ADDENDUM TO "LARGE SAMPLE THEORY FOR A BAYESIAN NONPARAMETRIC SURVIVAL CURVE ESTIMATOR BASED ON CENSORED DATA"

By V. Susarla and John Van Ryzin

University of Wisconsin-Milwaukee and Columbia University

The result on almost sure consistency with rate $O(\log n/n^{\frac{1}{2}})$ given in our paper (Ann. Statist. 6 755-768, Theorem 3.1) may be strengthened to $o(\log n/n^{\frac{1}{2}})$ by means of the exact same proofs by replacing $O(\log n/n^{\frac{1}{2}})$ by $o(\log n/n^{\frac{1}{2}})$ in conditions (b) and (c) of Lemma 3.1 and its proof. The result is then Theorem 3.1 with $o(\log n/n^{\frac{1}{2}})$ replacing $O(\log n/n^{\frac{1}{2}})$ in its statement and proof.

Also some misprints to be changed which do not affect the results of the paper are:

- 1. In the proof of Lemma 3.1 (line 3 of proof), the phrase "Glivenko-Cantelli theorem" should read "Borel-Cantelli lemma".
- 2. The log log term should be under a square root sign in (a) of Lemma 3.1 and in the proof of Theorem 3.1.
- 3. The last term inside the absolute value lines in equation (3.2) should be a plus sign.
- 4. In the proof of Theorem 3.1, the theorem referenced should be Theorem 2.2.
- 5. In the variance inequality in the statement of Lemma 2.1 replace c_1/n by c_1 .

DEPARTMENT OF MATHEMATICS UNIVERSITY OF WISCONSIN-MILWAUKEE MILWAUKEE, WISCONSIN 53701

DIVISION OF BIOSTATISTICS COLUMBIA UNIVERSITY SCHOOL OF PUBLIC HEALTH NEW YORK, NEW YORK 10032