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ON ROBUST TESTS FOR HETEROSCEDASTICITY

By RAYMOND J. CARROLL! AND DAVID RUPPERT?

University of North Carolina at Chapel Hill

We extend Bickel’s tests for heteroscedasticity to include wider classes of test
statistics and fitting methods. The test statistics include those based on Huber’s
function, while the fitting techniques include Huber’s Proposal 2 for robust
regression.

1. Introduction. We consider the general linear model
(11) Y=7+ U(Ti, 0)61, Tz=clBO (’= ... n)v

where B is an unknown (p X 1) vector, the (p X 1) vectors ¢; are known, the error terms ¢;
are independent and identically distributed (i.i.d.) with common distribution function F, and
o(r,, 0) expresses the possible heteroscedasticity in the model, with

(12) o(r,0) = 1 + fa(r) + o)  as 6 — O.

Bickel (1978), generalizing work of Anscombe (1961), defines robust tests for heteroscedasticity,
which in the present context are tests of Ho:8 = 0; the idea is to replace aspects of the usual
informal examination of residuals by formal statistical inference about the probability structure
of the data. If {1} are the fitted values (from least squares or possibly a robust regression
method (Huber (1973)(1977)) and b is an even function, Bickel’s robust test statistic is

(1.3) Ap = Y1 (a(t) — a.(0)b(r) /6,

where

(L.4) r,= Y, — t, = residual,

(L5) 65 = Xim (at) = a.())’(n — p)~* Tima (b(r) — b.(1))%,

and for any function g,

g-(x) = n”! Tk g(x).
Bickel makes the following assumption:
(1.6) b is bounded and has two continuous, bounded derivatives.

Under (1.6) and other assumptions (see Theorem 1 below), Bickel obtains the asymptotic
distribution of 4, under Hy:6 = 0 and contiguous alternatives; results are obtained for the case
p’/n— 0.

One of the most attractive choices of b (well motivated in Bickel’s Section 3) is Huber’s
function squared.

(1.7) b(x) = x* x| =k
=K |x|>k
This choice of b does not satisfy (1.6) so that Bickel’s Theorem 3.1 does not apply. He states
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that the strong smoothness condition (1.6) is “unsatisfactory” and obtains results for (1.7) only
when p is bounded and fitting is by least squares.

In this note we show by a simple modification of Bickel’s proofs (using techniques of
Carroll (1978)), that results for 4, can be obtained for b given by (1.7) even when p*/n — 0
and fitting is by robust estimates or least squares. This result is given in Section 2. In Section
3 we note extensions which obtain scale invariance by robust estimation with scale estimated
by Huber’s Proposal 2.

2. Main results. Where possible we adopt Bickel’s notation. We will assume that 0, =
2 c¢;c; is invertible and reparameterize to Q, = I; the reparameterization can be ignored here

because it does not change the 7,’s. To provide a frame of reference we state:

THEOREM 1. (Bickel (1978)). Suppose the following hold:

2.1 max |7,| =M,

22) nt Xa(r) — a-(1))’ = M >0,

2.3) |8n'?| = M,

2.4 F is symmetric about zero,

@.5) M1'=sJ(F)=sM where for F’ = f(absolutely continuous),
JoF) = f G () /f(x) + 1)*f(x) dx,

(2.6) Var(b(e1)) = M~ >0,

2.7) the function a is twice boundedly and continuously differentiable,

(2.8) ifd=t—1,2d?= 0yp),

29 b(x) = b(—x),

(2.10) b is bounded and satisfies (1.6),

.11 p*/n— 0.

Then

(2.12) Pi{Ads =z} =1 — ®(z — Ay) + o(1),

where l

(2.13) Au(8, n) = O[T 1 (a(T:) — a.(1))*]V*Ee:b’(e1)[Var(b(er))] ™2

Our generalization of Theorem 1 to incorporate such functions as (1.7) is

THEOREM 2. Suppose (2.1)~(2.9) and the foilowing hold:

b is bounded, Lipschitz of order one, and has two bounded continuous derivatives
except possibly at a finite number of points, which we take as *+c.

(2.15) p'/n— 0.
Then (2.12) holds.

(2.14)

(Assumption (2.8) is discussed in the next section.)
ProoF oF THEOREM 2. The key results in Bickel’s proof are (A34)-(A37) with
wy=1=1/n  (i=))
=—1/n @i #J)).



208 RAYMOND J. CARROLL AND DAVID RUPPERT
Because b is bounded and Lipschitz of order one, (A34)-(A36) follow exactly as given by
Bickel. He uses (A37) to prove

n~2 Vi (at) — a-(6)b(r)

(2.16) =n""2 Y (a(r) — a-(1))b(e)

+ n'2Eb (61) Y1 (a(T) — a-(7)) d, + 0p(1),

where d; = t; — 7;. Instead of proving (A37) we will prove (2.16) directly. As seen in Bickel’s
(A41)-(A47), (2.16) is verified by proving either (A48) (as Bickel has done) or

@I7) = 0 N T wia(r)(b() = blej) + db(e,) = 0.

We will prove (2.17). Note that in Bickel’s proofs of (A41)-(A47) the assumption (1.6) is not
needed; the weaker assumption (2.14) suffices. Since r; = ¢, — dj;, with I being the indicator
function, rewrite

A, =Z,Zw,a(t)(b(e, — d)) — b(g,) + d,b'(€)))
(2.18) X{I(—c+ar=¢g=c—a)+Ic—a=¢=c+ ay)
+I(—c—an<g<—c+a)+Ilg=c+a)+Ig=—c—a)}
=Au+ A+ A+ A+ Ans,

where a, — 0 will be specified later. We also write 4, = 2,%,K;;(n). We can further write

I(—c<e¢—d<c

(2.19) A=K, (n) { Koo d >0

}I(—c+an<e,<c—an)=A(,31)+Ai121)

As in Bickel’s (A48), since b is differentiable on (—c, c),
| AR | = OpZ d?) = Oy p).

Note that if —c + a, < ¢, < ¢ — @, and | & — d, | > ¢ then | d;| > a,. Then, by (2.1), since b is
Lipschitz and w;, = 8;; — 1/n,

| AR | = My Y- | b, — d) — ble;) + d)b'(e)) |
J{—c+a<g<c—an|6—d|=c}
=M, Y| 4| I{|d)| = an}

= My(35-1 d7) (251 I{| 4| > an})"”* = O p/an).

Thus | An | = Oy p/ay). Similarly, | Ans| = Op(p/an), | Ars| = Op( p/as). Further, by (2.1) and
since b is Lipschitz, !

(2.20) | Are| = My(ZdHVH(SI{c — an= &< c + ax})"".
A similar bound holds for | 4.3 |. By Markov’s inequality,
(2.21) i I{c — an < € = ¢ + an} = Op(n(F(c + ax) — F(c — an))).
Then (2.20) and (2.21) yield
| Anz| = Op((npan)"’®), | Ans | = Opl((npan)'”).
This yields
(2.22) 4, = O((pan)”* + 1™ p/an)).
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If we taken a, = n~/*%, (2.15) and (2.22) yield
n 24, = o,(1),

completing the proof. 0

3. Extensions.

A. SCALE INVARIANCE. The test statistic A, is not scale invariant. To obtain such invari-
ance, one would rewrite the model (1.1)~(1.2) so that o(r, 8) = (1 + a(7)d + o(8))/00, where
0y is a scale parameter consistently estimated (when 8 = 0) by a scale estimate 6 (provided by
least squares or Huber’s Proposal 2 for robust regression). To obtain scale invariance, Bickel
suggests replacing b(r;) by b(r.,/6). The statements and proofs of Theorems 1 and 2 must be
modified for this new test statistic which we denote 4,(6). An analogue of Theorem 2 is

THEOREM 3.  Suppose the conditions of Theorem 2 hold and, in addition,

3. n"*(& — 00) = 0p(1),
(3.2) E{b(e)e)’ < »,
3.3) E{b"(e)e1}® < .

Then (2.12) holds for A(0).

REMARK. Assumption (3.1) is discussed in part B of this section. Assumptions (3.2) and
(3.3) hold if b is constant outside an interval (as is (1.7)).

SKETCH OF THE PROOF OF THEOREM 3. We need to verify substitutes for Bickel’s (A35)
and (A37) when b(r;) is replaced by b(r;/6), b(e;) is replaced by b(ei/0o) and the remainder
terms are (respectively) Op((np)"/?) and O( p). To prove the substitute for (A35) one must
show that

34 Ew,ib(ri/6)b(r;/ &) — Ewyb(ei/6)b(e,/3) = Op((np)"?)
(3.5) Zwijb(ei/5)b(€j/ ) — Zwib(ei/ 00)b(ej/00) = Op((np)"*).

Using the special form of w;;, (3.4) follows from (2.8) and the fact that b is bounded and
Lipschitz; (3.5) is a consequence of (3.1) and (3.2). Statement (A37) is more complex. The
analogue of (A42)-(A45) is to show

2o wila(ri) = a(t)b(e;/6) = Op(p),

for which (using Bickel’s proof) it suffices to show

(3.6) iy wiyd (1:) di(b(€;/6) — b(e;/00)) = On( p).
We rewrite (3.6) as
(3.7) 2 Wyd'(1:) di(e,b'(€,/a0) — Ee1b’(€1/00))(1/6 — 1/00)
+ Y., wiid (1) di(b(€,/6) — b(e;/a0) — (1/6 — 1/00)e;b’(€;/00))

'= Bln + B2n.

That By, = O,( p) follows from using the Schwarz inequality, the boundedness of a, and then
applying (3.1) and (3.2). That B,, = O,( p) is complicated notationally but is a consequence of
a weakened version of Lemma 2 of Carroll (1978). This verifies (3.6).

The analogue of (A48) is to show that

(3.8) iy wa(T)b(r,/8) — b€;/00)) = Op( p)-
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First note that (3.1) and the proof of Theorem 2 can be used to show that

(39) Xy wua(ri)(b(r,/6) — b(e,/6) + (d;/6)b'(€,/8) = Oy p).

To verify (3.8) we must show that the difference between (3.8) and (3.9) is O,( p); this is a
consequence of the following:

(3.10) 2y wya(r)(b(€,/8) — b(€,/00)) = Op(p)
G.11) 2y wija(ry) dj/6(b'(€,/6) — b'(€,/00) = Op( p)
(3.12) 2 wii(T) dib'(€,/00)(1/6 — 1/00) = Op( p)-

Equations (3.11) and (3.12) follow by applying the Schwarz inequality, (2.8), (2.14), (3.1) and
(3.3). We can rewrite (3.10) as

(3.13) Y Wya(T)(b(e,/6) — b(ej/o0) — (1/6 — 1/a0)e;b’(€j/00))
+ i wya(r)leb (e,/00) — Eeib’(€i/00)](1/6 — 1/00)
= B} + B,

the last step following since = w;a(r,) = 0. That B}, = O,(p) follows as in the proof of
Theorem 2, while B, = O,( p) follows from (3.1) and the Chebychev inequality. [

B. ON ASSUMPTION (2.8). M-estimates with estimated scale 6 are solutions to (Huber
(1973))

=1 Y((Y, — ¢.B)/6)e. = 0,

where ¢ is an odd function. Huber (1973) verifies (2.8) for M-estimates when scale is not
estimated (6 = 1) and py — 0, where y is the maximum diagonal element of the projections
matrix C(C’C)™'C’. Yohai and Maronna (1979) verify (2.8) when py — 0 and (3.1) holds.
Carroll and Ruppert (1979) verify (2.8) and (3.1) for Huber’s Proposal 2 (Huber (1973)), but
under more restrictive conditions on the size of py.

C. SMOOTHNESS OF F. Condition (2.5) is rather strong. Ruppert and Carroll (1979) show
by entirely different methods that when p is fixed and b satisfies (2.14), (2.5) can be relaxed by
requiring only that F is Lipschitz of order one in neighborhoods of *+c.
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