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UNBIASEDNESS OF INVARIANT TESTS FOR MANOVA AND OTHER
MULTIVARIATE PROBLEMS'

By MicHAEL D. PERLMAN? AND INGRAM OLKIN®

University of Washington and Stanford University

Let Y:p X r and Z:p X n be normally distributed random matrices whose
r + n columns are mutually independent with common covariance matrix, and
EZ = 0. It is desired to test u = 0 vs. u % 0, where u = EY. Let di, - - -, d, denote
the characteristic roots of YY’(YY’ + ZZ')™". It is shown that any test with
monotone acceptance region in dy, -+, dp, i.e., a region of the form {g(d,, .- -,
dp) < c} where g is nondecreasing in each argument, is unbiased. Similar results
hold for the problems of testing independence of two sets of variates, for the
generalized MANOVA (growth curves) model, and for analogous problems
involving the complex multivariate normal distribution. A partial monotonicity
property of the power functions of such tests is also given.

1. Introduction. It is well-known that the noncentral x*- and F-tests have monotone power
functions. That is, if x%(A) and x% denote independent x’-variates, the former noncentral
with noncentrality parameter A = 0, then

Plxm(@)>c] and  Plxn(d)/x»>c]

each achieves its minimum at A = 0 and in fact both are strictly increasing in A. We think of
these probabilities as the power functions of tests for testing A = 0 vs. A > 0.

There are (at least) two distinct methods of proving these results: (i) represent xZ%(A) as
[N(AY%, D]® + xZ-1, condition on x%-1, and invoke the symmetry and unimodality of the
normal density to deduce that P[—k < N(A"?, 1) < k] is decreasing in A; (ii) use the facts that
the noncentral x> and F densities have strictly monotone likelihood ratios, so that the
corresponding distributions are stochastically increasing in A. Note also that the unbiasedness
and monotonicity of the noncentral F-test either can be proved directly, or deduced from the
corresponding properties of the noncentral x’-test by conditioning on x7.

In the multivariate case it is somewhat surprising that no complete analogs of these results
have yet been obtained. By using method (i) extended to the multivariate normal distribution,
Das Gupta, Anderson, and Mudholkar (1964) obtained partial analogs of these results, as
follows.

(a) The MANOVA problem with known covariance matrix. This is the multivariate version
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of the noncentral x? testing problem. One observes a normally distributed random p X r matrix
X with EX = p and whose columns are independent with known common covariance matrix
o, which we take to be the p X p identity matrix I, without loss of generality. The problem
is to test u = O vs. p % 0. The problem is invariant under orthogonal linear transformations of
the form X — ¥ XTI, where ¥:p X p and I':r X r are orthogonal matrices. A maximal
invariant statistic is [ = (/y, - - -, [), where t = min(p, r) and /; = .- - = [,.> 0 are the nonzero
characteristic roots of XX’ (or, more generally, of XX’=;' when = # I,). Any invariant
acceptance region & C R” (i.e., X € & = ¥ XTI € o/ for all ¥, I') is equivalent to one of the
form {h(l) =< ¢} for some function A, and the power of the corresponding test depends on p
only through the noncentrality parameters A = (A, ..., A), where \; = ..+ = A, = 0 are the
nontrivial characteristic roots of uu’. The hypothesis p = 0 is equivalent toA; = - = A, =0.
The method of proof of Das Gupta, Anderson and Mudholkar (1964)—an extension of
method (i) to the multivariate case—yields the following result. (In the applications in this
paper we consider only nonrandomized tests with nontrivial acceptance regions </; i.e., both &/
and /¢ have positive Lebesgue measure, or equivalently, the significance level a satisfies 0 <
a<l)

THEOREM 1.1. Suppose that the invariant acceptance region o/ C R*" is convex in each
column vector of X when the remaining columns are held fixed. Then the power function P,[X
€ /)] is strictly increasing in each noncentrality parameter A, 1 < j < t; in particular, the test is
strictly unbiased.

We remark that our treatment of problem (a) may appear artificial, in the sense that the
problem is actually invariant under a larger group, namely the group of all pr-dimensional
orthogonal transformations acting on X. We have considered the smaller group so that our
discussion of problem (a) is parallel to that of problem (b) below, in that the maximal invariant
statistic can be represented as the set of characteristic roots of a random matrix in each
problem. In fact, our main results for problem (b) can be deduced from those for problem (a)
by a conditioning argument—cf. Theorem 4.1.

(b) The MANOV A problem with unknown covariance matrix. This problem, the multivariate
version of the noncentral F-test problem, is the one actually considered by Das Gupta,
Anderson and Mudholkar (1964). Here, in canonical form, one observes the independent, .
normally distributed random matrices Y = p X r and Z:p X n whose columns are mutually
independent with common covariance matrix X, assumed nonsingular but otherwise unknown,
with EY = p and EZ = 0. The problem of testing u = 0 vs. p 7 0 is invariant under (Y, Z)
— (AYT'1, AZT'5), where A:p X p is nonsingular and I';:7 X r and I'z:n X n are orthogonal.
If n + r < p, no nontrivial invariant test exists. Therefore, assume that n + r > p, in which case
a maximal invariant statistic is d = (ds+1, - - +, di), where s = max(p — n, 0) and where 1 = d;
=...=d,>d,; > --- >d,> 0 are the nonzero characteristic roots of YY'(YY’ + ZZ’)}
[cf. Lehmann (1959), Chapter 7, problems 24 and 25]. Any invariant acceptance region &/ C
RP"*™ s of the form {h(d) < c} for some h, and the power of the corresponding test depends
on y, = only through the noncentrality parameters 6 = (8;, -- -, 6;), where 6, = .-+ =8, =0
are the nontrivial characteristic roots of up’S™". The following result is proved in the same
way as Theorem 1.1, conditioning also on Z.

THeoREM 1.2. (Das Gupta, Anderson, and Mudholkar (1964)). Suppose that the invariant
acceptance region o/ C RP"*™ is convex in each column vector of Y when Z and the remaining
column vectors of Y are held fixed. Then the power function P,s[(Y, Z) € ] is strictly

increasing in each noncentrality parameter 8; and the test is strictly unbiased.

REMARK 1.3. Das Gupta, Anderson, and Mudholkar (1964) do not state explicitly that the
power function is strictly increasing, but a close examination of the proofs of their Theorems
1 and 2 (especially the latter) shows that this is true in our Theorems 1.1 and 1.2. The
conclusion can also be reached by a different argument. For the remainder of this remark, we
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drop the order restrictions A; = -+ . = A, in problem (a) and §; = - - .= §, in problem (b). Thus
the power of any invariant test may be thought of as a symmetric function of Ay, ---, A, or
81, -+, 8 on R (see (1.2)). Once it is established that the power function is nondecreasing in
A1(d1), say, when the remaining parameters are fixed, then since the power is an analytic
function, it is either strictly increasing or else constant in A;(61). A sufficient condition to rule
out the latter possibility is that the power approach 1 as A1(8:) approaches « with the remaining
parameters fixed. Since the convex sections of the invariant acceptance regions ./ in Theorems
1.1 and 1.2 are symmetric about the origin in R” and 0 < P[&/] < 1, these sections must be
bounded in at least one direction with positive probability, so this sufficient condition is
satisfied. We add that it does not seem to be generally known that this condition fails for the
invariant acceptance region % in (1.1) below, an often-advocated test for problem (b) [cf.
Anderson and Perlman (1978)].

Theorems 1.1 and 1.2 have been referred to as only partial analogs of the univariate x> and
F results for reasons discussed now. In these two univariate cases, the monotone likelihood
ratio property implies that the class of admissible tests for testing A = 0 vs. A > 0 consists of
all tests with acceptance regions of the form {x%(A) < ¢} or {x%(A)/x2 = c}. Thus, in the
univariate cases of problems (a) and (b) (i.e., when min(p, r) = 1), all admissible invariant
tests are unbiased and have monotone power functions. In the multivariate cases, however,
Theorems 1.1 and 1.2 are not sufficiently broad in scope to yield the corresponding resuits,
i.e., there are admissible invariant acceptance regions to which the assumptions of Theorems
1.1 and 1.2 do not apply. In problem (b) the most striking example is the acceptance region

(LD =Y, 2)|r YY'(YY' + ZZ) "' = 1)
= {(d8+17 MY dt)l 25-3+1 di =c1— S}.

This invariant acceptance region yields an admissible test [Schwartz (1967b)] which is in fact
proper Bayes when p < n [Kiefer and Schwartz (1965)], which is locally best invariant
[Schwartz (1967a)], and which has certain desirable power and robustness properties [ Schatzoff
(1966), Pillai and Jayachandran (1967), Fujikoshi (1970), Lee (1971), Olson (1974)]. (For a
possibly undesirable property of the power of this test, though, see the final sentence in
Remark 1.3.) It has been pointed out in Perlman (1974), however, that ./ does not satisfy the
convexity condition in Theorem 1.2 unless ¢; < max(l, p — n). (When p =< n this restriction is
simply ¢; = 1, which corresponds to large significance levels «, those not usually of interest;
when p > n this restriction is equivalent to ¢; < s, which implies that the test is trivial, i.e.,
a = 1.) This fact has often been overlooked in the literature [cf. Kiefer and Schwartz (1965,
page 759), Pillai and Jayachandran (1967, page 209), Schwartz (1967a, pages 348, 357)]. Thus
the unbiasedness and monotonicity of the admissible invariant test (1.1) has remained an open
question. (As remarked by Schwartz (1967a, page 346), since this test is the essentially unique
locally best invariant test, it follows that it is locally strictly unbiased.)

In this paper, complete multivariate analogs of the univariate unbiasedness results are
obtained for the following testing problems: (a) MANOVA with known covariance matrix, (b)
MANOVA with unknown covariance matrix, (c) testing for independence of two sets of
variates (canonical correlations), and (d) the generalized MANOVA (growth curves) model.
Our method is broad in scope and applies to the complex analogs of these problems (see
Section 5(e)) as well as to problems for which no unbiasedness results have been obtained
previously [see Andersson and Perlman (1979)]. The method, developed in Section 2, is-a
multivariate extension of method (ii): the noncentral densities of the maximal invariant
statistics, (/, d, etc.) are studied directly, rather than the normal distributions of the underlying
observations.

By “complete multivariate analogs” we mean the following. For each positive integer ¢
define

(1.2) Ri= {(x1, -+, x9)|x:>0, l=i=gq},
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and
(1.3) G? = {g|g:R%{ — R, g is measurable, nondecreasing in each
argument, and g~'({c}) # R for each ¢ € R'}.

In Section 3 it is shown that for problem (a), if A # 0 then Exg(l) > Eog(!) for every g € G*
such that the expectations are not both +co or both —oo. This may be restated as follows: the
characteristic roots of the noncentral (u ¥ 0) random Wishart matrix XX’ are strictly
stochastically larger. than those of the corresponding central (u = 0) Wishart matrix. In
particular, any nontrivial invariant test with monotone acceptance region in /~-i.e., one of the
form {g(/) < c} for some g € G'—is strictly unbiased for problem (a). Similar results are
obtained for problem (b) in Section 4 and for other problems in Section 5. It is easy to see that
the classes of invariant tests with monotone acceptance regions in / (for problem (a)) or in d
(for problem (b)) are strictly larger than the classes of tests to which Theorems 1.1 and 1.2
apply. Furthermore and most important, by applying the argument of Schwartz (1967b,
Theorem 2) it can be shown that a necessary (but not sufficient) condition for admissibility of
an invariant acceptance region in problem (a) is that it be monotone in /, with similar necessary
conditions for the other problems (see Remark 4.5). Thus, for the problems considered in this
paper, our results show that all nontrivial admissible invariant tests are strictly unbiased. In
particular, test (1.1) is strictly unbiased for problem (b), as are its analogs for problems (c), (d),
and (e).

A complete multivariate analog of the univariate monotonicity result for problem (a), for
example, would be that Ejg(/) is increasing in each A;, with similar statements for the other
problems. Although we strongly conjecture that this is true and that the same method of proof
should apply (cf. Proposition 2.6 (ii) and Remarks 3.2 and 4.4), we have been unable to carry
out the details. By yet a third method of proof, however, partial monotonicity results are
obtained for alternatives of rank one—see Theorems 3.5, 4.3, and Section 5.

2. Stochastic comparison of multivariate distributions with monotone likelihood ratio. This
section concerns applications of the FKG inequality (2.9), due to Fortuin, Ginibre and
Kasteleyn (1971), more precisely its extension (2.5) due to Holley (1974), Preston (1974),
Kemperman (1977), and Edwards (1978), called the HPKE inequality. An excellent exposition
of this subject, including related results in probability theory, appears in Kemperman (1977).

Although the FKG inequality and its extension may be stated for probability distributions
defined on a general measure space with a partial ordering, for our applications it suffices to
consider probability distributions defined on a measurable rectangle B in R? (¢-dimensional
Euclidean space) endowed with the usual component-wise partial ordering, as in Section 6 of
Kemperman (1977). Foreach i =1, .-, g, let B; be a Borel subset of R! and »; a o-finite
measure on B;; B denotes the “rectangle” []? B; and dv the product measure [1¢ dv:. For two
points x = (x1, + -+, Xg) and y = (y1, -+, yg) in R? write x < y if x; < yi foreachi= 1, - - -,
¢, and define

@D XAy =@ Ay, s X N\ o),
XVy =1V, et XaV Ya),
where a A b = min(a, b), a \v b = max(a, b). Let ¢ (with or without subscripts) denote a

probability density on B with respect to ».

DEFINITION 2.1.  The density ¢ satisfies the FKG condition on B if

(e PX)P(y) = p(x A y)p(x v ¥)
for every x, y € B. The ordered pair (g1, ¢2) satisfies the HPKE condition on B if
23 PUX)PA(Y) = @i(x A Y)p2(x V )

for every x, y € B.
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REMARK 2.2 If (¢1, ¢2) and (@f, ¢¥) both satisfy the HPKE condition, then so does
(p19¥, p29¥). If o1 = ¢ and @2 = Fo, where ¢ satisfies the FKG condition and F is nonnegative
and nondecreasing in each argument on B N {¢ > 0}, then (¢, Fp) satisfies the HPKE
condition. If F and ¢ both satisfy the FKG condition, then so does their product Fo. If ¢(x)
= [I{ ai(x;) with a; = 0 on B;, then ¢ trivially satisfies the FKG condition. Finally, suppose
that y: R% — R} and Bi:B¥ — B; (1 < i =< q) are nondecreasing, where B? is also a Borel
subset of R If @(x1, - -, xo) satisfies the FKG condition on [] B;, then so does g*(x) =
Y((P(Bl(xl), M) IBQ(X(I))) on H B¥.

REMARK 2.3. If ¢ satisfies the FKG condition, then ¢ is pairwise TP; (i.e., totally positive
of order 2 in each pair of arguments) as studied by Barlow and Proschan (1975, page 149), and
the converse is true when g = 2. When g > 3, however, the converse need not be true unless
¢ > 0 on B [cf. Kemperman (1977, page 329)]. Also see Remark 2.9.

ProrosiTioN 24. (Holley, Preston, Kemperman, Edwards). (i) If (p1, @2) satisfies the
HPKE condition (2.3), then the multivariate distribution determined by @2 is stochastically larger
than that determined by ¢.. That is, if h is a measurable function on B such that

24 {x =y, 91(x) >0, p2(y) > 0} = h(x) = h(y),
then
2.5) thn dv = J ho. dv

provided that the integrals exist.
(ii) Suppose, in addition, that

(2.6) {x =y, x#y, pi(x) >0, g2(y) > 0} = h(x) < h(y)
and that ¢: dv and @2 dv determine distinct probability measures on B. Then
2.7 J hey dv < f he dv

provided that the integrals exist and are not both + © or both —x.

ProOF: Part (i) is given by Kemperman (1977, Theorem 5) for nonnegative h which are
nondecreasing everywhere on B. By a result of Strassen [cf. Kemperman (1977), Remark,
page 316], this implies that there exists a probability measure n on B X B whose marginal
distributions are ¢; dv and @; dv and such that n{x =< y} = 1; clearly, n{gi(x) > 0, g2(y) > 0}
= 1 as well. Therefore, when A satisfies the hypotheses of part (i),

@38) f hor dv = J f h(x) dn(x, y) < f f h(y) dn(x, y) = f s db.

Under the additional assumptions of part (i), n{x < y, x # y} > 0, so strict inequality holds
in (2.8).

REMARK 2.5. Suppose that ¢ satisfies the FKG condition, that g, h are nondecreasing in
each argument on B N {¢ > 0}, and that g, h, gh are integrable with respect to ¢. Then

29 f gho dv = ( f £v dv) ( f ho dv>,

which is a version of the FKG inequality. For nonnegative g this follows by applying
Proposition 2.4(i) with (1, ¢2) = (¢, gp) (see Remark 2.2) and the general case follows by a
truncation argument [see Kemperman (1977), Corollary 2]. In the terminology of Barlow and
Proschan (1975), (2.9) can be restated as follows: if x = (x;, .-+, Xg) is a random vector
distributed according to ¢ dv on B, and if ¢ satisfies the FKG condition, then x;, - - -, x, are
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(positively) associated random variables. This should be compared to their Corollary 4.15
(page 142) which states that if ¢ is pairwise TP, (see Remark 2.3) then xi, ---, x, are
associated. As pointed out by Kemperman (1977, page 329), however, when g = 3 this may be
false unless ¢ > 0 everywhere on the “rectangle” B (also see Remark 2.9(i)).

Proposition 2.4 can be applied in a very general context to deduce unbiasedness and
monotonicity of the power functions of tests with monotone acceptance regions. For the
applications in this paper, however, it suffices to consider testing problems with a simple null
hypothesis, and such that each of the alternative distributions is absolutely continuous with
respect to the null distribution. In this case, simple sufficient conditions for unbiasedness and
monotonicity can be stated in terms of the null density and the likelihood ratio.

Let x = (xi1, - - -, xo) be a random vector distributed according to ¢g, where {¢s| 0 € O} is
a family of probability densities on the rectangle B (with respect to the product measure dv)
indexed by a vector parameter 6 = (6y, - - -, 6») € ® C R™. Assume that ¢ is of the form

(2.10) Po(x) = Fo(x)epo(x),

where Fy = 0 and satisfies Fo(x) = 1 for all x. Note that Fy is simply the likelihood ratio.
Consider the problem of testing § = 0 vs. § = 0, 6 # 0. (Of course, 0 could be replaced by any
other point 6°; more generally, one could treat the case where § assumes values in an arbitrary
partially ordered set.) A nonrandomized test is said to have a monotone acceptance region in
x if its acceptance region is of the form {g(x) < c} for some function g nondecreasing in each
argument on B N {go > 0}. A test is called nontrivial if its significance level « satisfies 0 < a
< 1. The next result is essentially a generalization of the implication (C) = (B) in Theorem
1 of Lehmann (1955), where it is also assumed that x;, ---, x, are independent random
variables.

PRrOPOSITION 2.6. (i) (Unbiasedness). Suppose that g, satisfies the FKG condition on B and
that Fi(x) is nondecreasing in each x; on B N {@o > 0}. Then

(2.11) 0=0= Eyg= Eog

whenever g is nondecreasing in each argument on B N {go > 0}, provided that the expectations
exist. In particular, every test with monotone acceptance region is unbiased for testing § = 0 vs.
6 =0, 8 # 0. If, in addition, Fy(x) is strictly increasing in each x; on B N {go > 0} whenever 0
=0,0%#0,andif

(2.12) Po{x|gx)=c} <1
for every constant c, then
(2.13) 0>0,0%#0= Egg> Eog,

provided that the expectations exist and are not both +o or both —c. In particular, every
nontrivial test with monotone acceptance region is strictly unbiased.

(ii) (Monotonicity). Assume that for every 8 = 0, Fy(x) > 0 on B N {qo > 0}. Suppose that
@o and every Fy satisfy the FKG condition on B, and that Fy(x)/Fy(x) is nondecreasing in each
x; on B N {@o > 0} whenever @ = 6 = 0. Then :

(2.14) 0 =0=0= Esg= Eog

if g is nondecreasing in each argument on B N {q, > 0} and the expectations exist. If, in addition,
Fy(x)/ Fo(x) is strictly increasing in each x; on B N {qo > 0} whenever ¢ =0 =0, 6’ # 0, and if
g satisfies (2.12), then

2.15) #=0=0,0#60= Eyg> Eog

provided that the expectations exist and are not both +« or both —«. In particular, the power
function of every nontrivial test with monotone acceptance region is strictly increasing in each 6;,
I=sj=m
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PrROOF. In part (i), (2.11) follows by applying Proposition 2.4(i) with (1, ¢2) = (@0, Ps)
(=(¢o, Fopo)) and h = g. To prove (2.13), first assume that g is nonnegative and apply
Proposition 2.4(ii) with (1, ¢2) = (po, gpo/ S gpo dv) and h = F,. For general g, write

g=lg+ M) VO +[gA(N)]=g +g,

where N is chosen so large that (2.12) holds with g replaced by g;. Since g; and g, are
nondecreasing on B N {go > 0} and g is nonnegative, g; satisfies (2.13) and g satisfies (2.11).
Part (ii) is proved in a similar manner.

REMARK 2.7. Suppose that for every § = 0, Fy(x) > O for all x € B. Then by Remark 2.3,
in order to verify the assumptions on Fy in the first (second) half of Proposition 2.6(ii) it is
sufficient to show that each Fj is pairwise TP, in x and that Fy(x) is TP, (strictly TPy) in (x;,
§,) foreachi=1,...,qand j= 1, - .., m. Furthermore, these conditions are equivalent to

#log Fi(x)
Pt - Ball A 24P ) l<i =
(2.16) Ax;0xx ’ <k=¢
and
&log Fy(x) , .
@1 W20(>O), l=si=qg l=sj=m,
. LAad)

provided that the derivatives exist.
In the remainder of the paper Proposition 2.6 is applied with B; = R, B = R%, dv = dx
= Lebesgue measure, and

(2.18) po(x) = k-TI7, euxy) I1,, [BCx:) — B(xp)]%-

i=1

Here the a; are nonnegative functions on Ri,Bisa nondecreasing function on R, y=0, a
=a\/ 0, and k > 0 is a normalizing constant chosen such that [ @o dx = 1. Note that

(2.19) {pp>0}C {x1>x2> ..+ >x4>0} = R.
LeEMMA 2.8.  Let o be given by (2.18). Then g satisfies the FKG condition on RY.

Proor. By Remark 2.2 it suffices to show that
o) =T[,_; (i = x))+

satisfies the FKG condition (2.2) on RY. Fix x, y € R{. We may assume that both x, y €
RY,, for if not then the left-hand side of (2.2) is zero. Therefore, it suffices to show that

(2.20) e = x)(yi = y) =[G p) = G5 A DIV y) — 5V )]

whenever x; > x; and y; > y;. If x; — y; and x; — y; have the same sign or at least one is zero
then equality holds in (2.20); if they have opposite signs then the right-hand side of (2.20)
exceeds the left-hand side by (x; — y:)(» — x;) which is positive. This completes the proof.
Therefore, when ¢y is of the form (2.10) with ¢o given by (2.18), in order to apply
Proposition 2.6 it is enough to demonstrate the appropriate monotonicity properties of the
likelihood ratio Fy. In each of the applications treated in subsequent sections, Fp is a
hypergeometric function oF, of two matrix arguments [cf. James (1964)] which appears in the
noncentral density of the maximal invariant statistic (/, d, etc.) under consideration, and gy is
the central density of this statistic. In each case, ¢ is of the form (2.18), and . F is everywhere
strictly positive on R, so only the monotonicity properties of .F; need be established.

REMARK 2.9. (i) If x = (x1, - - -, xg) is a random vector with density ¢, of the form (2.18),
then Lemma 2.8 and Remark 2.5 imply that x;, - - -, x4 are associated. This conclusion is also
stated (for a special case) in the theorem of Dykstra and Hewett (1978, page 236). Their proof,
however, relies on the implication (i) = (ii) in Theorem 2 of Dykstra, Hewett, and Thompson
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(1973), which is not true in general. A counterexample is provided on page 330 of Kemperman
(1977) as follows. Take g = 3 and let P, Q be the disjoint cubes {1 <x: <2,0<x2 < 1,0<
x3<1},{0<xi<1,1<x;<2, 1< x3<2}, respectively. Let the random vector x = (x1, xz,
x3) be uniformly distributed over P U Q. Then, in the terminology of Dykstra, Hewett, and
Thompson (1973), (x1, X2, xs) are positively likelihood ratio dependent, but they are not
associated. Their implication (i) = (ii) is true, of course, under the additional assumption that
the support of the joint density is a measurable “rectangle” B, for in this case “positive
likelihood ratio dependence” reduces to the joint density being pairwise TP;, and the FKG
inequality holds—see Remarks 2.3 and 2.5.

(ii) There is also a slight gap at the top of page 237 of Dykstra and Hewett (1978) concerning
the application of Theorem 5.1 of Karlin (1968, page 123) to their function f(x1, x2, x3). The
hypothesis of Karlin’s theorem requires that the support of f be a measurable “rectangle” B,
and Kemperman’s counterexample shows that this requirement cannot be removed entirely.
However, although f(x1, x2, xs) does not satisfy this requirement, it does satisfy the following
condition:

{f(x1, x2,x5) =0 and xt <xi}=>f(x¥, x2, x3) = 0.

With a slight modification, the proof of Karlin’s theorem remains valid in this case.

3. The MANOVA problem with known covariance matrix. Proposition 2.6 is now applied
to problem (a) of Section 1, with (x, ) = (,\) and g =m = ¢.
THEOREM 3.1.  For every g € G,
A=0,A# 0= Exg(l) > Eog(l),

provided that the expectations exist and are not both +o or both —oo. In particular, every
nontrivial invariant test with monotone acceptance region {g(l) < c} is strictly unbiased for the
MANOVA problem with known covariance matrix.

PrOOF. Since the nonzero characteristic roots of XX’ coincide with those of X’ X, we can
assume that p < r without loss of generality; so ¢ = p. The noncentral density of / is given by

@3.1) or(l) = exp(=Y tr A)oFi(% r; Y% A, L)po(l),
where
32 goll) = k(p, N TI2, T2 e I, (k= e

and A = diag(\y, - -, Ap), L = diag(ls, - - -, ) [cf. James (1961, 1964)]. Since, under ¢o, each
open set in R’ is assigned positive probability, each g € G* satisfies (2.12). Furthermore, (3.1)
and (3.2) are precisely of the form (2.10) and (2.18), respectively, so Proposition 2.6(i) is
applicable if it can be shown that oFi(%r; YA, L) is strictly increasing in each /;.

James (1961, Equation (8)) gives the integral representation

oF1(%r; %A, L) = Jr Jr exp(tr DAY D,I'") d¥ dT’
(33) o(p) Joir)

= J’ J’ exp(Ti-1 X1 M2 Yijyij) d¥ AT,
0(p) JO(r)

where ¥ € O(p) = the group of p X p orthogonal matrices, I' € O(r), d ¥ and dT' denote the
Haar probability measures on O(p) and O(r), respectively, and the p X r matrix D, is defined
by
(3.4) Dy =07 if i=j

=0 if i#j,
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with Dy:p X r defined similarly. Since the distribution of ¥ is invariant under sign changes of
its columns, the identity

3.5 Y (e* + e7™) = Yi-o x**/(2k)!

can be used to rewrite oF; in (3.3) as

1
(3.6) J' H;=1 I:Zokc;o —(Zk)' Qi A}/Q\Pij')/i])z’e} d¥ dT,
O(p) Jor) '

from which it is immediate that oF is strictly increasing in each /;. This completes the proof.
In the preceding proof, in order to prove that oF; is increasing in each /; it is apparently
easier to appeal to the zonal polynomial expansion

C(% A)C(L)

o O WA, ) = S B SR

given in James (1964). Here, the real zonal polynomial C(L) is a homogeneous symmetric
polynomial in i, .-, ,. It is a (nontrivial) property of these zonal polynomials that their
coefficients are all positive [cf. James (1968, Section 8) or Farrell (1976, problem 13.1.13)].
Therefore, oF (%2 r; % A, L) is strictly increasing in each /;. This argument, however, relies
heavily on properties of the real zonal polynomials C(L) and (in our opinion) is less
satisfactory than the direct argument in the final paragraph of the proof of Theorem 3.1, for
three reasons. First, there is pedagogical interest in a direct proof since the theory of zonal
polynomials is not simple. Furthermore, it was noted by S. A. Andersson that for some
multivariate testing problems other than those considered here, zonal polynomial expansions
of the density of the maximal invariant statistic either are not known or else involve new zonal
polynomials whose properties are not known. For example, no polynomial expansion has yet
been obtained in the problem of testing for the reality of the covariance matrix of a complex
multivariate normal distribution, considered by Khatri (1965). Here, however, an integral
representation similar to (3.3) is available from which the desired monotonicity can be deduced
[cf. Andersson and Perlman (1979)]. Finally, if one attempts to apply Proposition 2.6(ii) to
deduce the stronger monotonicity property for the power functions of invariant tests for our
problem (a), the zonal polynomial expansion of oF; seems difficult to work with, whereas the
integral representation of (3.3) is more promising. See also Remark 3.2.

REMARK 3.2. In order to apply Proposition 2.6(ii), it suffices to show that

FlogoFi(%ar; % A, L) -

. >0, i
G3) al;al; e
and

o 1
(3.9) FlogoFi(%ar; % A, L) >0, all i,

al;aN;

(see Remark 2.7). By symmetry, it suffices to take i =1, j=2in (3.8) and i = j = 1 in (3.9). If
these inequalities are established, then for g € G* it follows that Exg(J) is strictly increasing in
each A;, provided the expectation is finite, and hence that the power function of any nontrivial
invariant test with monotone acceptance region {g(/) < c} is strictly increasing in each A;.

Although we have been unable to prove the general monotonicity property suggested in
Remark 3.2, a different argument yields a partial result when EX = p is of rank one, i.e., when
A=(,0, -, 0). After a preliminary lemma (Lemma 3.3, which contains an apparently new
property of the lower triangular (Cholesky) decomposition of a positive definite matrix), this
result is stated in Theorem 3.5.

The following notation is used for Lemma 3.3. Let J be the collection of all real lower
triangular p X p matrices T = (#;) (t;; = 0 if i < j) with positive diagonal elements; J can be
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identified with an open subset of R?"*V/% Let I(T) = ... = I,(T) > 0 denote the ordered
characteristic roots of 77’ and let

(3.10) hr(x) = T, (x — I(T)) = $ho (= Ditr(TT)x""
be the characteristic polynomial of T7”. In (3.10),
(3.11) tr(TT) = tu[(TT )]

is the ith elementary symmetric function of li(T'), - - -, I,(T), where (TT");; denotes the ith
compound matrix of T'T” [cf. Karlin (1968, page 1)]. By convention, tro = 1. For T € 7 let To:
(p — 1)X(p — 1) be the submatrix obtained by deleting the first row and first column of T. Let
mi(To) = - - - = m,_1(To) denote the ordered characteristic roots of T, T and let

(G.12) hry(x) =TI (¢ = mi(To)) = Tz (= Dtro(To To)x" ™™

be the characteristic polynomial of T, T5. Since the m; = m;(T,) are also the characteristic
roots of T¢To, which is a principal submatrix of T'T, and since the /; = [;(T) are also the
characteristic roots of T” T, the Poincaré Separation Theorem [cf. Bellman (1970), Theorem 4,
page 117] states that

(3.13) hzmzbzm=---z2hi=2my_1 =,

Define

(3.14) ={TET|I(T)>m(To) > b(T)> - > mp_i(To) > L,(T)},
an open subset of J. Fmally, for each T = (t;;) € Twe write T = (111, T), where
(3.15) = (ta1, oz, a1, a2, 133, ** s bp1, + + +, bpp) € RPPHI/AL

and define

(3.16) IT={(T|TeT)}.

LemMa 33. (i) Let T € J. Then either (ti, T) € T for all t,; > 0 or else (11, T) & T*
for all t1 > 0
(ii) Define

(317) = {T (S92 |(111, T) eg* for all 1 > 0}

ThenT € * = Ij(tn, T)) is strictly increasing in t,; for eachi=1, - ., p.
(iii) The set

(3.18) F — §* c Rpe+1/21-1
has Lebesgue measure 0.
Proor. Fix T €  and t1, #11 € (0, ®). Let T = (t13, T) and T = (tu, T). From the

definition of (T'T");; and the Binet-Cauchy Theorem [cf. Karlin (1968), page 1], one finds that
forl=i=<p,

try(TT) = tr Ty Ty
(3.19) = sum of squares of all i X i minors of T
= thtri_(ToTo) + (T)
for some function Q. Since (7)o = To, it follows from (3.10) and (3.12) that
(3.20) hr(x) — hi(x) = (F} — t3)hr,(x).

Therefore, if T = (t11, T) € 7*, then also T = (f1;, T) € 7*, proving (i). Furthermore, if 71;
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# t11, then (3.20) implies that hr and h7 cross at x = mi(Ty), - - -, mp—1(To) and nowhere else.
If {11 > 11 > 0, it follows that each root of A7 must be strictly larger than the corresponding
root of hr, i.e., li((fu1, T)) > li((tu, T)) as stated in (ii).

Since 7= (0, ©)XJ and T* = (0, ©)X.7 *, in order to prove part (iii) it suffices to show
that 7— J7*(C R”"*V’?) has Lebesgue measure 0. This fact is proved in the same way as the
theorem of Okamoto (1973, page 764). Consider the polynomial

mr(x) = hr(x)hr(x),
where T € . The roots of the equation 7r(x) = 0 are the 2p — 1 real numbers
l](T) = ml(To) = Iz(T) = e = mp_l(To) = Ip(T)

Let D(T') be the discriminant of 77(x). As pointed out by Okamoto, D(T) is a polynomial in
the elements of T, and the roots of =7 are distinct iff D(T') # 0. Therefore, it suffices to show
that {T € 9| D(T) = 0} is a Lebesgue-null set. By Okamoto’s lemma, however, it suffices to
show that D(T) is not identically zero, and for this it is sufficient to show that there exists at
least one T such that D(T') # 0, i.e., such that

L(T) > my(To) > L(T)y>...> my_1(To) > I(T).

Such a T is easily constructed: for example, let t; = iand tn = 1, 1 = i< p, and set ;, = 0
otherwise.

REMARK 3.4. Lemma 3.3 (ii) states that each characteristic root of T7’ is an increasing
function of #;;. This result does not follow from the Courant-Fischer Minmax theorem
[Bellman (1970), Theorem 3, page 117], since TT" is not increasing in #;; with respect to the
Loewner ordering (2; = X, iff 2; — X is positive semidefinite).

THEOREM 3.5. Suppose that A\ = (A1, 0, -+, 0). Then for g € G', Eq,0,...0g(l) is strictly
increasing in A1, provided that the expectation is finite for all \1; in particular, the power function
of every nontrivial invariant test with monotone acceptance region {g(l) < c} is strictly increasing
in A] .

Proor. The well-known representation of a central Wishart matrix in terms of indepen-
dent “rectangular coordinates” carries over to the noncentral Wishart matrix XX’ when rank
(1) = 1 [cf. Farrell (1976), Section 11.4]. Again assume that p < r without loss of generality;
furthermore, to study the distribution of /, by invariance it can be assumed that p = D). Then
XX’ has the same distribution as TT’, where T:p X p is now a random lower triangular matrix
whose elements T;;(i = j) are mutually independent with the following distributions:

Tu ~ [x7A)]7%,
(3.21) T ~ [xEi]V3 2=isp
Ti; ~ N(0, 1), i>j.

Since T, is stochastically increasing in A; and since the characteristic roots (/1, - - -, ;) of
XX’ have the same joint distribution as those of 7T’ Lemma 3.3 implies that E 0.....0g(!) is
nondecreasing in A;.

To see that this expectation is strictly increasing, two additional facts are required whose
proofs are straightforward but lengthy, hence omitted. First each g € G” has a point of strict
increase on R%, (see 2.19)), i.e., there exist x¥ > ... >x} >Osuchthatx;<x¥<x/, 1=
i < p, implies that g(x1, «--, xp) <g(x7, -+, xp). Second, given x¥ > ... > x} > 0 there
exists T* € J* such that [(T*) = x* for each i =1, ---, p. From these two facts and the
continuity of the mapping

T— (I(T), - -+, b(T)),
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together with Lemma 3.3, it can be deduced that the set
(T € 7+ g1, ), + -+, (111, T)))
is nondecreasing and somewhere strictly increasing in #;}

contains a set of positive Lebesgue measure in RP**"/471 Since Ty, is strictly stochastically
increasing in A;, this implies that Eq,o,...0g(!) is strictly increasing in A;, and the proof is
complete.

If rank (g) = 2, i.e., if A;, A2 > O, then the method used to prove Theorem 3.5 does not
apply. The reason for this is that in the lower triangular decomposition XX " =TT, the
(random) elements of T are no longer independent, and the distributions of the off-diagonal
elements, as well as those of the diagonal elements, can depend on the noncentrality parameters
A;. We have considered the case p = 2 in detail, for in this case one has explicit expressions for
the two characteristic roots /1, I of TT" in terms of the elements of 7. The method of Theorem
3.5 can be applied to show that /; is strictly stochastically increasing in A; and A; (which is also
a consequence of Theorem 1.1), and also that /; is strictly stochastically increasing in A: and
A2 (which seems to be a new result), but we have been unable to show that g(h, k) is
stochastically increasing in A; and A; for an arbitrary function g € G~

4. The MANOVA problem with unknown covariance matrix. Here we consider problem
(b) of Section 1. Just as the unbiasedness and monotonicity results for the noncentral F-test
can be derived from the corresponding results for the noncentral x*-test by a conditional
argument, so can the results for problem (b) be deduced from those of problem (a) by a
conditional and invariance argument.

THEOREM 4.1.  Let \*, \** be two fixed values of \. Suppose it has been shown in problem
(a) that Ex--g(l) > Ex-g(l) for every g € G'. Then in problem (b),

4.1) Esrg(d) > Es-rg(d)

for every g € G*°.

Proor. Recall that d = (ds+1, - - dy) are the nontrivial characteristic roots of YY'(YY’
+ ZZ’)™. To study the distribution of d, it can be assumed that £ = I, so that § = (61, - - -,
8,) are the nontrivial characteristic roots of pp’. Thus if [ = (1, «- -, I;) denotes the set of
nonzero characteristic roots of YY’, with /; > « .+ > I, > 0, then [ has the same distribution as
the characteristic roots I = (i, - -+, ) of XX’ in problem (a), but with A replaced by 8.
Consider the spectral decomposition

YY' = RDiR’,

where R:p X p is a (random) orthogonal matrix and D; = diag(ly, «++, I;, 0, -+ +,0): p X p.
Since the characteristic roots of Y Y'(Y Y’ + Z Z’)~* coincide with those of Di(D; + R"ZZ'R)™",
and since Z and R’Z are identically distributed for each fixed R, it follows that d has the same
distribution as d = d(/, Z) = (ds+1, - - -, ds), where 1 > dyy > + -« > d, > 0 are the nontrivial
characteristic roots of Di(Di + ZZ')™". It is easy to see that each d; = d;(/, Z) is a nondecreasing
function of each J; for fixed Z. For any g € G'™* and any fixed value of Z, define gz on R: by

g2(1) = g(dd, 2)).

Then g7 is nondecreasing in each /;, and furthermore it can be shown that gz is nonconstant
on R%, ie., §z' ({c}) # R for each real number ¢, provided that Z is of full rank. Thus, for
such Z, gz € G". Since Z is of full rank with probability one, it follows from the hypothesis
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that
Es-r+g(d) = E{Ex[£2(1)| Z)}
42 > E{Ex[§z(D)| Z]}
= Es-rg(d),

which is equivalent to (4.1).
By Theorem 4.1, the results of Theorems 3.1 and 3.5 immediately carry over to problem

(b):

THEOREM 4.2. For every g € G™,
§20,8 0= Esg(d) > Eog(d).

In particular, every nontrivial invariant test with monotone acceptance region {g(d) < c} is
strictly unbiased for the MANOV A problem with unknown covariance matrix.

THEOREM 4.3.  Suppose that 8 = (81, 0, - - -, 0). Then for g € G*™°, Es,0....,0g(d) is strictly
increasing in A1, provided that the expectation is finite for all A1; in particular, the power function
of every nontrivial invariant test with monotone acceptance region { g(d) < c} is strictly increasing
in 81 .

REMARK 4.4. If the monotonicity property conjectured for problem (a) in Remark 3.2 is
true, then Theorem 4.1 will also imply that the corresponding result is true for problem (b),
namely that Esg(d) is strictly increasing in each §;.

For the reason mentioned in Remark 4.5 below, it is important to point out that Theorem
4.2 can be proved by a direct application of Proposition 2.6(i), as was Theorem 3.1. Consider
first the case where p < r and p < n, so that s = 0 and 7 = p. In this case the joint density of
d=(dy, -+, dp) is given by [cf. James (1964), page 486]

4.3) ps(d) = exp(— % tr A1 Fi(%(r + n); Ya r; % A, D)po(d),

where A = diag(éi, - - -, §,), D = diag(ds, - - -, dp), and @o(d) is of the form (2.18). There are
again two ways to show that the hypergeometric function ; F; is strictly increasing in each d;:
either appeal to the integral representation of ; Fi, or to its zonal polynomial expansion. The
former, given by Schwartz (1967a, page 344, Equation (6)), is (omitting the arguments of | F;
and changing to our notation)

44) F = j | TT' | ™" exp(— % tr TT") { f J' exp(tr ' T¥TYT') d¥ dI‘} dr,
G(p) O(p) YO(r)

where ¥ and T" are as in (3.3), G(p) is the group of all p X p nonsingular lower triangular
matrices, dT denotes a (left) Haar measure on G(p), and T € G(p) satisfies T(YY’ + ZZ")T’
= I,. Since d¥ and 4T are invariant under orthogonal transformations on the left and right,
the term in brackets in (4.4) can be rewritten as

“4.5) f f exp(tr 1'% D4T'") d¥ dT,
o) Jor

where Dy and Djs are defined as in (3.5), with § = -.- = §, = 0 the characteristic roots of
pu'TT'. Since (4.5) is precisely of the form (3.3), the argument given in the proof of Theorem
3.1 shows that for each fixed T, (4.5) is strictly increasing in each d;, hence so is (4.4).
Entirely similar arguments are valid for the case where p = r, p < n. When p > n (but still
p < n +r), however, the zonal polynomial expansion is not available. Nonetheless, the right-
hand side of (4.4) remains a valid representation of the likelihood ratio ps(d)/@o(d) of the
maximal invariant statistic d, and the subsequent argument showing that this ratio is strictly
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increasing in each d; still holds. (Note that now d; = ... = d; are identically 1, only d,.1,

, d; are varied.) Furthermore, although the central density ¢o of d = (ds+1, -, d)
apparently has not appeared in the published literature, it has been derived by Olkin (1951)
and is again of the form (2.18). Thus, Proposition 2.6(i) is applicable in all cases.

REMARK 4.5. The fact that the likelihood ratio gs(d)/go(d) is strictly increasing in each d;,
s+ 1 =i=<1,is stated without proof in Schwartz (1967b, Theorem 2), where it is used to show
that for the MANOVA problem with unknown covariance matrix (problem (b)), a necessary
condition for admissibility of an invariant acceptance region is that it be monotone in these d;.
We have now given two arguments for the strict monotonicity of the likelihood ratio gs(d)/
@o(d) for problem (b), as well as for that of a(/)/@o(/) for problem (a) in Section 3, and similar
arguments yield the strict monotonicity of the likelihood ratios of the maximal invariant
statistics for the problems treated in Section 5. For each of these problems, therefore, a similar
necessary condition for admissibility of an invariant acceptance region obtains.

5. Other multivariate testing problems.

(c) Testing for independence of two sets of variates (canonical correlations). The reader is
referred to Anderson and Das Gupta (1964a) for a description of this problem. By conditioning
on one of the two sets of variates, Anderson and Das Gupta show that this problem reduces
to the MANOVA problem (b), and thereby obtain the analog of Theorem 1.2 for the present
problem [also see Perlman (1974)]. Exactly the same conditional argument can be used to
obtain the analogs of Theorems 4.2 and 4.3 for problem (c). The analog of Theorem 4.2 for
problem (c), for example, states that when the population canonical correlations are not all
zero, then the sample canonical correlations are strictly stochastically larger than when the
population correlations are all zero, and hence any nontrivial invariant acceptance region
which is monotone in the sample canonical correlations yields a test for independence which
is strictly unbiased. A remark analogous to Remark 4.4 also holds. Furthermore, the analog of
Theorem 4.2 for problem (c) also can be proved directly from Proposition 2.6(i) by demon-
strating the required monotonicity property of the hypergeometric function ; F; of two matrix
arguments [cf. James (1964), Equation (76)]. As before, this monotonicity property of ; F; can
be derived in two ways, from either the integral representation or the zonal polynomial
expansion, and this property in turn yields a necessary condition for admissibility of invariant
tests as discussed in Remark 4.5.

(d) The generalized MANOVA (growth curves) model. This problem is discussed by
Fujikoshi (1973) and Kariya (1978); also see the references therein. Fujikoshi presents a
conditional argument which reduces this problem to the MANOVA problem (b), and thereby
obtains the analog of Theorem 1.2 for a class of invariant tests for the present problem. Again,
the same conditional argument can be applied to obtain the analogs of Theorem 4.2, Theorem
4.3, and Remarks 4.4 and 4.5 for problem (d). Because (at least) two different groups of
transformations have been considered for this problem [cf. Kariya (1978)], it should be pointed
out that we are considering (in Fujikoshi’s terminology) the class of invariant tests based on
the characteristic roots of SxS.". By the analog of Theorem 4.2 for problem (d), for example,
we mean that any nontrivial invariant acceptance region which is monotone in these roots,
yields a strictly unbiased test.

(e) Testing problems involving the complex multivariate normal dtstnbutton Pillai and Li
(1970) consider the analogs of testing problems (b) and (c) for the complex multivariate
normal and complex Wishart distributions. They have shown that Theorem 1.2 and the
corresponding result in Anderson and Das Gupta (1964) extend to the complex versions of
problems (b) and (c). Similarly, Theorem 1.1 extends to the complex version of problem (a),
whereas Fujikoshi’s result extends to the complex version of problem (d). Here we point out
that all of our results and remarks for problems (a)-(d) extend to the complex versions of these
problems, using parallel arguments. For example, consider the complex versions of Theorem
3.1 for (a), of Theorem 4.2 for (b), and of the corresponding result for problem (c). The
noncentral densities of the maximal invariant statistics for the complex versions of problems
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(a), (b), and (c) are given by James (1968, Section 8). In each case the density is of the form
(2.10), where o is of the form (2.18) where F, is a complex hypergeometric function o F, of two
matrix arguments, as defined by James. Thus, Proposition 2.6(i) is applicable if it is shown
that . F, is strictly increasing in each argument. Again, there are two ways to demonstrate this:
first, by means of integral representations of .F% (now the integrals extend over groups of
complex unitary transformations, rather than over real orthogonal transformations); second,
by means of the expansion of .F, in terms of the complex zonal polynomials C, given by
James. To carry out the second approach one needs the fact that, as in the real case, the
complex zonal polynomials C, have positive coefficients. This fact has been established (only
recently) by Farrell (1980).
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