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CHARACTERIZING THE CONSISTENT DIRECTIONS OF LEAST
SQUARES ESTIMATES!

By CHien-Fu Wu
University of Wisconsin, Madison

Given a sequence of p X 1 vectors v = {1,}72, such that M, = 37_ 0,0/ is
positive definite for some n, the linear space {u : w’M, 'u—0 as n — o0} is
characterized in terms of the limiting properties of v. This characterization
result is applied to give a necessary and sufficient condition for the asymptotic
consistency of any best linear unbiased estimator in terms of the limiting
properties of the design sequence. For the polynomial regression model, it can
be further related to the geometry of the polynomial system.

1. Introduction. A linear model is given by

(1.1) y =3P200f(x) + &= 0f(x)+ e

where 6 and f(x) are p X 1 vectors, x is from a set X on which linear model (1.1) is
valid, the random error ¢ has mean 0, variance o and errors corresponding to
different observations are uncorrelated. For one dimensional polynomial regres-
sion, f(x) = (1, x, x% - - -, xP™"); for multiple linear regression, f(x) = x, x is a
p X 1 vector. If y,, y,, -+ - ,y, are observed at x;, x5, - - - ,x, and M, = 37_,
S(x)f(x;) is a nonsingular p X p matrix, the least squares estimate of 4 is given by

(12) 6= M-xy

where X [ S, -+ oL Ax)] and y' = (yy, - - - ,¥,). An important optimality
property of 4§ is prov1ded by the Gauss-Markov Theorem: 5§ = S224b,6; for any
b= (by, - - -, b,_,) has the smallest variance among all the linear unbiased
estimators of 5'4. As for the asymptotic properties of 6, it is surprising that some of
the basic results have been proved only recently. Lai, Robbins and Wei (1978)
proved that § — § a.s. when M, ' -0 and {g}2, are iid. with mean zero and
variance o2 The proof of asymptotic normality of b is relatively easier. Huber
(1973) gave one such result which allows the dimenrsion p of 8 to go to infinity as n
goes to mfmlty But if M, does not necessarily go to zero, what typically happens
is that E(b' — b'9)* = b’M,~'b — 0 for certain “directions” b only. Such a direc-
tion b is called a consistent direction for the least squares estimate §. The main
purpose of this paper is to characterize the space of consistent directions for § and
to investigate the implications of this characterization. The consistency question of
the nonlinear least squares estimator is treated in Jennrich (1969) and Wu (1979).

Received December 1977; revised April 1979.
'Research supported by U. S. Army under contract no. DAAG29-75-C0024.
AMS 1970 subject classifications. Primary 62J05: secondary 62F20.
Key words and phrases. Asymptotic consistency, best linear unbiased estimator, consistent direction,
consistency region, polynomial regression.
789

[ ,f\’g
59) Y

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [& )2
The Annals of Statistics. RIKGJY

®
www.jstor.org



790 CHIEN-FU WU

If the random errors {¢;}2, are assumed to be uncorrelated with mean zero and
variance o2, Var(b'd) = E(b'0 — b'9)* = b’ M, 'b — 0 implies 5§ — b8 in proba-
bility; on the other hand, if 5’ M, ' does not converge to zero, it must converge to
a positive number ¢ (since b’ M, 'b is nonincreasing) which implies that 56 — b’
in probability is not true. Therefore, under model (1.1), b'M,'p — 0 and the weak
consistency of b0 are equivalent. If we further assume that {&}1° are iid. with
mean 0 and variance ¢ from the result of Lai et al. (1978), b’ M, 'b — 0 implies
b0 - b'9 as. Therefore, b’M,'» >0 and the strong consistency of b are
equivalent under i.i.d. and finite second moment assumptions on {¢}{°. For the
rest of the paper, b’M,” 'b — 0 will be interpreted as the strong or weak consistency
of b'd, depending on which of the above assumptions is imposed on {g}.

In Section 2, the above problem is reformulated as the following mathematical
problem:

Given a sequence of p X 1 vectors {v,}{2, such that 37_,v,v/ is nonsingular for
some n (therefore, for all N > n), characterize the linear space

(1.3) {v:0(Z1-100) 'o>0 asn—o}.

The proposed characterization is in terms of the limiting properties of {v,}%.; and
has a very natural statistical interpretation. The characterization result of Section 2
is applied to give necessary and sufficient conditions for the asymptotic consistency
of any best linear unbiased estimator in Section 3. Another application of the
characterization result is in D,-optimal design theory (Wynn 1976). Using the n.a.s.
conditions, we find a “paradoxical” phenomenon which occurs with some linear
models. The paradox says that if you take infinite observations in the vicinity of a
certain point, you can only predict without error (in the sense of asymptotic
consistency) the outcome of the experiment at this point and some (ranging from
one to countably many) other points. In Section 4, we investigate the consistency
problem for the polynomial regression case in full detail. Special properties of the
polynomial system are utilized to give simple and verifiable conditions.

Drygas (1976) has given a characterization of the space (1.3) from a different
viewpoint. Let X,(b)* = {z:z = X,b, for a p X 1 vector b, with b'b, = 0} and
P, = the projection matrix onto the subspace F. Then he proved that b is a
consistent direction iff ||( — Py y+)X,b|| — 00 as n — co. Since this involves the p
column vectors of X, rather than the sequence {x;} or { f(x;)}, it looks unlikely that
it can achieve the same purpose of the present paper.

2. Main results. Given a sequence of p X 1 vectors v= {1;}%2, with the
assumption that M, = 37_,v,0/ is nonsingular for some n, we want to characterize
the linear space

.1 Sv) = {u: M u>0 asn—>co}.

Note that «’ M, 'u is nonincreasing in n.
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THEOREM 1. For M, = 3"_ 0,0/, w M, 'u — 0 if and only if 22 ,(w'v,)* = oo for
all w'u # 0.

Proor. For any positive definite p X p matrix M and p X 1 vector u,
(W’ u)z ’ ’ -1
max{ ———— :wWu#0; = u’M " u
wMw
follows from Cauchy-Schwarz inequality. Therefore,
WM 'u -0
if and only if
/N2
max{ﬁvu—) :w’u#:O} - 0,

wM,w
if and only if
wMw = 32 (wv)’ = o0 forall wu # 0.

The last equivalence follows by applying Dini’s Theorem (see Dieudonne,1960)
to the nonincreasing functions g,(w) = (w'u)*/w’M,w on the compact set |w| = 1.
0

When the infinite sequence v = {v;}:2, gives “enough” projections onto w, i.e.,

® (W'v)* = o0, we call w a good direction for v; otherwise, we call it a bad
direction for v. Theorem 1 can then be restated as; ' M, 'u — 0 if and only if all the
bad directions for v are orthogonal to u. A statistical interpretation of good or bad
direction will be given in the next section.

COROLLARY 1. If 2%, ,(w'v,)? = oo for all nonzero w, then S(v) = R®.

COROLLARY 2. For any nonzero w, let 6™ be the angle between w and v,. If
lim inf;_, |cos ] > 0 for all nonzero w,

and v is an unbounded sequence, then S(v) = R”.

PrOOF. Since lim sup,_, . |v;] = o and lim inf,_, |cos ™ > 0, T2 (w'v,)* =
22wl lcos 6> = 0. The result follows from Corollary 1.

Corollary 2 has a natural geometric interpretation. When the unbounded
sequence v eventually stays at least a positive angle away from any direction,
M, 'u— 0 for any u.

If there are infinitely many v’s which are all equal to a fixed vector u, the
matrix M, becomes larger and larger along direction u, and we naturally expect
uy,M,” 'uy — 0. This idea can be further exploited to give a refinement of Theorem
1. First we have to introduce a new concept of convergence, the Q-limit points of a
sequence.

DErFINITION 1. Let v = {v,}{2, be an infinite sequence in R?; yeR? is called a
Q-limit point of v if and only if there exists an infinite subsequence {n;}2; and
scalars [A,| < 1 such that A,v, —y as i — co.
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When A, = 1, this reduces to the usual concept of limit point (or called cluster
point, point of accumulation). The relationship between Q-limit point and limit
point is given in Proposition 1.

PROPOSITION 1. For a bounded sequence v, y is a Q-limit point of v if and only if
there exists a limit point z of v and a scalar |\| < 1 such that y = Az. In particluar,
the linear space spanned by the Q-limit points of v is the same as the linear space
spanned by the limit points of v.

ProoOF. If z is a limit point of v and |[A| < 1, Az is obviously a Q-limit point of v.
Conversely, if there exists an infinite subsequence {7}, and scalars |\, | < 1 with
A, 0, —», from the compactness of [—1, 1], we can find an infinite subsequence
{m;}i2, of {n} with A,, converging to a A in [—1, 1]. Therefore, we have A0, —
and >\m — A If A =0, then y = 0 follows from the boundedness of v. Takmg any
limit point of v (which exists) as z, y = Az holds. If A # 0, v,, > A"~ 1y, a limit point
of v.y = AA ") also holds. []

If v is not bounded, the equivalence relation may not hold as the following

counterexample shows. Let v; = i(cos i, sin i), i = 1,2, - - 00, 8 is an irrational
number. v has no limit point. But the limit points of {i ~'v, = (cos i, sin i) :
1,2,- -+, 00} covers the whole unit circle. The set of the Q-limits points of v is

thus the whole R2-plane.

DErFINITION 2. For any linear subspace V of R?, its orthogonal complement ¥+
is defined as

{weRP:wu=0 for allv€ V}.

THEOREM 2. For the infinite sequence v = {v;}{2,, the linear space S(v) in (2.1) is
equal to

22) A(v) © B(v)

where @© means the direct sum of two vector spaces, A(V) is the linear subspace
spanned by the Q-limit points of v, and B(v) is equal to

(23) {u E AW : 32, (W) = forall we A(V)* and wu#0}.

Proor. It is easy to show that B(v) is indeed a vector subspace.

(i) A(v) C S(v): For any u € A(v), from Theorem 1, we want to show that

S2 ,(Wv) = oo for all wu # 0. Since w'u # 0 and u € A(v) imply w & A(v)*, it
is sufficient to show that 32 ;(w'v)*> = oo for all w & A(V)L. If w & A(v)*, there
exists a Q-limit point y of v with w — y # 0. From the definition of Q-limits point,
there exists an infinite subsequence {#,};2, and scalars |A,| <1 such that [A,v,-y|

_’0 Therefore, [A,w,| > lIW ’y| > 0 for i sufficiently large and =% (w'v)* >
=2, A,W,) = oo is estabhshed
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(ii) B(v) = S(v) N A(v)* which implies S(v) = A(Y) ® B(v):
u € SW) N AW)*
o u € AW)t and 32 (w'v)’ = 0 forallwu # 0
& u € A(v)* and 2 ,(w'v)?
< u € B(v).
The first equivalence follows from Theorem 1 and the second equivalence follows

from the fact, proved in (i), that 32 (w'v)* = oo for all w & A(v)*. []

i=1
For a bounded sequence v, Wynn (1976) proved that all the limit points of v are
in S(v). This kind of result has been utilized in providing sufficient conditions for

design sequences converging to a D -optimal design (Wynn, 1976).

00 forallw € A(v)" and w'u # 0

COROLLARY 3. If the infinite sequence v has at least p linearly independent
Q-limit points, then S(v) = R*.

ProOF. The assumption implies that 4(v) in Theorem 2 is equal to R”.

A necessary and sufficient condition for S(v) = R” is that (Z7_,0;v")”" con-
verges to the zero matrix. Typically, when the Q-limits points of v can be obtained
easily, it is considerably simpler to verify the sufficient condition in Corollary 3
than to invert the matrix and check whether it converges to zero.

~ 3. Necessary and sufficient conditions for the asymptotic consistency of best
linear unbiased estimators. Let § be the least squares estimator (1.2), based on
observations y,, y,, - - * , y, taken at x;, x,, - - -, x,. b8 is the best linear unbiased
estimator of b'. In this section, we want to investigate the asymptotic behavior of
b8 for each b.

To study the asymptotic consistency of any best linear unbiased estimator b'd for
model (1.1), define the space of consistent directions

(3.1) S{E(x) = {b: 6o fO)(x)) 650  asn— oo},

where f(x) = { f(x;)}2,. If the data are collected with a careful design (choice of
{x;}{2)), consistency will hold for any b. But the characterization problem (3.1) has
still not been answered. For prediction or control purpose, we are interested in the
consistency region defined as

(32) CH(x) = {x:x € X, fx) (T, f)f(%)) f(x) >0  asn— oo}
{x:x €%, f(x) € S((x))}.

By identifying f(x;) with v; in Theorem 2, we immediately obtain a characterization
of S(f(x)).

THEOREM 3. The space of consistent directions S(f(x)) in (3.1) is equal to
A(f(x)) ® B(f(x)) where A(f(x)) and B(f(x)) are defined in Theorem 2 and f(x) =
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{(x)};Z . The consistency region C(£(X)) in (3.2) is equal to
{x:x € X, f(x) € Af(x)) ® B(f(x))}.

Statistical interpretations of good or bad directions (defined in Section 2) and
limit points of { f(x;)} are now in order. Each observation y, taken at f(x;) not only
gives information about f(x;)’'d but also gives partial information about w’8, w’f(x,)
# 0. A good direction w, i.e., 22 (W f(x;))’> = o, is a direction on which one may
gain much information from the data {y,} collected at { f(x,)}. b is a consistent
direction for § (i.e., b8 is asymptotically consistent for estimating b’0) if and only
if all the bad directions are orthogonal to . In any neighborhood of a limit point
S(x*) of { f(x)}, infinitely many observations are taken, or in Huber’s term (page
289, 1975), f(x*) has infinite approximate replications. Consistency is certainly
expected.

COROLLARY 4. For a bounded sequence { f(x,)};>,,
(3.3) f(x,) M f(x,) >0 as N — oo,
where M, = Z1_, fx)f(xY

ProoF. For any infinite subsequence S,, we want to show that there exists an
infinite subsequence S, of S, such that

34) lim, o, ,es, f(%,)M,~ f(x,) - 0.

Since { f(x;)} is bounded, there exists an infinite subsequence of S, of S, and a
p X 1 vector z, such that

(3‘5) limn-—»oo,neszf(xn) = 2o

Now ‘that z;, is a limit point of {f(x,)}, z/¢M,” 'zo— 0 follows from Theorem 3.
From the monotonicity of M,, M,”! is bounded from above. (3.4) now follows
from (3.5) and z/yM, 'z, — 0. []

This result was obtained by Pazman (1973) and Wynn (1976). Their main use is
in establishing sufficient conditions for the generations of D -optimal designs.

As a final remark, if f(x) is continuous in x, all the limit points of {x;}{, are in
the consistency region C(f(x)). For the polynomial regression model discussed in
the next section, we can show that C(f(x)) is either %X (= R') or the set of limit
points of {x;};2,. This is certainly not true in general as the following example

shows. Consider the linear model

(3:6) y = 0" + 0x + 0,x* + ¢ = f(x)0 + ¢
where f(x)' = (e*, x, x?), {y;} are observed at {x;} with
3.7 x = 2,32 (=27 =00 and I%,(x,—2)* < .

We will show later that for this choice of model and design sequence the space of
consistent directions is

(3.8) S(f(x)) = {af(2) + BfP(2): —0 <a,b < x},
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where f()(2) is the derivative of f(x) at 2. Therefore, x is in C(f(x)) if and only if
there exist @ and b such that
e* = ae’> + be?
(3.9 x =2a+b
2 = 4a + 4b.
Equations (3.9) are solvable if and only if 4¢*~2 = x2, i.e. if and only if x = 2 or
— 0.5569. We may summarize our findings as follows:

For model (3.6) with x, chosen according to (3.7), f(2)'§ and f(—0.5569)'d are the
only two consistent estimators among the best linear unbiased estimators
{(fx)yf: —0 <x < 0}

A layman’s version of this result is the following:

For a highly twisted model like f(x) = (x, x2, e*) if you keep
on taking observations in the vicinity of Madison so that the
sum of the squared distances between location i and Madison is
infinite but the sum of the fourth powers is finite, then you gain
“enough information” (in terms of consistency) only about two
locations, Madison (denoted by x = 2) and Berkeley (denoted
by x = — 0.5569), but nowhere else. Even a suburban town of
Madison, say, x = 1.9 or 2.1, won’t do it.

®
Il

This example suggests that the consistency behavior depends on the geometric
structure of the f(x) in the linear model (1.1), while most of the work on linear
estimation deals with the X or X’'X matrix. Our interpretation to this puzzling
phenomenon is purely geometric, namely, the relevant linear space intersects the
curve {(e*, x, x%) : —o0 <x < oo} at two points. But a statistical interpretation is
still lacking.

But if the x; are chosen according to ,

%= 23245 -2 = 22y(x - 2)* = o,
we can show that S(f(x)) is spanned by f(2), f(2) and f@(2) and that f(x)§ is
consistent for any x.

The above counter-intuitive phenomenon about the consistency region can be
made even more pronounced. A general way of constructing such examples is to
choose a sequence {x;};2, converging to a point such that the corresponding S(f) is
of lower dimension (than p) and that S(f) N { f(x) : —o0 < x < o0} has more than
one point. If the function f(x) is highly curved, this intersection may even have
countably many points.

PrOOF OF (3.8). Since f(2) is the only limit point, 4(f(x)) in Theorem 3 is equal
to {uf(2): —o0 <u < 0}. Af(x))L is equal to

(3.10) {(—u2e™® — vde 2, u,v): —00 <u,v < o).
All the vectors in A(f(x))* can be represented as the scalar multiples of the set of
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vectors
{or=(=2¢"2=4he7% 1,A), —0 <A< 00,0, =(—4¢7%0,1)}.

Let fM(2) be the derivative of f(x) at x = 2. Denote the cross-product of f(2) and
FO2) by f2) X fO2) = (4,0, —e) = — e%,. f2) X fOQ) is in AE(x))* and is
orthogonal to the projection of f®(2) onto 4(f(x))*. Let §; = x, — 2. The following
can be verified easily.

fx)o, = e H=2—4\) + x, + Ax? = =8, — (1 +7N)§?* + 0(s?)
si(_ 1+ 0(6;‘))’

f(x) v, = 472 + xF = =82+ 0(87) = 8X(—1 +0(3)),
where 0(; is the big 0-notation. (3.7) implies that

22 (fx)0)’ = 0 for — 00 <A< o0

i=1]

and
EE(f(x)v.) < oo
Therefore, B(f(x)) in Theorem 3 is equal to
{uvko, — o0 <u < OO},
where v,. is orthogonal to v,,. Since v, is proportional to f(2) X f)(2), we can
easily see that v,. is the projection direction of f(’(2) onto A(f(x))*. S(f(x)) is thus
equal to
{af(2) + boye : =0 <a,b < c0}= {af(2) + bfP(2): —0 <a,b < x}. []

4. The polynomial regression case. In this section the general results developed
before will be applied to the polynomial regression model:
(4.1) v = ZE2hx) + g = flx)0 + &,
where f(x) = (1, x, - - -, x*~!). Necessary and sufficient conditions for asymp-
totic consistency will be given in terms of the limiting properties of {f(x;)}%;.
Some useful properties of the polynomial system are stated below.

PROPOSITION 2. Let fO(x) be the ith derivative of f(x) = (1, x, + - -, x?~'Y. The
p vectors
(4.2) {f“)(xj):0<i <m,1<j<k, Ef,l(mj+ 1)=p},

where {xj};;l are k distinct points, are linearly independent.

ProOF. This follows from the fact that the polynomial system {x‘}?ZJ is an
extended Tchebycheff system (for definition and proof, see Karlin and Studden,
1966, page 8). The result can also be derived by successive differentiations of the

Vandermonde determinant.

COROLLARY 5. The intersection of the linear space spanned by
(4.3) {fO%):0<i<m,1<j<k3Zk_ (m+1)=p—1)}
and the curve {f(x) : —oo <x < oo} isstill {f(x):1<j <k}.
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Proor. Let the polynomial r(x) be the determinant of the matrix with column
vectors { f(x), fO(x), 0 <i <my, 1< j <k Zk.,(m +1)=p — 1}.r(x)is a non-
zero polynomial of degree at most p — 1, since the p — 1 vectors in (4.3) are
linearly independent by Proposition 2. It is easily seen that r(x) has root x; with
multiplicity m; + 1(i.e., r(x) = r®(x) = - - - = r®(x) = 0. Zh_,(m; + 1) = p —
1 implies that {x,, - - -, x, } are the only roots of r(x). Since r(x) = 0 is equivalent
to f(x) belonging to the linear space spanned by (4.3), the desired result follows. []

The above two results play a key role in determining the consistency region for
polynomial regression model.

For an unbounded sequence {x;};2,, the characterization problem is easy to
solve.

ProposITION 3. If lim sup;_, . |x;| = oo, then S(f(x)) and C(f(x)) in Theorem 3
are, respectively, R” and R'.

Proor. For any nonzero vector w' = (wy, - + + , w,_)),
lim sup, ,,(w'f(x))* =lim sup, , ,(E7Zw,x{)* = oo if w, # 0 for somej > O,
=w2 otherwise.

Both imply that 3% ,(w'f(x;))> = co. The desired result follows from Corollary 1.

i=1
For the rest of the section, we assume that the sequence {x,}, is bounded. For a
bounded {x;};2,, from Proposition 1, the linear space spanned by the Q-limit

i=D
points of { f(x;)};=, is the same as the linear space spanned by the limit points of
{f(x)}72,. It is thus sufficient to work on the limit points of {f(x,)}%,, or

i=1
equivalently {x;}2,. If {x,;}72, has at least p distinct limit points {g;}?_,, then the

corresponding { f(a;)}¢, are linearly independent from Proposition 2. The linear
space A(f(x)) in Theorem 3 is equal to R?. We have the following result.

PROPOSITION 4. If the {x;};2, has at least p distinct limit points, then S((x)) and

i=1

C(f(x)) in Theorem 3 are, respectively, R” and R'.

DerFINITION 3.  Let T be any set of p X 1 vectors. The linear space generated by
T is denoted by L(T).

Suppose x = {x,}%, has k limit points {g}*_,, K < p — 1. For any m =
(my, - - -, my), define g(m) = T2,115_,(x; — a)*"*™. Define m > m’ if and only
if m; > m/ for 1 < i < k. Define
(4.9) § ={mm >0k (m+1)<p—1gm)<oo

and g(m) =00 forall m#m and m > m'},
and, for everym € 9,
(4.5 E(m) = {fa):0<i<m,1<j<k}.
THEOREM 4. For the polynomial regression model (4.1), if {x;};=, is bounded and
has k limit points {a;}%_,(k < p — 1), then S{E(x)) is equal to
(4.6) M, o L(E(m))
where E(m) and § are defined in (4.5) and (4.4), and (4.6) is taken to be R? if § is
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empty. If S(f(x)) = RP?, the consistency region C(f(x)) = R'; otherwise, C(f(x)) =

{ai}’;=l‘
k

Proor. If x = {x;};2, has k limit points {a,}7_,, the space A(f(x)) in Theorem
3 is equal to L(f(a), 1 <i <k). Since x is bounded, £ > 1. It remains to
characterize B(f(x)) in Theorem 3. For any nonzero w € A(f(x))*, w'f(x) is a
nonzero polynomial in x of degree ¢, ¢ < p — 1. From orthogonality, w'f(a,) = 0
for 1 <i < k. Therefore the degree of w'f(x) is at least k. Let a,,- - -, a,
Biyy» - * + 5 b, be the roots of wf(x), i.e, wi(x) = Ik (x — @)y y(x — b). If
bj is not equal to one of a, - - - , g, or equivalently not a limit point of x,

0 < lim inf,

ool X — bl < limsup,, |x;, — b| < co.

Therefore the convergence or divergence of =% (W'f(x))* = Sl (x —
@) 1l9_ 4+ (x; — b)? is independent of terms (x; — b, with b, not equal to one of
the g’s. In order to study the asymptotic behavior of 2‘,‘;°=1(w’f(x,‘.))2 for w €
A(f(x))*, it suffices to study the infinite series =32 \II5.,(x; — a)*"*™ where m; is
a nonnegative integer and Zj;l(mj + 1) < p — 1. Since x is bounded, it is easy to
see that g(m’) < oo implies g(m) < oo for all m > m’. This suggests that, in
studying the asymptotic behavior of 32 ,(w'f(x;))* for w € A(f(x))*, it is enough
to work on g(m) for m € 9. 1f 9 is an empty set, i.e, =2, II5_,(x; — ¢)*!*™ =
for all m, > 0 and Z%_ (m; + 1) < p — 1, then 22 ,(w'f(x;))* = oo for all nonzero
w. From Corollary 1, S(f(x)) = R? and C(f(x)) = R'. A necessary and sufficient
condition for 32 ,(w'f(x,))* < o0, w € A(f(x))*, is that w'f(x) is divisible by the
polynomial II;;,(x - aj)”"ﬁ for some m € 9. The latter polynomial has roots g,
with multiplicity m; + 1, which implies w'f®(a) =0 for 0 <i <m, 1 <j <k.
(f(a)) is the ith derivative of f(a;)). The above n.a.s. condition can now be restated
as: w is orthogonal to the linear space spanned by E(m) for some m € §. The
linear space B(f(x)) in Theorem 3 consists of all vectors in 4(f(x))* orthogonal to
the set

(4.7) {wiw e A@())", 22, (wf(x) < w ).

From the above n.a.s. condition on w in (4.7), B(f(x)) can be rewritten as the
collection of vectors in A(f(x))* orthogonal to

U o L(Em)*
or equivalently, orthogonal to
ZmesL(E(m)™.
This sum is equal to (see Halmos, 1958, page 134.)
L
(M pedL(E@)) "
Note that L(E(m)) is the linear space spanned by E(m). Thus we obtain
B(A(x)) = [ o L(Em) (M A®(x)".
Since A(f(x)) is a subspace of () __ L(E(m)), by writing

() _.L(E(m)) = A(f(x)) ® Nwith N C A(f(x))",

mey$
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we easily obtain

A(f(x)) & B(f(x))

ARC) @[ M, LEm) M AE(x)* ]
= A(f(x)) ® N = _L(E(m)).

This establishes the first part of the Theorem.

It remains to prov:; the second part. If S(f(x)) G R?, there exists an m, € § with
L(E(my)) € R?. From Corollary 5, L(E(mg) N {f(x):—0 <x < o0} = {f(a),1
< i < k}, which implies S(f(x)) N {f(x):— 0 < x < 0} C {f(a),1 <i < k). Itis
obvious that {f(a),1 <i <k} C A(f(x)) C S®E(x)). CH(x)) = {(a,]1 <i <k} is
thus proved. []

The above result on the consistency region excludes the puzzling phenomenon
exhibited in the example in Section 3. For that example, f(x)’é can be consistent on
part of the set of nonlimit points and inconsistent on the other part.

SOME CONSEQUENCES OF THEOREM 4.

1. Theorem 4 is true without assuming k£ < p — 1. In fact, when k > p, all the
L(E(m)) are equal to R? and the result coincides with Proposition 4.

In the following discussion we assume k < p — 1.

2. If B2 I0_ (5 — @)+ = oo for all m; >0 and 5 (1 + m)=p—1,
then S(f) = R”? and C(f) = R'. The condition is just a restatement of § = ¢.

3. If 322,I1_ ((%~a)* < oo, then S(f) = L{ f(a;),] <i < k} and C() = {a;}*_,.

4 k=p—1; if IX,M_(x; — a)* < oo, the result follows from 3; if
=2 I ((x; — a)* = oo, then S(f) = R? and C(f) = R'.

Fork=p—1,9 = {(,- - -, 0)} or ¢ which corresponds to the convergence or
divergence of the above series.

5.k=p—2let K={j: Z2,I02}(x; — a)(x; — a,)* < o0}.

() If 22,[P2%(x, — a)* < oo, the result follows from 3.

(ii) If K = ¢, the result follows from 2.

(ii)) 22 ,[223(x; — a)* = 0; if K has only one element j, then S(f) =
L(f(a@), " * -+, (a,_).fP(q;)) and C(f) = {a;}32%; if K has at least two elements,
then S(f) = L(f(a),1 <i < p —2) and C(f) = {q;}2-2.

PrOOF OF (iii). If K has only one element, the result follows from Theorem 4. If
there exist j, #j, in K, the p vectors {f(a),1 <i < p — 2, fNa;), fMa,)} are
linearly independent from Proposition 2. This implies that L(f(a), 1 <i < p —
2, /@) N L(fla), 1 <i<p-2, f®a)) = L(f(a),1 <i < p —2). Therefore,
N negl(E(m) in Theorem 4 is equal to L(f(4,),]1 <i < p —2).

6. k=1, if Z2,(x; — a)** D = oo, the result follows from 2. If =2 ,(x; —
a™ = o and % ,(x, — a)0*™ < 0,0 < m; < p—2, then S@f) =
L(f(a, fay), - - -, f™)(a) and CF) = {a,}.

Using Theorem 4 and its consequences, simple and workable n.a.s. conditions
for asymptotic consistency are given below for cubic regression f(x)" = ( 1,x,x2,x3).
The results for other polynomial regression models can be derived similarly.
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(i) x has at least four limit points. S(f) = R* and C(f) = R'.
(ii) x has three limit points a,,a,,a;.
Sl (x5 — a) < o :S(f) = L(f(a),] <i<3)and C(f) = {a}>_,.
S0 (x — aj)2 = o0 :S8(f) = R*and C(f) = R
(iii) x has two limit points a,,a,.
32404 — @)’ (% — @)’ < o0: S() = L(f(a))f(ay)) and C(f) = {a,,a,).
(x5 - al)2(xi - a2)2 = 22,(x - a1)2(xi - 42)4 = oo and
2006 - 01)4(xi - a2)2 < o0 :S8(f) = L(f(“])’f(az)’fﬂ)(al))
and C(f) = {a,, a,}.
(A similar result holds for the case with a; and a, interchanged).
2% = @)% — @)’ = 00, I2(x; — a)"(x; = a, < o0 and
S = a)(x - a)* < 0 :5() = L(fla)) f(a))
and C(f) = {a,, a,}.
If all the above three series diverge: S(f) = R* and C(f) = R.
(iv) x has one limit point a.
S®(x, — a)* < oo : S(f) = L(f(a)) and C(f) = {a}.
25— a)’ = 0, Z2,(x - @) < 00 :8(0) = L(f(a), /()
and C(f) = {a}.
(%~ a) = wand 22 ,(x, — a)° < w0 : SH) = L(f(a), [P(a)fP(a))
and C(f) = {a}.
32 (x;—a)® = o0 :Sf) = R*and C(f) = R

Some of the results obtained in this section and (3.8) actually hold for a general
one-dimensional regression model, i.e., f(x) is a smooth function of x in R!. This
will be treated elsewhere.
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