; — A1), we obtain from
(4.3) that

(4.17) J’ InnedPy =< ME\N + J (Swvai + &) dPy + A,
ANQy

ANQy 4

From (4.5), (4.7), (4.15), and (4.16), it follows that as a + 8 — 0 such that 8 log a — 0,

(4.18) SUP(N,d) e Aa,B)

f gndPl_Eltf’—)O.
Angyy

Note that (S, %., n = 1) is a martingale and that N is also a stopping time relative to
{ %) since # C %,. Therefore E1Svaz = 0 by Wald’s lemma andE;Skaz = o> E(N A i),
where 0% = E;( Y, — A1) It then follows that

J SN/\E dP1 ‘ =
ANy g

by the Schwarz inequality. From (4.15), (4.16), and (4.19), we obtain that as a + 8 — 0
such that 8 log a — 0

f SN/\,T dP1 ‘ - 0

AnﬂN'd

On the event A, 1/Rz = exp(— Iz) = a exp(— A; ¢ a®), and therefore for (N, d) € Ja,
B)’

(4.21) Po(On,q) + j (1/Riz) dP: < afl + exp(— A; ¢ a?)}.

ANQy 4N (N>7)

(4.19)

J Snax dPy ’ < o{EANAR)}VH{PAUQN)}
AUy 4

(4.20) SUpP(N,d)e 7a,B)

Hence by Lemma 2 below,

(4.22) f Inns APy = Py(A N Sna) log{ Pi(A N Q) }
ANQp 4

a(l + exp(— A; ¢ a®))

Since inf(va)e 7. P1(A N Qng) =1 + o(a™') by (4.15) and (4.16), the desired conclusion
(4.10b) follows from (4.17), (4.18), (4.20), and (4.22).0

LEMMA 2. With the same notation as in Theorem 1, let N be a stopping rule relative
to {#}. ThenforAE % BE Fy(ie, BN{N=n}E Z foralln),andm=12,...,

P:(ANB)
log Rnam dPy = Py(A N B) | — .
J;nB o8 fian ' ) ) Og{Po(B) + [anBn(nsm) Rm' dPl}

Proor. By Jensen’s inequality,
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(4.23) Ei[log Rwan|A N B] = log{1/E\[R¥hm |A N B]).

We note that

f Rihm dPlsj R# dP1+j R dP,
ANB BN {N=m) ANBN {N>m)

=Py(BN{N=m}) +j R;' dP,, since BE #n.

ANBN {N>m)

(4.24)

From (4.23) and (4.24), the desired conclusion follows. O

We now apply Theorem 3 to the problem of testing Ho:y = vy, versus Hi:y = y; of
Example 1, where y = p/0 and p, o* are the mean and variance of the i.i.d. observations Z;,
Zy, .. .. Defining R, U.(-), T,, f as in (2.10) and applying Laplace’s asymptotic formula
(cf. Theorem 4.1 of [16]) to the integral [§ u~"' exp[nf(u, T,, y)] du, we obtain that

(4.25) log R, = n¥(T,) + % log {g(yo Th) /g (71Tn)} + 6.(Ty),
where V¥ is as defined in (2.11) and

(4.26) gw) =Y {u+ (& +4)°+1,

(4.27) 0.(x) > 0 uniformly in |x|=1.

Since | T.| = 1 and ¥ is continuous, it follows from (4.25) that there exist C, D > 0 such
that

(4.28) |log R.| = C + Dn, n=12....

Since the distribution of log R, is scale invariant, we shall assume throughout the sequel
that ¢ = 1 so that p = y. Let

(4.29) t=y/A+v2Y,  v=1+y¥=EZ).

Set y/(x, y) = ¥(xy~"?). Noting that | T,| = 1 and T, = ¥(Z,, n"' 37 Z?), we obtain by
(4.25) and Taylor’s expansion on iy that

log R, = n¥ (&) + (3% Z, — ny) v + 0% Z2 — nv)
(4.30) +%nTN Y Z = ny) e + 7T Z - ny) T Z] — no) Yy
+ % n T ZT Z] — nv) Yy, + Yo log{g(vo t)/8(y1 8)} + 1w,

where Y, Yy, s, Yy, Yy denote the partial derivatives of Y/(x, y) evaluated at x = v, y =
(i.e., Y= = (8/0x)¥(y, v) = V2 ¥'(¢), etc.), and

(4.31) 7| =K{|{To—t|+n|Z.— v+ n|n T Z7 — 0|3} + ¢y,

K and c, being nonrandom constants such that lim,_..c, = 0 (since log g(y: u) has a
bounded derivative for |u| < 1,i =0, 1, and the third-order partial derivatives of ¥ (x, y)
are bounded for | xy /?| < 1).

Let Y, = ¥(t) + (Z; — y)¥u + (Z? — v}y, and

& =n"'E1Z —ny)?,  E2=n"'(31Z2 - o),
(4.32) W =20 (31 Z, — ny)($1 Z2 — nv) = 031 2,
—ny+ 122 — nv)t — £ — 0,
& =" (&1 Yux + £ Uy + £2 Yy + log(g(yot) /&(1 1)} + .
Let A, = {| T —¢t|+n|Z,— v+ n|n'Y2 22 — v|® < (log n)~2). Then
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(4.33) P(A,) =o0(n?) forall p>0 i=0,1.
Take any p > 0 and % < 8 < 1. Then (4.33) implies (4.6). Since it follows from (4.31) that
(4.34) |r.|=K(@ogn)™2+c, on A,

we obtain by applying Proposition 1 of [10] to £, £, £ that conditions (4.5) and (4.7)
are satisfied by &,. The random variable £ in (4.5) is given by

§=1% Wi+ W(W?2+ 2yW — D, + % (W2 + 2yW — 1)%s,
(4.35)
+ % log{g(yot)/g(y1t)},

where W denotes generically the N (0, 1) random variable. By an argument similar to that
in the proof of Proposition 1 of [10], page 69, it can be shown that (4.8) holds with A, =
(log n) % for each of ¢, ¢2, and £ . Therefore, in view of (4.33) and (4.34), (4.8) also holds
with A, = (log n)™" + 2 SUPk=nCk.

Let A, = ¥(v./(1 + y?)'/%) = E,Y1. Then as shown in Example 1, Ao < 0 and A; > 0.
Hence (4.4) holds. Let 0 < § < 1 such that D § < min{|A|, A;}, where D is given in (4.28).
Then by (4.28), for all l'arge n,

€36) P[max,<.(log R) > A1 n + cn’] < Pi[maxgm.<<» |log R; — A\ij | > cn®],
4.36
Py[miny<,(log R,)) < Ao n — cn’] < P[maxg.<<n|log R, — Aoj | > cn®].

Since 8 > %, it follows from (4.30), (4.33), and (4.34) that for i = 0, 1,
(4.37)  P[maXgn=m=n|log Rn — \;m| > cn’] = o(n™®) forall ¢>0 and p>0.

In view of (4.36) and (4.37), the condition (4.9) is satisfied.

Since the assumptions of Theorem 3 are satisfied, it follows from Theorem 3 that the
expected sample size of any invariant sequential test of Hy:y = y, versus H; : y = y, satisfies
the lower bounds (4.10a) and (4.10b) with ¢ given by (4.35). For the sequential ¢-test S(A,
B) with stopping rule 7, it can be shown by using Theorem 3 of [10] that as A — « and B
— 0 such that log A/|log B| is bounded away from 0 and o,

(4.38a) Eor = |Ao|{|1og B| + Eof + Co) + o(1),
(4.38b) Eir=A7' {log A — Eif + C1) + 0(1),

where C, > 0 is the mean of the limiting distribution under H, of the overshoot log (B/R,)
for i = 0 and log (R,/A) for i = 1. Hence, ignoring overshoots, the sequential ¢-test S(A, B)
with the boundaries A and B given by equalities in (1.3) attain the lower bounds in (4.10a)
and (4.10b) as a + 8 — 0 such that |log «|/|log 8] is bounded away from 0 and co.

By an argument similar to the preceding, it can be shown that Theorem 3 is also
applicable to the parametric models of Examples 2 and 3. Thus, ignoring overshoots, the
sequential F-test and sequential 7'*-test with boundaries given by equalities in (1.3) again
attain the lower bounds given by Theorem 3 up to the o(1) term. Since the overshoots are
actually not negligible, our results in this paper indicate that the sequential ¢-test is
asymptotically optimal up to the O(1) term within the class 7 («a, 8) of invariant sequential
tests. This is also true for the sequential F-test or sequential 7"*-test.

It is natural to ask whether these invariant SPRTs are in fact asymptotically optimal
up to the o(1) term within the class of invariant sequential tests. Another interesting
problem is related to asymptotic expansions for lower bounds of the expected sample size
at an intermediate parameter and extensions along the lines of Theorem 3 of Hoeffding’s
lower bounds [5] in the ii.d. case. These and other related problems require deeper
techniques and will be treated elsewhere.
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