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TESTS BASED ON LINEAR COMBINATIONS OF THE
ORTHOGONAL COMPONENTS OF THE CRAMER-VON MISES
STATISTIC WHEN PARAMETERS ARE ESTIMATED!

By DAVID SCHOENFELD
Harvard School of Public Health and Sidney Farber Cancer Inst.

In a previous work, the author showed how linear combinations of the
orthogonal components of the Cramér-von Mises statistic could be used to test
fit to a fully specified distribution function. In this paper, the results are
extended to the case where r parameters are estimated from the data. It is
shown that if the coefficient vector of the linear combination is orthogonal to a
specified r dimensional subspace, then the asymptotic distribution of that
combination is the same whether the parameters are estimated or known
exactly.

1. Introduction. The orthogonal components of the Cramér-von Mises statistic
were introduced by Durbin and Knott (1972) to test goodness of fit to a completely
specified distribution function. Schoenfeld (1977) examined the asymptotic proper-
ties of linear combinations of a generalization of these components. He defined a
contiguous family of alternative distributions and showed that for any member of
this family an asymptotically most powerful test could be found based on a linear
combination of the components. The asymptotic power and efficiency of these tests
were shown to have simple expressions.

This paper extends Schoenfeld’s results to the case where r parameters of the
hypothetical distribution function are estimated from the data. The components
can be computed using estimates of the parameters. If the coefficient vector of a
linear combination of the components is orthogonal to a specified » dimensional
subspace, then the asymptotic distribution of that combination is the same as if the
true parameter values were used. This theory is applied to the case where location
and scale parameters are unknown.

2. Definitions and earlier results. Let X, X,,- - -, X, be i.i.d. random variables
which under the null hypothesis has a known distribution function F(X, 0) that
depends on an r-dimensional parameter 0. If @ has a known value 6,, we let
U, = F(X;, 8,). The null hypothesis is that {U;},., , have a uniform distribution.
Let {1,d,,d,,...} be a specified orthonormal basis for the space of square
integrable functions on the unit interval. The jth generalized orthogonal compo-
nent is defined by

(2.1) V,j = V(U Uy, -+, U,) = n73Z0,d(U).

nj
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The orthogonal components as defined by Durbin and Knott have d;(u) = 27 cos

Jjmu.
Schoenfeld considered a sequence of alternative densities of the form
(22) p(1) = 1+ h(u)/nz + k,(u)/n

where A(u) is square integrable and k,(«) is dominated by a function that is square
integrable. Schoenfeld showed that if ¢; = fh(u)d;(u)du and if m — o as n — o,
then the test which rejects when

eV, > K

j=16"nj
is asymptotically most powerful. The test based on 3 J-,b V,>with 27_,a;b, > 0,

has relative asymptotic efficiency
Emieb,) ) (E2,c2) (27 ,b?).

If 0 is unknown and one has an estimator, 8, based on X,,X,,- - -, X, one can
compute the components substituting @ for 6,. Define

- A(x,0)
and

(2.3) V,; = n7320,d(U).

nj

3. Results. The main theorem of this paper shows that when {b}j_,,m are
chosen orthogonal to a specified r dimensional subspace, then tests based on
27.1bV,; will be asymptotically equivalent to those based on =7_ 567, ;. In this
case all the results of the earlier paper can be applied.

THEOREM 1. Let V,; and V be defined as in (2.1) and (2.3). Let Fy(x) = F(x,0,)
and f(x,0) = d/dx F(x,0) andF() () = inf{x: Fy(x) = u}. Define

ad
4 = fédj(u)—a.a_ Ing(FO_ l(u), 0) |o_oodu
Let {bj}j_" m be m real numbers. If for i=12---,r,
(3.1) 21_] =0,
then '
2;"_117 V - zj-lb

The following regularity conditions are necessary:
(i) The distribution function F(x,0) is continuous in x for all 6.
(ii) Let Fy(x) = F(x,0,). Then the functions

d
8:(u, 8p) = =5 F(Fy '(u), 0)|5-0,
are continuous in u € [0, 1] with
(3.2) d;(1)g,(1,8,) = d,(0)g,(0,6,).
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(iii) The following formula holds:

02

EET) F(E) ](u) 0)

= g U (.0)|

=0,

(iv) The estimator 0,, obeys the following condition, satisfied by first order efficient
estimators (Rao, 1973, page 348):

”%(ém' - 00.') _)pn_%z;!-lli("\,j’OO)

where E[1,(X,0,)] = 0, E[l(X,0,),(X,0,)] < oo and this matrix is nonnega-
tive definite.

(v) The functions d;(u) are bounded.

Equation (3.2) holds whenever g;(1,0,) = g,(0,0,) = - 0 which is a requirement
that F(x, @) is well behaved near = co. Condition (iii) holds whenever integration
and differentiation can be interchanged. The condition that d,(u) be bounded is
satisfied for the components suggested by Durbin and Knott, as well as for many
other commonly used orthonormal bases. Other regularity conditions on d;(«) and
8:(u, 0,) might be substituted for the boundedness at d;(u) if one used a more
elementary proof based on the Taylor expansion of U about 0. These conditions,
however, might be harder to verify. See Neymann (1959)

PROOF. Let F, "(u) be the empirical dlstrlbutlon functlon of {U,U,, -+, U,}
and let F, "(u) be defined similarly using {U,, Uz, -, U 7.}. The condition (1) @iv)
and the fact that g,(u,6,) is continuous for all u € [O, 1] imply that the results of
Durbin (1973) hold. In particular, using Lemma 2 with y = 0, one has that
(33)  nmi[E(w) —u] = wi[E(u) - u] + Z_ W8 (u.0) + E,
where W,,...W,, are asymptotically multivariate normal and E,—,0 under the
null hypothesis that X;, X,, ... X, have cdf F(X, ;).

Let

s(u) = 2_';'=|bjdj(“)a

and let fjds be the signed Riemann-Stieltjes integral induced by s. This is a linear
functional on the space of integrable functions on [0, 1]. When this functional is
applied to (3.3), that is, when we integrate (3.3) with respect to ds, the first term is

- 270V,
the second term is
-3 bV,
the third term is
- W27 bay),

and the fourth term goes to zero in probability.



1020 DAVID SCHOENFELD

Using integration by parts and noting that d;(u) have zero integrals one can
show that

Jouds = s(1).
The integral of the first term in (3.3) is
”_é2?=1(is([/'(i+1)) - iS(U(i))) — nis(1)

where 0 = Uy < Uyy < Uyy, - -+ 5 < Uy < Yy = 1 and {Uyy);-y,, are the order
statistics of {U;},_, ,- This expression collapses to

—n 22x-ls((]i)'
However

-0 ZLs(U) = g T1bd(U) = =27 bV,

The argument for the second term in (3.3) is exactly the same.
Now, use integration by parts and (3.2) to show that

o, Oo)eds () = s (u) (Ol

However, (iii) implies that
d 9 d _ _ -
3 96, (Fo (4),0)] o, =35/ (% "(u), 0)[ J(E5 (1), 0,)] ]|

— Yo

0
= —logf(FJ'(u),O)’
a9, 0=0,
Therefore

folg,.(u,oo)ds(u) du

0=0,

- (=7 bd(u)) %, log f( Fy '(u),0)

= —27_1b4
Since [, ds is a bounded linear functional it is continuous in the uniform metric
and hence continuous at zero in the Skorohod metric (Billingsley 1968). Therefore
JoE,ds —0.
Therefore the condition that
) 2;”_ lbja i =0
implies that under the null hypothesis
2}".le e Ejglbj
COROLLARY 1. Suppose that E(X,0) is a sequence of alternative distributions to
F(X,0). Suppose further that W F,(Fy "(u),0,) can be expressed as a sequence
1+ h(u)/ n:+ k,(u)/n with h(u) square integrable and k,(u) dominated by a square
integrable function. Then, if the conditions of the main theorem hold,

bV, = 2ibY,

J

when X, X,,- - -, X, have the distribution F,(X,0,).
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Proor. This follows by the fact that the sequence of distributions induced by
this sequence of densities is contiguous to the sequence of uniform distributions on
the unit n-cube. See Schoenfeld (1977).

4. Example: Location and scale parameters. Let G((x — 4,)/6,,v) be a three
parameter family of distributions with 6, and 8, the location and scale parameter.
The parameter y is a shape parameter which distinguishes the null hypothesis,
vy = 0, from the alternative hypotheses. For instance, if the null hypothesis is the
condition that the sample has the normal distribution function @, then

G((X = 6)/6,,v) = (X = 6,)/0, +v)/2 + O((X - 6,)/6, — v)/2

represents a bimodel alternative. .

We must first transform the hypothesis to a sequence of alternatives to the
uniform distribution in the form (2.2). Furthermore, we must compute a;, and a;,
and then use them to find the appropriate test.

Use Gy((X — 6,)/6,) to denote G as a function of (X — 6,)/6, when y = 0. Let
u = Gy((X — 8,)/0,), then the distribution function of ¥ when y % 0 is

G(Go '(w),v)
which does not contain 8, or 8. Let v, = a/n? be a sequence of alternative values
of y. The sequence of alternative distributions can be put in form (2.2) using
Taylgr’s theorem to expand G about y = 0. In this case, letting g(z,7v)
= EG(Z’ ) 3
h(u) = a—g;(logg(Go"(u),y))lwo.

It suffices to show that A(u) is square integrable and the remainder term is
dominated by a square integrable function.

Let g'(z,v) = 5-8(2,7) and let J(u) = g'(Gg '(u),0)/8(Gg '(u), 0). Then

a;, = —0i2f0'J(u)dj(u)du
a, = —0izfol[1 + ul(u)]d,(u)du.

Notice that J(u) does not contain 8, or 6, so that a;,, a;, are parameter free except
for a constant multiplier. We can evaluate a;, and a;, at 6, = 1 without changing
the set of b; for which (3.1) holds.

The test based on ¢; = fO'dj(u)h(u)du may not in general satisfy (3.1). However,
if we let {c¢,'};_, ,, be the projection of {c;};_, , on the subspace orthogonal to
{a;1}j=1,m and {a;,};_, ,,, then the test based on {c;};_, ,, will be asymptotically
parameter free and have the highest efficiency of those tests based on a linear
combination of m components which is orthogonal to {a;};_;,, and {a,,};- -
The properties of this test are described in a previous paper (Schoenfeld 1977).

The vectors {a;,};_, ,, and {a;,};_, ,, are the same vectors that would be used for
tests of location and scale shift alternatives to a simple null hypothesis. The results
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essentially show that to test for a compound hypothesis one must choose tests
“perpendicular” to the tests which would distinguish different null hypothesis
distributions.

5. Discussion. Durbin, Knott and Taylor (1975) also investigate the compo-
nents when parameters are estimated fI‘Ol‘I} the data. With d;(u) = 21 cos Jmu they
show that asymptotically, the vector {V, } in the space of square summable
sequences, is the projection of the vector {V,;} onto the subspace orthogonal to
{a;i}j=1,c0i=1,~- They then find new components which are asymptotically parame-
ter free. Each of these new components is a function of all the {V,;}. An alternate
approach to extending the results of Schoenfeld (1977) would be to apply them to
these redefined components.
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