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THE IDENTIFICATION OF AN ELEMENT OF A LARGE POPULATION
IN THE PRESENCE OF NOISE!

By HERMAN CHERNOFF

Massachusetts Institute of Technology

A new approach is presented to the problem of determining whether an
individual (the target) appears in a large file where individuals are identified by
measurements subject to error. This approach attaches costs to searching and to
missing the individual. It corresponds to testing a simple hypothesis, that the
measurements on the target and an element in the library have a given joint
distribution, against the alternative that they are independent. Certain measures
of information from large deviation theory are relevant. There is a surprising
reduction in effectiveness of information in the presence of error. Data compres-
sion issues are studied. Attention is paid to a two-stage search procedure where
the file is subdivided into piles which are in turn subdivided into bins. Each pile
is examined and either discarded or searched. If it is searched, each bin in it is
examined and either discarded or searched. If a bin is searched, each element of
the bin is compared with the target.

1. Introduction. Two identification or information retrieval problems of current interest
are the following. Given the fingerprints of an individual, is this person already represented
in a large government file of fingerprints? Given the mass spectrogram of a specimen of an
organic chemical compound, which if any of the compounds listed in a library of mass spectra
corresponds to the specimen? These questions raise serious difficulties when the data are
subject to error.

We present an approach to these problems which relates to the theory of hypothesis testing
and suggests the relevance of certain measures of information attached to the data. Let X; €
&Z,i=1,2, .-, N be a large set of N points which corresponds to the population or library
of individuals. We shall assume that these points are independent observations from a larger
population with probability density fx(x). Let Y € % be a target point to be identified. That
is, if X and Y are observations corresponding to the same individual, then (X, Y) has a joint
distribution fxy(x, y) which indicates how X and Y are related. In the mass spectrogram
problem X and Y may be two independently measured mass spectra for the same compound
and except for measurement error, X and Y would tend to be very similar. Here 2° and %
would be identical spaces. Alternatively, the library might store abbreviated versions of the
spectra in which case £ and % would be different but X and Y corresponding to the same
compound would still be related.

The model proposed for our problem is the following. Given a target Y, we make a
complete search of a region 8(Y) C &£ at a cost of ¢ per element X; € §(Y). If the individual
represented by the target is in the set { X1, Xz, - -+, X} but not in §(Y), a cost k is incurred
for missing it. The prior probability that the individual is in the library {Xi, ---, Xn} is =
Select the search region 8(Y) to minimize the expected cost.

This problem leads easily to a simple solution which identifies the problem with that of
testing a simple hypothesis versus a simple alternative. However, our problem neglects some
issues. It does not address directly the question of how to store the data in the computer to
facilitate the search. Implicitly one assumes that there is no cost in identifying which elements
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Xi are in 8(Y) and should be compared with Y. One assumes the cost ¢ pays for a definitive
decision as to whether the item X; corresponds to the same individual as Y. The possibility of
stopping as soon as a definitive identification is made is ignored. Our analysis assumes that
the individual appears at most once in the library. A few of these issues are attacked in later
sections.

In Section 2, the optimal search region is described and related to the hypothesis testing
problem. In Section 3 relevant bounds and information numbers are described and examples
are presented in Section 4. These examples illustrate that a little “noise” or error in measure-
ment has a surprisingly large effect in reducing the effective information available. Conse-
quently a question of data compression arises, for it makes sense to save storage space by
rounding off data that yields little effective information. Data compression is discussed in
Section 5, where a conjecture is formulated which is related, in Section 6, to a variation of the
classical isoperimetric problem.

The preceeding formulation assumes that there is no cost in determining whether a given
Xis in the set 8(Y) to be searched. This assumption is often inappropriate. In Section 7, we
suggest dividing the library into subsets called piles. Then 8(Y) consists of a subset of piles
each of which is either searched completely or not at all. Here the theory of the earlier sections
applies directly and thus is relevant to computer file organization. A related question that
arises in Section 8 is the construction of a natural metric on 2.

In Section 9, the decomposition of the library into piles is extended to a two-stage search
procedure where the piles are further subdivided into bins. Some crude approximations are
proposed and evaluated in some examples in Section 10. It is suggested that there is a premium
on relatively noiseless and well-compressed data in the first stage.

Some of the work in fingerprint identification concentrates on how well a feature or
observation divides up the population, and tends to ignore the effect of noise in reducing the
effective information available. The examples in this paper point out that such noise is
extremely influential. Hence the construction of a sound information retrieval scheme requires
the explicit calculation of the effects of noise.

A discussion of some applications of the results in this paper is presented in [5].

2. The optimal search region. In this section we determine the optimal search region for
the simple problem formulated in the introduction. We relate the problem and its costs to
those of testing the simple hypothesis, that two random variables have a given joint distribution,
vs. the simple alternative, that they are independent with the corresponding marginal distri-
butions. .

For simplicity we shall engage in a slight abuse of notation where X and Y are treated as
continuous random variables with marginal densities fx(x) and fy(y) and joint density
JSxv(x, y) with respect to Lebesgue measure. Our treatment also applies to more general random
variables.

Given the cost structure described in the introduction, the cost associated with a search
region defined by the function § is

@1 Cc= f Cfr () dy

where C(y), the conditiohal expected cost given Y = y, is

2.2 C(y) =cNP{XE8(y)} + knP{XE 8(y)| Y = y}.
We see that

Jxv(x, )
- k L6 D) 4
o= J;y)fX(x) o ke s SY()

- _fxr(xp) )
fem <l " Jc:(y) [AOfX(x) Sr(p) ] d
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where
2.3) Ao = cN/km.

It is clear that an optimal search region is defined by
24) 8(y) = {x:A(x, y) = Ao}
where

X5
2.5) ' Alx, y) = %’%

Furthermore the associated expected cost is

C=kn < ff Aofx(X)fy(y) dx dy + jf fxy(x, y) dx dy)
Az, A<},

(2:6)
C = kala + Aof]
where
2.7 a=P{A(X, Y)<A,)},
(2.8) B =P, {(A(X, Y)= Ao},

P, is the probability measure corresponding to the density fxy(x, y) and P is that corresponding
to fx(X)fr(»).

In summary, our optimal choice of search region corresponds to a likelihood-ratio test of
the simple hypothesis

Hi: (X, Y)~ fxy(x, y)

versus the simple alternative

Hy: (X, Y) ~ fx(X)fr(y)

and the expected cost is a linear function of the error probabilities « and .

In retrospect it is not surprising that we should choose to confine our search to that region
of & for which the “observations”, X, Y would lead to accepting the hypothesis H; that
(X, Y) are from the joint distribution corresponding to the same individual versus the
alternative H that X and Y are independent with the specified marginal distributions.

Similar search strategies have occasionally been suggested in the past, usually with little or
no rationale. One exception is that due to Sunter and Felleghi [8] where a slightly more
elaborate but related approach is made in connection with the problem of record linkage.

One important characteristic of our problem is that in typical examples N is very large,
with the consequence that A, is also very large. Thus, in the hypothesis testing context,
acceptance of H; occurs only when one is very sure that (X, Y) are not independent. In this
way the set 8(Y) is a relatively small set of points X very “close” to Y, in terms of the measure
A, so that our search does not have to cover too many elements in the library.

3. Bounds and information numbers. In this section, a bound on a + A,B is derived. Its
relation to large deviation theory and certain measures of information is discussed. These
information numbers permit one to assess how useful certain components of the vectors X and
Y are in reducing the cost C.

We have noted in (2.6) that C = k@r(a + AofB). It is easy to see that for the optimal §

a+AB= f f minfA, fx(x)fr(»), fxr(x, y)] dx dy.

Since min(a, b) < a'b'‘fora>0,b=0,and0 <7< 1,



1182 HERMAN CHERNOFF

3.1 a + Ao < infosi=1AS f f 3 0, )fs)f5(y) dx dy.

A weaker bound of interest is that where the infimum on the right is replaced by the value
with t = %.

Inequality (3.1) is more than a mere upper bound on a + A.B. To appreciate it better, let
us consider some results of large deviation theory applied to testing a simple hypothesis H:
J=/1 versus a simple alternative H,:f = f, based on a large number 7 of i.i.d. observations on
a random variable U with distribution f. For simplicity we shall assume that these two
distributions are absolutely continuous with respect to one another, i.e., that f,-o fi(x) dx =
Jr=of2(x) dx = 0. For each likelihood-ratio test there is a corresponding (a, 8) and it is well
known [3, 4] that

1
(3.2) — — infllog(a + )] = I2(f:. f2)
where
(3.2)' 1% (fl,fz) = —log[infOstl J'f}_t(x)ftz(x) dx]

and that the infimum of the integral is attained for 0 < ¢ < 1. This means that as n becomes
large, o + 8 approaches zero exponentially fast at a rate determined by I%.
Moreover if we keep a fixed at a,

(33) - % inf,-, [log B] = I¥(f1, f2)
where
3.3y I%(f1, f2) = J' log %)fl(x) dx.

Here I is the Kullback-Leibler information number for discriminating between f; and f; when
H, is true and /3 is sometimes referred to as the Chernoff information. Incidentally, when the
infimum of the integral in (3.2)’ is replaced by the value for 7 = %, the negative of the resulting
integral is I}( f1, f2) which is associated with the Bhattacharya distance and the Matusita
distance or affinity [1, 7).

Suppose now that A, increases exponentially with n, so that

(3.4 'll log Ao = Yo.

It can be shown that if I¥(f1, f2) > v, = 0, it is possible to have a and Be™" both approach
zero. The argument deriving (3.2) is easily extended to give

(3.5) - % infllog(a + €"B)] — I7( f1, f2)
where
3.5 IY(f1, fo) = —log[mf05,51 J'f%_t(x)fé(x)etvo dx] .

The integral in (3.5)" attains its minimum for 0 < ¢ < 1 because the integral is convex,
assumes the values 1 and exp(y,) = 1 for t = 0 and 1 respectively, and its derivative at = 0
is Yo — I%(f1, f2) <O0. The information number I}, measures the exponential rate at which «
+ A8 approaches zero when A, = exp(ny,).

These properties of the information numbers I}, I¥, I} and I} may be derived with
reasonable ease using the basic large deviation result [3] that if a = E(Z)



“IDENTIFICATION IN A LARGE POPULATION” 1183

(3.6) - '11 log[P(Z = a)] » —log[inf.=0 E{e"*}] = p(a)

where Z is the average of n i.i.d. observations on Z. This result is applied to Z = log[ f1(X)/
(X))

Several relations among these information numbers follow immediately from the above
results. For example,
It =1%=1%=\2I%.
3.7

It =13

If we think of X and Y in our information retrieval problem as vectors, X = (Uy, Uz - -+,
Un)and Y = (V1, V2, - -+, V,) where the (Ui, ¥;) are i.i.d. random variables with density fyv,
then

(3.3) I%(fuv, fufv) = Ik(fuv)

where
(38), IK(fyv) = ffuvlog(fuv) du dv — ffu log(fy) du — J’fvlog(fv) dv

is the Shannon mutual information. Moreover

(39 I3 (fov, fufv) = L(fuv)

where

39y L(fvv):= —log[iﬂfOstJ\f; J SOSfEfY du dv],
and

(3.10 IE(fuv, fufv) = Is(fuv)

and

(3.10y In( fuv) = —log [ f SOSEfV du dv].

Finally equation (3.7) reduces to

Ix=1,=1I,=\"Iy

G.11)

I, = Ip.

Thus, the right-hand side of (3.1) is a coarse approximation to, as well as an upper bound
for a + Ao, at least in the case where (X, Y) is a vector of ii.d. random vectors (U;, V;).
Furthermore I,  measures the effective information in (U;, V;) in the sense that the cost C is
reduced roughly by exp(—1,,) when (U;, ¥;) are available in the identification problem.

This approximation is coarse in the sense that the ratio of the left side to the right of (3.1)
could be a power of n. More specifically, in the context of equation (3.6) Cramér [6] has shown
that for absolutely continuous distributions (3.6) may be refined to

1

~ —np(a)
nt*(a)

(3.12) P(Z=a)

where ¢*(a) is the minimizing value of ¢ in (3.6). Under more general conditions [2] we know
that P(Z = a) ~ n”""?exp(—np(a)). Thus one may have some insight on the extent to which the
right-hand side of (3.1) overestimates the left. For integer valued random variables, Blackwell
and Hodges [2] derived a result different from but similar to (3.12).

4. Information numbers in some examples. We consider the relevant information numbers
for a few simple examples. The accompanying tables illustrate two main related points. A little
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noise degrades the information content to an extent which the author finds surprising. Also,
when noise is present the Shannon information Ik generally tends to be much larger than the
more relevant information numbers I, and Is.

ExaMPLE 4.1. Suppose that P(Z = 1) = pand P(Z =0) = 1 — p and X and Y are
independent observations on Z which have error probabilities €, and €; when Z =0 and Z =
1 respectively. Thatis, A X=1)=P(Y=1)=p(l —e) + (1 — p)e&;, P(X =Y =1) = p(1 —
&)+ (1—pel, P(X=1,Y=0)=p(l — e)e1 + (1 — p)es(1 — &), etc. In Table 4.1, we present
values of Ix, I,, Ip, Io1 and Iy for a few cases of (p, €1, €,). The corresponding values of ¢, #,,
to1 and fo2, at which the minima in (3.1) are attained are also presented.

If p = 0.5 and €, and €; approach 0, Ix — log 2, i.e., one bit. It also can be shown that 7,
— log 2 and Iz — % log 2. Nevertheless, even when ¢, and €, are both as small as 0.02, I, is
much closer to /s than to Ix. Then I, = 0.187 which is only the equivalent of about a quarter
of a bit. If €, = €; = 0.1 then I, is only 0.062 which is only one third as much.

Note that I is often close to I,, and I, + y,/2 exceeds, but is often reasonably close to, /s
especially when ¢, is close to 0.5. Note also that when €, and €; approach zero, then for general
pIxk— —[plogp + (1 — plog(l — p), I, = —log[p* + (1 — p)*] and Iz — —log[ p** + (1
-p"

TABLE 4.1
Information numbers for Example 4.1

P(Z=1)=p P(Z=0)=1-p
P(X=0|Z=1)=P(Y=0|Z=1)=¢
P(X=1|Z=0)=P(Y=1|Z=0)=¢,

p € € Ix I, I Iy, Io2 t toa to2

0.05 0.002 0.002 0.181 0.048 0.047 0.009 0.000'  0.56 0.22 0.00
0.020 0.119 0.026 0.026 0.001 0.000 0.48 0.06 0.00

0.100 0.038 0.009 0.009 0.000 0.000 0.48 0.00 0.00

0.020 0.002 0.170 0.043 0.043 0.006 0.000 0.54 0.19 0.00

0.020 0.112 0.025 0.025 0.003 0.000 0.48 0.04 0.00

0.100 0.035 0.008 0.008 0.000 0.000 0.48 0.00 0.00

0.100 0.002 0.132 0.030 0.030 0.001 0.000 0.50 0.09 0.00

0.020 0.088 0.019 0.019 0.000 0.000 0.47 0.00 0.00

0.100 0.025 0.006 0.006 0.000 0.000 0.48 0.00 0.00

0.20 0.002 0.002 0.477 0.187 0.176 0.128 0.076 0.62 0.56 0.47
0.020 0.386 0.120 0.119 0.070 0.031 0.56 0.45 0.32

0.100 0.198 0.053 0.053 0.013 0.000 0.51 0.27 0.00

0.020 0.002 0.439 0.153 0.149 0.098 0.053 0.59 0.51 0.40

0.020 0.360 0.108 0.107 0.059 0.024 0.55 0.43 0.28

0.100 0.184 0.049 0.049 0.010 0.000 0.51 0.25 0.00

0.100 0.002 0.319 0.092 0.092 0.045 0.014 0.54 0.40 0.23

0.020 0.265 0.072 0.072 0.029 0.005 0.52 0.34 0.14

0.100 0.131 0.034 0.034 0.002 0.000 0.50 0.12 0.00

0.50 0.002 0.002 0.667 0.317 0.287 0.230 0.172 0.63 0.59 0.55
©0.020 0.589 0.228 0.219 0.171 0.119 0.60 0.54 0.49

0.100 0.382 0.118 0.117 0.069 0.031 0.54 0.44 0.31

0.020 0.002 0.589 0.228 0.219 0.171 0.119 0.60 0.54 0.49

0.020 0.528 0.187 0.183 0.133 0.085 0.57 0.51 0.44

0.100 0.345 0.103 0.103 0.056 0.021 0.54 0.42 0.27

0.100 0.002 0.382 0.118 0.117 0.069 0.031 0.54 0.44 0.31

0.020 0.345 0.103 0.103 0.056 0.021 0.54 0.42 0.27

0.100 0.222 0.062 0.062 0.020 0.001 0.52 0.31 0.06

'When y= I, I,=0and ¢, = 0.
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ExaMPLE 4.2. Related to Example 4.1 is the case where X and Y can be 0 or 1 and we
simply present P(X =1) = P(Y =1) = p and P(X = Y = 1) = p — €. Then the other joint
probabilities are (X =1, Y=0)=P(X=0,Y=1)=¢and P X=Y=0)=1—-p—eIn
Table 4.2 we present values I, Io, I, o1, loz, to, to1 and tos for a few cases of (p, €).

ExaMPLE 4.3. Let Z be normally distributed with mean 0 and variance 1. Let X and Y
represent independent observations on Z with normal errors. Thatis X=Z + Wyand Y= Z
+ W, where Z, W,, and W are independent and normal with mean 0 and W; and W; have
variances o} and o3.

Table 4.3 presents values of Ik, I,, Ip, Ioa, loz2, to, to1 and to2 for several values of a; and

O2.
In this example /x and Ip may be computed to be
1 1+d
4.1 Ix = 3 log <T)
and
1 (075 + d)’
where
4.3) d = o} + o} + ola3.

Ford— 0, I, = Ix = — % log d. However, as in Example 4.1, I, is much closer to I than to
Ik when o0, and o, are as small as 0.02 (d = 0.0008). When o; = 02 = 0.1, Ix/I, is almost 2 and
I, is approximately the equivalent of only 1% bits.

5. Data compression. Since the amount of effective information seems remarkably small
in some of the examples considered, a problem that arises naturally is that of data compression.
In Example 4.3, if 6, = 02 = 0.1, I, is the equivalent of 1% bits. Why should one store X and
Y to several significant figures using many bits of storage space, when the amount of effective

TABLE 4.2
Information numbers for Example 4.2

P(X=Y=1)=p—e¢
P(X=1,Y=0)=P(X=0,Y=1)=¢
P(X=Y=0)=1l-p—c¢

p € Ix I, I Ioa Ios t tox to2

0.02 0.01 0.028 0.005 0.005 0.000 0.000 0.42 0.00 0.00
0.05 0.01 0.118 0.026 0.026 0.001 0.000 0.49 0.06 0.00
0.02 0.068 0.014 0.014 0.000 0.000 0.46 0.00 0.00
0.10 0.01 0.238 0.063 0.063 0.021 0.002 0.53 0.31 0.08
0.02 0.179 0.044 0.044 0.008 0.000 050 . 021 0.00
0.05 0.063 0.014 0.014 0.000 0.000 0.47 0.00 0.00
0.30 0.01 0.515 0.187 0.181 0.131 0.083 0.59 0.52 0.45
0.02 0.447 0.147 0.144 0.095 0.052 0.56 0.48 0.38
0.05 0.296 0.084 0.084 0.039 0.010 0.53 0.38 0.20
0.10 0.133 0.034 0.034 0.002 0.000 0.51 0.13 0.00
0.20 0.001 0.000 0.000 0.000 0.000 0.50 0.00 0.00
0.50 0.01 0.595 0.233 0.223 0.175 0.123 0.60 0.55 0.49
0.02 0.525 0.186 0.181 0.131 0.084 0.57 0.51 0.43
0.05 0.368 0.112 0.112 0.064 0.027 0.11 0.06 0.03
0.10 0.193 0.053 0.053 0.013 0.000 0.05 0.01 0.00
0.20 0.020 0.005 0.005 0.000 0.000 0.50 0.00 0.00
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TABLE 4.3
Information numbers for Example 4.3

X=Z+ W Y=Z+ W,
H(Z)=N@O, 1) L (W;)= N(0, o?)

o 02 Ik I, I Ioa I to toa to.2

0.02 0.02 3.566 2.320 1.639 2.230 2.139 0.93 0.93 0.93
0.02 0.05 2923 1.845 1.318 1.761 1.677 0.86 0.86 0.85
0.02 0.10 2.288 1.329 1.002 1.249 1.169 0.81 0.80 0.79
0.02 0.20 1.624 0.829 0.674 0.754 0.681 0.76 0.74 0.73
0.02 0.40 0.989 0.419 0.373 0.352 0.288 0.68 0.65 0.62
0.05 0.05 2,651 1.622 1.183 1.539 1.457 0.84 0.83 0.82
0.05 0.10 2.196 1.257 0.956 1.177 1.098 0.80 0.80 0.79
0.05 0.20 1.599 0.811 0.662 0.737 0.663 0.76 0.74 0.72
0.05 0.40 0.933 0.415 0.370 0.348 0.285 0.68 0.65 0.62
0.10 0.10 1.964 1.079 0.841 1.000 0.923 0.79 0.78 0.77
0.10 0.20 1.518 0.755 0.623 0.682 0.609 0.75 0.73 0.71
0.10 0.40 0.960 0.402 0.360 0.336 0.273 0.68 0.65 0.61
0.20 0.20 1.292 0.604 0.515 0.533 0.464 0.72 0.70 0.68
0.20 0.40 0.883 0.359 0.325 0.294 0.233 0.67 0.63 0.59
0.40 0.40 0.680 0.253 0.237 0.192 0.137 0.58 0.52 0.44

information is so little? Suppose one used only one or two bits of storage space to store part
of the data in X and Y. Would 7, be reduced very much then?

Let us elaborate on Example 4.3.

ExampLE 5.1. For Example 4.3 with 0, = 0; = ¢ select k — 1 real numbers in increasing
order ay < a; < --+ < ap-1. Let ap = — © and ax = » and let X* =i if a;.; < X(1 + 0?72
=<a;andlet Y* =iifa; 1 < Y(1 + 0™/ = a;. We select the a; so that the intervals maximize
the various information numbers subject to the symmetry constraint a; + ax—; = 0. In Table 5.1
we list the optimal Ik, I,, Ig, Io; and Io,. This is repeated for several values of ¢ and k. The
end points of the optimal symmetric intervals of X(1 + ¢%)~"/% have been computed for I, I,
Ip, Io., and Iy for various values of k and o. The optimal intervals for I, Io; and I, are
generally very close to those for I,. The information numbers are relatively insensitive to
changes in the intervals. For o as large as 0.2, the optimal intervals for 7, put approximately
equal X probability in each interval. For ¢ as small as 0.05 the optimal end intervals for I,
tend to have more than twice as much probability as the others each of which are roughly
equal.

Another variation of Example 5.1 is that where the data in the library are compressed but
Y is not. In this variation we would select the intervals to maximize Io( fx-v), Ix(fx*v), etc.
Results for this variation appear in Table 5.2.

From Table 5.1 one observes that when o, = o; = 0.1, I, for one bit of storage space (k =
2), is less than half of I, for two bits of storage space (k = 4). Consequently we have the
following peculiar situation. If (Z;, Z;) were i.i.d. N(0, 1) random variables and (X:, Xz) and
(Y1, Y;) were independent observations on (Z,, Z,) with measurement standard deviation 0.1,
then using one bit of storage space on each of X1, X;, Y1 and Y is less effective than using two
bits on each of X; and Y; and discarding X, and Y.

In the chemical identification problem the mass spectrogram is ordinarily a vector of about
200 to 400 components. If we wish to store fewer than 100 bits of information it would seem
important to answer the following question related to the above mentioned phenomenon.
Suppose Z; and Z; are independent N(0, 1) variables and X; = Z; + Wy and Y; = Z; + Wy,
where the W;; are independent N(O, o%) random variables, i = 1, 2, j=1,2. It is desired to
summarize (X1, X;) and (Y1, Y2), with one bit of data for each pair. How can this be most
informatively arranged? To be more specific, let R be a region in E; and let X* = 1 if (X;, X3)
€ R and 0 otherwise. Let Y* = 1 if (Y3, Y2) € R and 0 otherwise. Select R to maximize
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TABLE 5.1
Information numbers using k intervals in Example 5.1
X=Z+W Y=Z+W:
F(Z)=N(O, 1) L(Wi)= N(0, 6%

k o Ix I, I Ioa Io2 to 0.1 lo2

2 0.05 0.586 0.225 0.217 0.168 0.117 0.59 0.54 0.48
0.10 0.510 0.177 0.173 0.123 0.077 0.57 0.50 0.42
0.20 0.394 0.123 0.122 0.073 0.035 0.55 0.44 0.33

4 0.05 1.142 0.593 0.460 0.510 0.428 0.90 0.88 0.86
0.10 0.983 0.487 0.394 0.411 0.338 0.77 0.74 0.71
0.20 0.758 0.328 0.262 0.262 0.200 0.68 0.64 0.59

6 0.05 1.444 0.840 0.606 0.752 0.654 0.90 0.89 0.83
0.10 1.232 0.659 0.520 0.581 0.506 0.78 0.76 0.74
0.20 0.940 0.429 0.374 0.360 0.295 0.71 0.68 0.64

8 0.05 1.643 1.028 0.707 0.941 0.855 0.92 091 0.90
0.10 1.394 0.776 0.600 0.694 0.616 0.81 0.80 0.77
0.20 1.044 0.485 0.418 0.415 0.348 0.72 0.69 0.66

9 0.05 1.721 1.086 0.748 0.997 0.912 0.91 0.89 0.89
0.10 1.456 0.822 0.630 0.734 0.657 0.82 0.80 0.78
0.20 1.080 0.504 0.432 0.434 0.366 0.73 0.70 0.67

0 0.05 2.651 1.622 1.183 1.539 1.457 0.84 0.83 0.82
0.10 1.964 1.079 0.841 1.000 0.923 0.79 0.78 0.77
0.20 1.292 0.604 0.515 0.533 0.464 0.72 0.70 0.68

I(fx+y+) or Ix(fx+v+). If the following conjecture is true, optimality can be achieved by
discarding X; and Y..

CONJECTURE. An optimal R consists of {(x1, x2):x1 < 0}.

This conjecture seems rather paradoxical. For a classical statistician it is difficult to accept
the statement that no gain can be derived from using the information available in X, even
when one is confined to using only one bit of storage space. A precise proof of this conjecture
does not exist but partial results described in the next section tend to support it.

In the meantime some doubt may be cast on the intuition of the statistician who would
suggest that a better alternative candidate for an optimal R would be R; = {(x1, x2):x1 + X2
=< 0}. Then £(X; + Xz, Y1 + Y2) = #(2"%(X1, 1)) and hence, for any method depending on
Xi + X; there is an equally informative one using X;. Thus if R; is optimal so is Rz = {(x1, x2):
X1 = 0}

We conclude this section with the bare outline of an example of data compression.

ExaMpPLE 5.2. Let Z;, U;, Vi,i=1, ..., nbe iid. N(O, 1) random variables. Let X; = Z;
+oU;and Y;=Z;+ oV;for 1 =i<n.Let X* and Y* be the indices of the largest X; and Y;
respectively. i

Then the information in using the (X, Y) vectors is n times that of a single (X;, Y;). Using
X* and Y* involves only logon bits of storage space. If o is very small the effective information
(I, or Ix) is close to log n, which is equivalent to logzn bits. Thus while X* and Y* present
only a small part of the available information, they present that part efficiently with respect to
the use of storage space.

6. Comments on the conjecture of Section 5. We have remarked on the paradoxical nature
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TABLE 5.2
Information numbers using k intervals in variation of Example 5.1 where Y is not compressed

X=Z+W Y=Z+ W,
HAZ)=NO, 1) LW)=N(0,0%

k o Ix I, I Io, Ioz t to.1 to2

2 0.05 0.668 0.465 0.308 0.378 0.293 0.88 0.86 0.83
0.10 0.643 0.363 0.271 0.284 0.208 0.80 0.77 0.73
0.20 0.595 0.243 0.207 0.174 0.111 0.71 0.66 0.59

4 0.05 1.255 0.881 0.596 0.794 0.708 0.87 0.86 0.85
0.10 1.128 0.670 0.509 0.591 0.513 0.80 0.78 0.76
0.20 0.893 0.428 0.366 0.358 0.291 0.71 0.68 0.65

6 0.05 1.587 1.082 0.747 0.996 0912 0.86 0.85 0.85
0.10 1.392 0.809 0.620 0.730 0.653 0.79 0.78 0.77
0.20 1.054 0.500 0.428 0.429 0.362 0.72 0.69 0.66

8 0.05 1.804 1.194 0.843 1.110 1.033 0.86 0.85 0.84
0.10 1.548 0.886 0.684 0.807 0.730 0.79 0.78 0.77
0.20 1.135 0.535 0.458 0.464 0.396 0.72 0.69 0.67

10 0.05 1.958 1.290 0.909 1.206 1.122 0.85 0.84 0.84
0.10 1.648 0.934 0.724 0.856 0.779 0.79 0.78 0.77
0.20 1.181 0.555 0.475 0.484 0.416 0.72 0.70 0.67

o 0:05 2.651 1.622 1.183 1.539 1.457 0.84 0.83 0.82
0.10 1.964 1.079 0.841 1.000 0.923 0.79 0.78 0.77
0.20 1.292 0.604 0.515 0.533 0.464 0.72 0.70 0.68

of the conjecture of Section 5. We shall outline some of the ideas that appear in a partial proof
of that conjecture leaving the details for subsequent publication.

Let X* = 1if (X1, X;) € R and 0 otherwise and let Y* = 1 if (X;, X3) € R and 0 otherwise.
If 6 is small, the information I, is log 2 minus an increment, which depends on € = P(X* = 1,
Y* = 0) and n = P(X* = 1) — %, and which is small when € and 7 are small. Ideally one
would like to have both € and 5 be zero but € cannot go below some number depending on
o. For fixed 1, it is preferable to minimize € which is approximately proportional to the
integrated density along the boundary of R. Thus a proof of the conjecture is related to the
demonstration that the solution of the following variational problem is given by R = R(n) =
a half plane.

ProBLEM. Find the region R with boundary B which minimizes

e j BOrMpxa)(dxt + dx)
B
subject to
4= j S(x1)p(x2) dxy dxz = Yo + 1,
R

where ¢(x) is the standard normal density (27)"/%exp(—x%).

Note that when ¢(x) is replaced by 1, L and A4 are the perimeter and area of R and we have
the classical isoperimetric problem. A proof that the half plane is a stationary solution of our
problem involves the following lemma which is of interest in its own right and may be proved
by using a Hermite expansion.
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LemMa. If Z is normally distributed with mean 0 and variance 1, and if g is an absolutely
differentiable function such that g(Z) has finite variance, then

E[g'(2)) = Var[g(2Z)]
with equality if and only if g is linear.

7. Piles. Up to this point, the major issue in the case of very large libraries has been
avoided. In that case it is not generally feasible to decide in advance whether an element X of
Z lies in §( y) or not. To implement our procedure involves the possibly prohibitive additional
cost of ¢,N where ¢, is the average cost of determining whether X € §(Y). Nevertheless, this
issue may be confronted without abandoning the theory discussed before. The following
considerations are relevant to the problem of file storage.

Let us suppose that % is partitioned into disjoint subsets %1, %2, -+, Lm with N1, Na,
«++, Ny elements respectively. We shall call these subsets piles. When Y = y is observed, a
decision is made for each pile Z; as to whether it should be skipped or searched completely at
a cost of ¢ per element. Then &( y) consists of a union of some of the Z; and the cost ¢,N of the
previous paragraph is replaced by c¢¥ M, where c¥ is the cost of making the decision for each
%:. For example, if the size of each % is of the order of magnitude of 10° and ¢¥ is comparable
to ¢, then M is of the order of 107N and the cost c,N is reduced by a factor of 107°,

Two questions must be answered. How is it to be determined whether %'; C 8( y)? How does
this procedure affect the cost C(y) and C discussed in Section 2?

As in Section 2, it is clear. that

C= wk[j Sxy(x, y)dx dy + A, Jfxfy dx dy:l.
x€8(y)

xZ8(y)

If we let X* =iif X € %, and define 6*(y) = {i: 2 C 6(y)}

fxevG ) = f frv(x, y) dx

XEX;

fX'(l) = fx(x) dx

XEX;

Then

C=nk f iesron fx v, y) + Ao Sigrin [ (D)fy(»)] dy

which attains its minimum value of

(7.1 *=nk j 2 minf fx-y (i, y), Aofx+ (0)fr(»)] dy
when

O 24 UP)) }
7.2 8*(y) = {iIA*(i, y) =22 )
(7.2 O {1 @y fx'(i)fy(y)>}\°

Moreover the solution of our new problem is exactly of the same form as that of our original
problem with the exception that X is replaced by the (discrete) variable X*. Thus where the
information numbers based on the joint distribution of X and Y appeared relevant in the
original problem, the somewhat reduced versions based on the joint distribution of X* and Y
are relevant in the current problem. The current problem refers to the more realistic one using
piles because one cannot afford to examine each X; individually to see if it belongs in 8( y) and
deserves to be compared with y.

It is likely that a somewhat larger information number (possibly Ix(fx-y)) would be
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relevant for the variation of this problem where the piles may be searched in descending order
of A(X*, Y) and one stops searching as soon as a single matching X for Y is found.

8. Metric on . Two somewhat different situations may exist in the selection of the piles.
In one case X?¥ itself is determined by a vector of random variables, and the computation of
fx-+v is relatively simple and does not require the formulae of the preceeding section. For
example, X* could represent a vector of 10 ones and zeros corresponding to the ten fingers, a
one indicating a loop (one type of fingerprint), and a zero a nonloop. In such a case the value
of y might lead to the automatic disqualification, as candidates, of any point in % for which
there is more than one discrepancy on the type (loop or nonloop) among the ten fingers.

In this case, the decision to include X* € §*(y) requires no detailed computation and is
practically cost free. Given Y = y, a computer could be guided to the appropriate data bans
or piles directly.

A second situation is where there is no very simple description of % in terms of a low-
dimensional, well-understood vector. In this case it seems plausible to group together X; and
X, in the same % if they are close to each other in an appropriate sense. One measure of
closeness or distance between x; and x; which suggests itself is

[0, )f ¥y (x2, ) ]
1 D(xi, x3) = —I dy |.
(8 ) (xl Xz) Og[ fX/2(x )fx/2(x2) ly
This measure may be arrived at from several points of view. First we would like to regard x;
and x; as close if A(x1, Y) and A(x2, Y) tend to both be large or both be small for the same
values of Y. A measure of how well A(x1, Y) and A(x2, Y) are correlated or rather how well
their square roots are correlated is

j A2(x1, A2 (x2, p)fy(p) dy

which is simply exp[—D(x:, x;)]. Alternatively we may regard D as coming from the
Bhattacharya distance between fy|x(- | x1) and fy x(: | x2), the conditional distributions of Y
given X = x; and X = x,. The author has not yet had experience with any large scale
implementation of such a measure. There seem to be several ways of going about it and
technical problems may arise.

First, to measure D theoretically may be difficult. Presumably one may estimate D
empirically by sampling from the Y distribution.

One could select the piles %, which may be regarded as clusters of X’s, by sampling the
large population and using the points in the sample as representative centers of the Z;. Every
element of % could be assigned to the center to which it is closest.

Alternatively one could use the sample to estimate the distribution of D(X:1, Xz) and use as
centers only X; which are far from other points sampled.

Finally one could use the distances D(X:, Xz) to do a cluster analysis based on these
distances. This cluster analysis differs from the usual one in that the set of entries is very large
and the number of clusters would be quite large.

It would seem advisable to obtain some experience with several approaches on a few
examples before setting up an elaborate theory. It should also be pointed out that one may
anticipate coming across situations such as in fingerprints where there is a substantial amount
of information tightly packed into a few unspecified components of X and where there is a
large amount of information loosely spread around through most of the components of X. In
this latter case we may have a very large nugget of information (such as an identifying scar)
which is located in an unpredictable part of X. Then it would be desirable to find a few
cleverly selected features, i.e., functions of X, which summarize a great deal of effective
information in compact form.

9. Two-stage search. In this section we elaborate the method described in Section 7 to a
two-stage procedure. The set & is partitioned into disjoint subsets 21, %3, +--, Zu called
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piles. Each pile %; is partitioned into disjoint subsets 23, j=1,2, -+, M;,i= 1,2, ---, M.
These subsets are called bins. There are M;; elements in bin %j;. During the first stage each
pile is examined and a decision is made on whether or not to search it. If it is to be searched,
then a similar choice is made for each bin in that pile. Each element of a bin that is searched
is matched against Y.

During Stage 1, a cost of ¢ M is incurred in examining the M piles where ¢, is the cost for
examining a given pile. In Stage 2, a cost of c is incurred for each bin in a pile Z; which is
searched. Finally, when a bin is searched, each element of the bin is compared with Y at a cost
of cs per element. Let

7\1 = ClM/kﬂ, 7\2,‘ = CzM,‘/k‘lT and 7\3 = CsN/k‘n',
and let
X*=iifXE % and X**=(,j)if XE 2.

Let C be the expected cost of using the two-stage search. Since k is the expected cost of
not searching the library at all, (km)~'C represents the factor by which this basic cost is
multiplied when using our scheme. In a crude way we would expect that, except for the
examination costs, the use of X* would lead to a factor R* similar to that of our previous
theory and the use of X** in the second stage to another factor R**. Then (kw)™'C would
correspond roughly to R*R** except for the influence of A;, Az, and As. Incidentally by
selecting M and M; suitably, A, and A,; may be made small compared with 1. However A; is
ordinarily quite large.

It would be rather optimistic to expect that there would be no loss of efficiency in this two-
stage process and hence it would be somewhat surprising if there were no degradation in using
two stages. If there is a loss of efficiency, does it matter in what stage some specific information
is presented? Suppose for example that X** corresponds to two independent vectors and X*
can be chosen to be either one of these. Is there a simple rule for deciding which is preferable?

These questions are addressed in this and the next sections. Here we present a crude
estimate of (km)~'C which suggests an effect \y’* R*R** and a modification. Reasons are given
to prefer, for Stage 1, information which is more precise and more compressed. In Section 10,
the results of this section are compared with some Monte Carlo computations in a few simple
cases.

During Stage 1 a cost of ¢, M is incurred in considering the M bins. The conditional cost
given Y =yis

C(y) = aM + ¥, min[knP(X € %:| Y = y), Co(i, y)]

where C(i, y), to be considered next, is the conditional cost of searching the ith pile %; given
Y =y. Then

Coi, y) = C:M; + Y% min[knP(X € %| Y = ), csNP(X € %y)].
Ultimately we are interested in
C=E[C(y)]
=aM+ f T min[knfx v(i| y), Col, Y]fr(y) dy.

Factoring out kx from C and C:; yields

o.1 (km'C=A+ f M, minf fx+ v(i| p), (km) "' Colis P1fr(y) dy
where

9.2 (km)'Caliy y) = Ko + ¥ min fico v(G, /)| ) AafxeG, )]
Then

©3) (km)'Caliy y) = Nai + fx (i Y)AnGs )
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where
9.4) An(, y) = Y% min[ fix x+v(G, )i, )’) fX «1x+((G, NI H]
and
, Sxx(i, y)
. A, y) =
) G = Lo

is the likelihood-ratio for testing fx-y versus fx-fy. Given X* =iand Y = y, A, represents
the minimum of a + AB for testing fx++|x+v( - |, y) versus fi++ x+( - | i) with A = As/AM(, ).
Then A, can be bounded above by

9.6) Ax(, y) = mf [S%e £ xevf o x-NATY]

and, using the special case t = ¥, by

Ani, y) = ATV T ¥ oy [,
9.7
- ~1/2)\1_1/2R§*(i, )’)

where R3*, the sum in the expression on the right of (9.7), will be called the Bhattacharya
factor for Stage 2.

In view of our comments in Section 3 these bounds, and 42, in particular, could be regarded
as approximations bounding the reducing factor R** due to the information in the second
stage. A»; would constitute a reasonable approximation of 4 if the minimizing value of ¢ in
(9.6) were close to %. The use of the Bhattacharya related bound A2s is particularly convenient
in the following coarse estimate for 4:(y) defined by
(9-8) (km)Ci(y) = A1 + Au(y).

Then
Ax(y) = ¥ min[ fx- v, Aai + A°RE* e AT,
9.9)
A(y) =YX, min fx- v, Az + A2 REY I v f¥2]

Ignoring the A; term in the bound and treating R3* as a constant we would have
A(y) = T i yARE* Y v f %
A(y) SNPREYY TE [ v f$ 0 for O0st=<1.

In particular, for ¢t =1

(9.10) Ai(y) = N”RE*RE())
where
9.11) RY(y) =M, v fi?

is the Bhattacharya factor for the information in Stage 1.

Let us examine the “results” (9.9) and (9.10), what they state, the implicit assumptions in
their derivations, how they can be modified and implications that they suggest.

If we think of R%* as constant, (9.9) claims the relevance, in Stage 1, of

9.12) By =YX, min fx-|v, Ou: + 021 7 v [ 3]

where 6;; corresponds to Az; and 6; to AY*R%*. (As an approximation rather than as a bound,
one might prefer a more sensitive approximation suggested by (3.12), i.e., to replace R* in
(9.9) by a quantity of the order of nz'/’R3* where n is the number of informative components
of X** given X*.)
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Equation (9.10) seems much cruder. It acts as though the two-stage effect is the product of
the single state effects or that the combined effect is expressed in terms of the sum of the
Bhattacharya information of the two stages.

These claims are subject to several major qualifications. We have treated R3*(X*, Y), and
expect to treat RE(Y), as constants, assuming that these terms have relatively small coefficients
of variations. We have ignored Ay in obtaining (9.10) from (9.9). Moreover if A¥?R%* is large,
it is likely that the right-hand side of (9.10) can be replaced by a lower value if we use ¢ <1 in
the inequality leading to (9.10). But if we use ¢ < 1, then the effect of R3* is diminished. This
may be relevant to the question raised earlier about how to distribute information in the two
stages. It suggests putting more information in Stage 1 if the A effect is large.

Since the Ay effect appears in (9.9) for each pile that is examined, we wish to reduce the
number of piles that should be examined for each Y. This suggests that not only should the
first stage be informative, but the information should be of good quality where each bit of
stored information contains small associated errors, and hence this information is compressed.
In the next section we shall elaborate slightly on this point.

10. Two-stage examples. We supplement and test the crude approximations of Section 9
on two-stage search by examining a few examples. Let Z;;, 1 =i=<r, 1 <j=n; be independent
Bernoulli random variables where

PZ;=1)=p; PZj=0=1-p,.
Let X;; and Y;; be related Bernoulli variables (observations on Z;;) where
PX;=0|Z;=1)=PY;=0|Z;=1)=¢
and
PX;=1|Z;=0=PY;=1|Z;=0)=¢,.

Table 10.1 presents 3 sets of p, €1, €, and the corresponding values of I, I, and ¢, abstracted
from a larger version of Table 4.1. Note that the third Bernoulli random variable is much less
informative than the other two because of the relatively large error probabilities €; and ¢,.

These parameter sets will define the distributions of Z,;, X;; and Y;; for 1 <i =3 in a series
of examples. An example will consist of a two-stage problem where each stage corresponds to
one of several observation vectors, each of which corresponds to a vector of n = n; + nz + n3
observations with n; on Z; for 1 =< i < 3. By taking successive examples where the observation
vectors of the two stages are interchanged we may observe conditions under which certain
allocations of information for the two stages are preferred to others.

We shall use a Monte Carlo simulation to evaluate the effect of two stages. To help assess
the crude approximations of Section 9 we supplement the two-stage simulation in Table 10.3
by simulations of the effects of each of the stages separately in Table 10.2.

To be more specific, Equation (9.4) suggests that

10.1) An(i, y) = Bx(y, 0) = ¥« min[ fx;v(x| y), Ofx(x)]

where X and Y correspond to the observation vector of Stage 2 and 8 corresponds to As/A1(,
y) which depends on Stage 1. Our theory tells us that EBx(Y, ) = §"/°Rx(6) where Rx(6) < Rp
= exp(—Ip) is the Bhattacharya factor for the observation vector of Stage 2. (A less crude
approximation would suggest replacing Bs by Rg/n'/* though this is not very appropriate for

TABLE 10.1
Information numbers (as in Table 4.1)

i P € € I I, t

1 0.5 0.002 0.002 0.2872 0.3167 0.6773
0.3 0.002 0.005 0.2174 0.2306 0.6172
3 0.5 0.050 0.100 0.0842 0.0845 0.5304
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TABLE 10.2
First stage and second stage effects in two-stage problems
Observation vector Second stage First stage

n nz n3 n I Rs n'l/zRB [ Eg 5B, 0—1/2§2 6, 6, 6:Rp El SB,
6 6 0 12 303 005 001 100 001 000 0008 002 0.10 000 008 0.00
448 003 002 0014 044 002 0.09 0.00
2009 006 002 0014 130 006 0.1 0.01
90.02 0.11 004 0012 284 014 0.4 0.02
001 044 002 008 002
005 044 002 012 0.00
6 4 2 12 276 006 0.02 1.00 001 001 0015 002 0.10 001 013 000
448 004 001 0.017 044 003 0.14 000
2009 0.08 002 0.018 130 008 0.16 0.00
90.02 0.19 0.08 0.020 284 018 021 0.03
001 044 003 010 0.00
005 044 003 023 0.0
6 2 0 8 216 011 004 1.00 003 001 0033 002 010 001 006 000
448 006 0.01 0.027 044 005 0.09 0.00
2009 0.14 005 0.031 130 015 0.14 0.02
90.02 049 023 0.052 284 033 025 0.05
001 044 005 008 000
0.05 044 005 012 0.00
4 4 0 8 202 013 005 1.00 003 001 0033 002 0.0 001 007 000
448 007 0.02 0.032 044 006 0.09 0.01
2009 017 0.1 0.039 130 017 0.5 004
90.02 053 034 0.056 284 038 027 0.09
001 044 006 008 001
005 044 006 0.12 001
2 4 6 12 195 014 004 100 004 001 0039 002 010 00l 036 001
448 010 0.04 0.047 044 006 038 0.01
2009 023 008 0051 130 019 041 0.02
90.02 046 0.15 0048 2.84 040 048 0.04
001 044 006 031 001
005 044 006 059 0.01
2 6 0 8 1.88 015 005 1.00 004 001 0043 002 0.10 002 007 0.00
448 009 004 0.042 044 007 0.10 001
2009 026 0.17 0.058 130 020 0.8 005
90.02 070 032 0.074 284 040 033 0.1
001 044 007 009 001
005 044 007 013 001
4 2 0 6 158 021  0.08 1.00 005 001 004 002 0.10 002 006 0.00
448 0.11 0.04 0.051 044 009 0.11 001
2009 039 0.18 0.088 130 027 022 004
90.02 096 0.13 0.102 284 058 041 0.09
001 044 009 010 001
005 044 009 014 0.1
33 0 6 151 022 0.09 100 005 001 0054 002 0.10 002 006 0.00
448 015 006 0.069 044 010 0.12 0.02
2009 055 029 0.124 130 029 025 0.6
90.02 092 0.19 0.098 284 063 048 0.13
001 044 0.10 011 0.02
005 044 010 0.15 0.02
2 4 0 6 144 024 0.10 100 006 002 0063 002 010 002 007 0.00
448 018 0.09 0.086 044 010 013 0.02
2009 063 031 0.141 130 031 027 007
90.02 096 0.15 0.101 284 067 054 0.16
001 044 010 0.2 002
005 044 0.10 016 0.02
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our observation vectors where observations are discrete and not identically distributed, and n
is relatively small.) As part of Table 10.2 we list, for each of nine observation vectors, the
average B, and the standard deviation sp, of 25 observations on By(Y, 8) as well as Rg,
Rg/n"/? and 67*B,.

We see from the relative stability of /2B, close to Rp/n"/* that

(102) E[BxY, 8)] = 6"2Rp/n"2

serves as a good approximation over the range of vectors studied and we may reasonably
regard Ry(0) as a constant R which may be estimated by Bx(Y, 1) or by Rg/n"/*

The approximation above was somewhat better than expected even though it degenerates
a bit for large 6. I would expect that for high dimensional observation vectors, a multiplicative
factor of order O(1) might be useful to rzaintain a good approximation.

Equation (9.12) suggests the relevance of

(10.3) Bi(p, 61, 62) = Y. min[ fx¥(x | y), 01 + Oz f¥¥(x| y) f¥*(x)]

where X and Y correspond to the observation vector of the first stage, 6; corresponds to Az,
and 6; to AY?R,. Then one should anticipate that

(10.4) Ay(y) = Bu = E{By(Y, Az, AY?E[Bx(Y, 1))}
or
(10.5) A1(y) = Biz = E{B\(Y, Az, \Y*Rg2nz"/?)}

where Rp; and n; are the Bhattacharya factor and number of components for the observation
vector of Stage i. Finally Equation (9.10) suggests

(10.6) A1(y) = Bis = \Y?Rg1 Re.

These anticipations are tested in Table 10.3 but EB, is estimated in the remainder of Table
10.2 which lists the average B, and standard deviation sg, of 25 observations on By(Y, 61, 62)
and compares B; with 6. Rp which is suggested by the “derivation” of (9.10).

In the Stage 1 part of Table 10.2 we see that observation vectors with comparable /5 differ
considerably in effect on B;. First of all, for comparable I, B; tends to be larger when n; >
0 than when n; = 0. When n; > 0, B, is relatively flat in 6z, and grows very rapidly with 6
while B, is additive in 6, if n; = 0.

The observation vector (6, 6, 0) does not do as well as (3, 3, 0), which carries half as much
information, if 6. is small.

The estimate 8, Rp is rather poor since 2" B; is not very stable.

The poor quality of the observation vectors for which n; > 0 may be attributed to the fact
that more piles need searching when these vectors are used in Stage 1. Note that if (6, 6, 0) is
used only one pile is searched (that where X* = Y*), but it is more likely that an error, X*
7 Y*, will occur than if (3, 3, 0) is used. This explains why (3, 3, 0), though less informative,
is better for small 6;. This apparently paradoxical result is based on our restriction that each
pile be examined separately to see if it should be searched and with (6, 6, 0) there may be
more bins and piles to examine. (Of course we are implicitly assummg that behavior of B,
does reflect on the overall two-stage behavior.)

In Table 10.3 we present the average A; and standard deviation s4, of 25 observations on

A1(Y) for several two-stage examples. The second example is derived from the first by
interchanging the observation vectors of the two stages. The fourth is similarly obtained from
the third. In each example A, is compared with three quantities. These are estimates from
Table 10.2 of B]], Blz and B13

In the first two examples we see clearly that the order of stage is important. Consequently,
B1s which fails to take this order into consideration is a relatively useless approximation to 4;.

Comparing the fifth example with the first and the last two examples with each other, we
see again that additional information in Stage 1 is potentially harmful. For the classical



1196 HERMAN CHERNOFF

TABLE 10.3
Two-stage simulation

A\ and 54, based on 25 observations

X2=0.02 X;=1,000

Observation vectors

Stage 1 Stage 2
m n2 ns Res m n2 n3 Rg A S, 021 (2% Bun B By
2 4 6 0.14 6 2 0 0.11 0.59 0.01 1.03 1.29 0.40 0.41 0.52
6 2 0 0.11 2 4 6 0.14 0.13 0.03 1.22 1.30 0.14 0.14 0.52
3 3 0 022 6 6 0 0.05 0.11 0.02 0.27 0.44 0.08 0.12 0.33
6 6 0 0.05 3 3 0 0.22 0.13 0.02 1.72 2.84 0.13 0.14 0.33
2 4 0 0.24 6 2 0 0.11 0.25 0.13 1.03 1.29 0.16 0.27 0.86
4 4 0 0.13 6 6 0 0.05 0.10 0.01 0.27 0.44 0.08 0.09 0.20
6 4 2 0.06 6 6 0 005 0.23 0.03 0.27 0.44 0.13 0.14 0.10

021, B and B, are based in part on Table 10.2.
Bu=Bi(Y, %, 0,) 6u=XY*By(Y, 1)
Biz=Bi(Y, Xp, 022) o= XY2Rpgonz?
Bis = A{*Rp1Rp2

statistician it must be emphasized that this effect exists because the restrictions of our search
behavior do not permit us to do the equivalent of ignoring data in statistical problems.

In conclusion we have the following remarks.

1. Generally it is most desirable to have more information in Stage 1 when A is large.

2. If A; is large then the quality of the information in Stage 1 is important. Poor quality
implies the need to search more piles and examine more bins. Then a large A; is costly.
Generally, well compressed data are of good quality. However, as the observation vectors (6,
6, 0) and (3, 3, 0) indicate, for small \s, the increased likelihood of a mismatch in Stage 1 if we
use more information makes that information less desirable even though it may be thought of
as equally compressed as (3, 3, 0). One might argue that the n~"/? factor implies that the
information in (6, 6, 0) is actually less compressed but I doubt that this point is important. The
large atoms of the limited discrete data in our examples may play a more important role.

3. Tables 10.2 and 10.3 support the relevance of EB; and nz"/*Rg, for stage 2, E(B,) for
Stage 1, and Bi( y, Az, AY?nz"/?Rg) for the two-stage examples. The usefulness of (9.10) seems
to be extremely limited.

4. Computations based on Tables 10.2 and 10.3 support the suggestion that it is when A; is
large that it is most valuable to put more and better compressed data in Stage 1.

Acknowledgments. 1 wish to thank Peter Elias for the benefit of several discussions and
comments and for observing that in Table 5.1, I, more than doubles as k goes from 2 to 4.
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