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AN EDGEWORTH EXPANSION FOR U-STATISTICS

By H. CALLAERT, P. JANSSEN AND N. VERAVERBEKE
Limburgs Universitair Centrum, Belgium

It is shown that, under some regularity conditions on the kernel, a one-
sample U-statistic with kernel of degree two admits an asymptotic expansion
with remainder term o(N ~ ).

1. Introduction. Let X, X,,- - -, Xy, N > 2, be ii.d. random variables with
common distribution function F. Define a one-sample U-statistic with kernel of
degree two by

UN=(12V) 21(1<1<Nh( P ,)

where & is a symmetric function of two variables with EA(X,, X,) = 0 and such
that g(X,) = E[h(X,, X,)|X,] has a positive variance 032. The asymptotic normality
of the statistic (Var UN)‘éUN has been obtained by Hoeffding (1948) under the
sole condition of the existence of Eh*(X,, X,). The study of the rate of conver-
gence, started by Grams and Serfling (1973), resulted in the Berry-Esseen theorem
for U-statistics requiring only the existence of E|A(X,, X,)]’ (see Callaert and
Janssen (1978)), improving results of Bickel (1974) and Chan and Wierman (1977).

The purpose of this paper is to establish an Edgeworth expansion with remainder
term o(N ~!). In Section 2 we state the main theorem and outline its proof, which
essentially reduces to the estimation of the three integrals treated in Sections 3, 4
and 5. Section 6 contains a modification of the main theorem, illustrated by two
examples.

2. Main result and outline of the proof. The U-statistic defined in the introduc-
tion can be rewritten as

Uy = (]2\,) [(N - 1)21-18(X) + 21<i<,<1v‘l’( i ,)]

where
‘P(Xi’ X_]) = h(Xv Xj) - 8(Xx) - g(Xj)

Note that ¢ is symmetric in its arguments and that Egp(X,, X,) = 0. Moreover

for 1<i<j<N and 1 <k <N one has E[g(X)p(X;, X)] = 0. Also

E[9(X,, X)9(X,, X))] equals E*(X,, X,) if {i,j} = {k, I} and zero otherwise.
For the variance of Uy, denoted by o2, we have

4 2
o} = Nog + — N(N D [q)z(Xl,Xz)].

Received February 1978; revised July 1978.
AMS 1970 subject classifications. Primary 60F05; secondary 62E20.
Key words and phrases. Asymptotic expansion, Gini’s mean difference, sample variance, U-statistic.

299

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% )2

The Annals of Statistics. MK
WWw.jstor.org



300 H. CALLAERT, P. JANSSEN AND N. VERAVERBEKE

Throughout the paper the notations

— -1 N -1
N = v (2)
and
n(8) = E[exp(ifg(X,))]

will be used.
Finally let

& = = [ Eg(X,) + 3E[ 2(X)g(X)e(X,, X,)] ]

Ky = — [ Eg*(X)) — 30} + 12E[ g%(X)g(X,)9(X,, X3)]

ona&| —

+12E[ g(X,)2(X;)0(X 1, X)9(X,, X3)]]

Ky(x)

2

K K K
= ®(x) — o(x)| === (x2 = 1) + =2 (x* — 3x) + === (x° — 10x> + 15x
(x) 6N7l( ) 24N( ) 72N( )

where ®(x) (resp. ¢(x)) is the distribution function (resp. density) of a standard
normal random variable.

THEOREM 1. If the following conditions are satisfied
(&) Elh(X;, X)I* < oo,
(A) E|g*XDe(X), X)) < oo and
E| (X )p(X,, X)o(X}, X3)| <0 fork=1,2,
(B) limsup,,.[n(?)| <1,
(C) there exists a positive constant ¢ < 1, such that form = [N°], 0<a <3,

, 1
P[IE[exp(ttcNEf_mHh(X,, X)) Xoar * * 5 Xl < c] >1- o(m)
uniformly for all t € [N%/log N, N log N] then
sup,|P[ oy 'Uy < x] — Ky(x)| = o(N Y.

REMARKS.

1. Although E|h3(X,, X,)| < oo is sufficient for conditions (A) and (A’) to be
fulfilled and leads to a shorter proof of the theorem, we prefer to work with the
weaker moment conditions (A) and (A’) for two reasons. First, the existence of the
fourth moment seems to be the “natural” condition for the expansion up to
o(N ~1). Therefore as far as moments are concerned we prove the whole theorem
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using only condition (A) with one single exception (in Lemma 3) where (A’) is
needed. Further for Gini’s mean difference, discussed at the end of the paper,
condition (A) implies (A’), providing an example where the expansion is valid
without imposing the existence of a fifth absolute moment.

2. Possible generalisation of Theorem 1 to the general case of multisample
U-statistics with arbitrary degree is not studied here. The extension of the formal
expansion will be rather technical and the main difficulty will remain the search for
an elegant condition under which the characteristic function is sufficiently small
outside a neighbourhood of the origin.

3. It will be seen from the proof that condition (B) may be dispensed with if the
range of ¢ in condition (C) is extended to [eN %, N log N] where ¢ is a positive
constant chosen in such a way that

[n(8)| < exp(—0%2/3) for |0] < es; .

‘4. Condition (C) will enable us to reduce expressions like f'_mﬂh(X 1 X)) to
E}V_m“h(X 1»X;) via a conditioning argument. Although this seems to simplify
somewhat the complicated structure, it will generally be very hard to check the
validity of (C) in most of the examples encountered in statistics. We therefore in
Section 6 propose a more stringent alternative to (C) which can be checked more
easily.

The starting point of the proof is Esseen’s smoothing lemma (1945), which may
be found in Feller page 512 (1966).

Let
Yn() = E[exp(‘ito,; 'Uy)]
(1) = 23 exp(itx) dKy(x)

2
= 52 K3 (03 Ka c.na . K3 .6
exp(—1%/2) 1+6 2I(zz) +24N(1t) +72N(1t) .

Choosing T = N log N, the smoothing lemma ensures that
- 2 _ ~
sup,|P[oy 'Uy < x] = Ky(x)| < — 10 N ey (1) — d(9)] dt + o(N 7).

Further :
S0 B (1) — ()] dt < 38N (1) — (2] dt
5 .
N % /o] - N lo - -1
Lt T (Ol de 4 L (O] de + [t ()] de
= (I) + (II) + (III) + (IV). )
The proof that (I), (II) and (III) are o(N ~ ') will be obtained in Sections 3, 4 and 5.

The order Sound o(N ~!) for (IV) follows immediately from condition (A).
The following shorthand notation will be useful. Forr = 1,- - - , N let

Ar = Ar(Xl’ R Xr) = 2:_18(/\,,)
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and for 1 < r <s < N define
Br,s(Xl’ ot X) = Ei-lzj-xi-l(p( i _])
We also frequently use the following lemma.

LEMMA 1. Given the existence of the pth (p > 2) absolute moment of the kernel h,
there exists a positive constant C such that

E|B, P < C(rsy/%

The proof of ‘this lemma is very similar to that on page 420 of Callaert and
Janssen (1978). It uses the martingale structure of B, ; and an upper bound for
moments of martingales obtained by Dharmadhikari, Fabian and Jogdeo (1968).

3. Estimate for (I). The ideas of this section adhere to a paper on Edgeworth
expansions for linear combinations of order statistics by Helmers (1976). The
expression Ky(x) for the formal Edgeworth expansion, given in Section 2, results
from the approximations for yy(#) which will now be introduced. Noting that
Yn(?) = Elexp(itcy(N — 1)Ay)exp(itcy By _, x)] We first construct an approxima-
tion Y (#) for Y, (¢) by replacing the second factor in the expectation by its Taylor
series up to the term in ¢2. This yields: ,

. . it
Y, (0 = E{exp(ltcN(N — DAy)|1 + itcyBy_, y + ~5— ( ) ABi_,, N”

In its turn, ¢, ,(#) will be approximated by :[:1, ~(2) in the following way. Since 4,
is a sum of ii.d. random variables we remark that y; y(7) can be rewritten as

tI’l,)\r(t) = "TN(CN(N - l)t)

+imV " (cy(N - l)t)cNi(-N—_l—)

2
X E ([ exp(itey(N — 1)(g(X,) + g(X))) Jo(X,, X,)}

+ G0 v, (v — g XA =)

x E{[exp(itey(N ~ 1)(g(X)) + (X)) ]9*(X;, X;))

+ U0 430, (N — OGN - YN - 2)
X E{[exp(itcy(N — 1)(g(X,) + g(X,) + g(X3) Jo(X), X)o(X,, X3)}

2 N(N = 1)(N - 2)(N - 3)
4

+ 04y - D0}

X [ E{[exp(itcy(N — 1)(g(X,) + 8(X)) (X, Xz)}]2
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which will be denoted by
N — N2
Y a(8) = 1§ + itcN-N(—z—l)-I‘{E;" + -(l—?—cﬁ,N(N - l)[%l;E‘z“

+ (N = 2)I3E$ +{(N - 2)(N - 3)I}E}].

We now take the first few terms of the Taylor series for approximating E} by
E,1<i< 4, and put:

( t)z E[ 8(X1)8(X2)‘P(X1’ Xz)] (lt) [gz(X,)g(X2)<p(X1, XZ)]
No, Nia

E, = [‘P (X5, Xz)]
gv‘) E[ 8(X)2(Xy)9(X,, X)o(X,, X5)]

E, = I(V’?,,EZ[g(Xl)g(xz)qo(x,, X))

Further, an approximation of I}, k = 0, 2, 3, 4, is obtained by using an expansion
for the characteristic function

{exp[ttcN(N— 1)o, (N — k)2 ( . (N — k)_iz 1k8(X))]}

where o, “W(N - k)~ 52,_, g(X,) is a normalised sum of i.i.d. random variables. For
more detalls we refer to the proof of Lemma 2.
In this way we are led to the following approximation of ¥, »(?)

- . N(N-1 it)?
¥ n(2) = Iy + itcy ( 5 )12El + ( 2) cAN(N — 1)[%12192

+ (N = 2) LE; + {(N = 2)(N = 3)LE,]
with

Eg’(X,)

I =er1 - (it)’(2E<p’(X1, X) , ) @y
2N 4082 6N 20

f"" (8500 = 36f) + 0 g,

-4

2

and E; as defined above.
We finally remark that

@< f]g%/logNt_lWN(t) =Y n(D)] dt + f]g%/losNt_ll‘Pl, ~) — ‘i;l, ~(t)| dt

NN (1) — (D) de
= (I.l) + (I.2) + (I.3)
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and now prove that (I.1) and (1.2) are o(N ~'). That (1.3) is o(N ~!) follows from a
straightforward computation by wrltmg down explicitly the difference zpl MO
Un(0), replacing cy(N — 1) by N ‘io“[l + O(N 7)), and noting that one needs
only to look at the order of N in the terms involved because

[Etke =12 dt < 0.

Estimate for (I.1). From the definition of Yy (#) and ¢, ,(f) it immediately
follows that

[¥n(2) = ¥, (O] < HPE|By_y, wl-
Hence, since ¢ = O(N ~2) and E |By_1, wI* = O(N?) (see Lemma 1), we have:
1 1
S8/ Yn () = Yy, (0| At < N E|By_y w5/ P dt = o(N Y.

For ¢ in the range [N i /log N, N i /log N] we again use the definition of y,(¢) and
¥, »(¢) and now write

[¥n(2) = ¥, n(D)] < |tcy| E[exp(iten(N — 1)AN)By_, v ]|+ t*NE(B ., v)-
The coefficient of |¢|>3 is bounded by
ZwlE{[exp(iten(N — Ddy) Jo(X,, X,)9(X,, X,)o(X,, X,)}|
= 2(1)|E[exp(itcN(N - l)zieA’g()(i))]l
X |E{[exp(itey(N ~ 1DZ;ca8(X))]0(X;, X, )0(X,, X, )0(X,, X))}
< In(ten(N = D)V-¢
X ZaylE { [exp(itey(N — 1)Z,c,8(X)) o(X;, X;)

(X X,)9(X,; X,)}]

where A is the set of different indices among i), j,, i, Jjp i3 j3 and A’ =
{1,2,-+ -, N}\A. The number k of elements in A is at least 2 and at most 6 and
for each k the number of terms in X, is O(N k). Now there always exists an ¢ > 0
such that

7(8)| < exp(—16%?2 for |0| <e/a,.
3770, s

Since 21/oN <N%/ag we have that fcy(N — 1) <e/q, for ¢ < eN7. Hence for
t<eN:2

[n(tep(N — D)V-6 < exp(—%t’c},(N - l)zoxz(N - 6)) <e 1" for N large.

From this remark we see that the terms for & = 2, 3 can be replaced by an absolute
9

constant because cy = O(N ~2), the number of terms is at most O(N>) and

(2 dt < oo.

To treat the terms with k = 4, 5, 6 we first of all remark that for each integrable
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Borel-measurable function f(x; , - - - , x, ) with E|fp| < co we have
(*) E[f(Xk,9' v 9Xk,)(p()(i"Xj)] =0
if at least one of the indices i or j does not belong to {k,, - - -, k,}. In fact, if both

i and j differ from all k,, 1 < s < r, then ( * ) holds by independence together with
E@(X;, X;) = 0. On the other hand, if i € {k,,- - - ,k,} andj & {k,, - - -, k,} we

first use a conditioning on the Borel-field generated by X, , - - -, X, and then note
that E[p(X,, X))| X, - - -, Xi] = E[e(X;, X})|X;] which is zero according to the
definition of ¢(X;, X).

We now give the argument for k = 4 and indicate the analogy for k = 5, 6. If A
contains exactly four different indices we encounter expressions of the types
o(X;, X)X, X3)o(X,, X,) and ¢*( X, X)(X;3, X,). Note that the first type does
not factorize when one takes the expectation. Hence (X, X5)p(X,, X5)o(X;, X,)
and (X, Xp)o(X;, X;)9(X;, X,) also belong to this type. To fix the idea we work
with @(X 1, X)e(X 1, X3)e(X, Xy).

As to the first type one has for each particular term, using ( * ) and condition
(A):

|E{ [exP(itCN(N - 1)24=18(X1))]<P(X1’ X)e(Xy, X3)e(Xy, X4)}|

= |E{ [exp(itcN(N - D2 8(X)) - 1]‘P(Xv X)o(Xy, X3)p(X, X4)}|
< Ktey(N = 1).
Remembering that each term has to be multiplied by ¢~ !|¢]°cy|n(tcy(N — 1))|¥ ¢

and then integrated for ¢ € [N g /log N, N i /log N] we find that each term is
bounded by '
1
Kch(N — 1)fNa/los N 3= g
N6 /log N
1
< Kci(N — 1) N(log N)™* exp(—le—N?(log N)_z).

Since there are at most O(N %) terms we find an order bound of o(N ~!) for all terms
of the first type together.

The method used for the terms of the second type in kK = 4 will be standard in
the analysis of kK = 5, 6. By independence, ( * ) and condition (A) we have

|E{[exp(itey (N — D)=, 8(X)) ]9*(X1, X)9(X5, X))
= IE{[CXP(itCN(N - 1)2%-18(/\’:))]<P2(Xv Xz)}
x E{ [explitey(N — 1)Zi_58(X)) = 1 — itey(N = DEi,2(X) ]o(Xy, X))
< L% (N — 1)%
Hence, performing the same operations as above, each term is bounded by
Le§(N — 1 et%e™m dt = O(N =2

which provides an order bound of O(N '%) for all terms of the second type
together.
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For k = 5, 6 we essentially use the same argument. For example, for k = 5, we
write
|E {[exp(itey(N — 1)Z3.,8(X) Jo(X1, X)o(X 1, X3)9(Xy Xs)}|

= |E{[exp(itey(N — 1)Z7.,8(X) — 1 — itey (N — D23, 8(X)) ]

X (X, X)o(X,, X3)} E{ [exp(itcN(N - DZi_48(X)) — 1
— itcy(N — 1)2?-48(/‘})]‘1’(/\’4’ Xs)}l

< Mt (N - 1)*
and analogously for k = 6.

Finally, since cyE(By_; 5) = O(N ™% and [{ i 18 Ng3 dt = O(N(log N)~%), we
find that

1
SN Yp(8) — Yy, w(0)] dt = o(N 7).
Estimate for (1.2). Writing 0 for n(cy(N — 1)¢) we have

[¥y, w(2) — 4:1 NOIR IR

ey XD vy - E| + B (n¥ 2 - )]
+ LMW fyvesey — B| + B2 - 1]
+ L AN = DV = D" 3(ES = E| + |E(n" - L]
+ 5 M= D= DN = 3 11y v-e(gz — )]+ |Bn™~* = 1))

That (I.2) = o(N ~!) now follows immediately from the next two lemmas.

LeEMMA 2 If (A) is satisfied then there exist positive constants K,, a, ¢ and a
sequence of positive numbers 8,, 8,, - - - , with 8y — 0 as N — oo such that for each
1
fixedk =0,1,2,- -+ andfor N >k and 0 <t <eN:?

[nV=*(cy(N = 1)1) — L] < K;8yN ~tP(t)e~*
where P(t) is a polynomial in t.

PrOOF. From Theorem 1, Section 41 in Gnedenko and Kolmogorov (1968) it
follows that '

- ¢ -
¥ k(__l) — P2
(N = k)0,

(i) 4 — 34 (i)° 2,3
Y 20N - B (Bg*(X\) = 30;) + TN - Byas ¢ ()

1+ ——(iL——Eg3(X )
6(N — k)?q}

< c8yN ~'tP(1)e"/4,
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This expression remains valid if we substitute 7 by o,(N — k)%cN(N — 1)t because
1
0,(N — k)icy(N — 1) < 1. Since

4o —1__2 Ep* (X, Xp)
No} N-1 No}
we have
1 3
(ioy(N — k)2cy(N — 1)2) 7y’

E(x,) = 80 Egxp[1+ o )]
6Nzg3

3 3
6(N — k)?o, .

and analogous expressions for the terms in (if)* and (if)®. The lemma now follows
easily if we take into account the fact that
2E9*(X,, X,)

2
4"3

exp[%z(l ~ (N — k)ch(N — 1)2)] =1- (2’3\,)2( + k) + O(N 2.

LemMa 3. If (A) and (A’) are satisfied, then for all t
|E { [exp(iten(N — 1)(8(X,) + 8(X2))]e(X,, X))} — E||
<K (N2 + % + N-3|tP)

|E{ [explitey(N — 1)(8(X,) + 8(X)) [9*(X,, X,)} = B;| < KN 3
|E { [ exp(itey (N — 1)(g(X,) + 8(X3) + &(X3))) ]o(X,, Xo)o(X,, X3)} — Ey

SK(N-Iif + N~%)
|E*{ [exp(iten(N — 1)(8(X,) + g(X2))]o(X}, X3)} — E|

K (N3t + N~%)

where K, is an absolute constant.

The proof of this lemma follows from remark ( * ) in the proof of the estimate
for (1.1), together with
cK(N — 1)* = N=*2% 1 + O(N Y], k=234

4. Estimate for (II). To establish a suitable estimate for (II) one only needs an
appropriate upper bound for |, (¢)]. We therefore rely on the next lemma.

LemMMa 4. If (A) is satisfied, then there exist positive constants K5 and K¢ such
that for all t and all integers N and m with 6 <m < N

lin (D] < |n(ten(N — D)I"(1 + K25l tlkef(mN) ) + Kolt|*ch(mN ).
ProOOF.
(t) = E[CXP(”CN(N — 1)4,,)exp(itcy(N — 1)(4y — A4,,))

x exp(itcy(By_y,n — B, ~))exp(itcy B, N)]
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Hence, using the expansion for exp(itcy B, n)
(D)l < Z3ooltlck| E[expitey(N — 1) 4, )explitey(N — 1)(Ay = 4,,))
X exp(itey(By_1,x — Bnm, ~)B. N]l + |t|*N E(Bn n)-
By an independence argument, the term for k = 0 is bounded by
|E[exp(itey(N — 1)4,,) ]| < In(tey(N — D).
The coefficient of |t|¥cx for k = 1, 2, 3, is bounded by
3 o)l E[ explitey (N — 1)4,,)exp(itcy(N — 1Ay — A,,))
x exp(itecy(By—-1,x — B, N))'P(Xi., Xj,) s ‘P(Xik’ XJ,‘):“
where the number of terms in 2, is less then (mN ).
Now for any arbitrary term in 3, let A be the set of different indices among
inpJp e A ={1--+-,m}nA and A, ={1,2,---,m}\A it is

easily seen that A, contains at least 1 and at most 2k elements and hence the
number of elements in A, lies between m — 1 and m — 2k. Therefore

IE[CXP(”CN(N - l)zieAzg("Yi))exp(itcN(N - 1)(2ieA, g(X) + (4y — Am)))
X exp(itey(By_1,x — B, N))‘P(X.'.» X,,) c ‘P(X.-,‘, X,,‘)]l
< |E[exp(itey(N — 1)Z,cn,8(X)) || Elo(X;, X;) - - - 9(X,, X))
< Kyln(tey(N = 1)I"75
Finally, by Lemma 1, we have
E(Bf y) < K(mN)’
finishing the proof of the lemma.
The previous lemma and the fact that
|n(tey(N = 1))| < exp(— k(N — 1’62/3) for0<r< eN?

enable us to prove that (II) is o(N 7).
1
Choosing m = [N7*3],0 < 8 <}, for t € [N%/log N, N log N] we have that
3 402
()] at < VB 1! exp(— £ _(m - 6)t2) dt

1 2
/log N N4 /log N 3N%2

olw

fN

N

NS

2 402
+K523_lc,’f,(mN)ka:n tk-1! exp(— 282 (m - 6)t2) dt
N4 /log N 3Ny

3
4 2 NE 3
+ K¢y (mN) fNCl/logN tdt.

The last term is O(N ~!) by our choice of m. For the first term we have
2 1

402 40 N2
t lexpl — 2 _(m — 6)¢*]|dt < exp| — £ (m—-6
p( 3Nzﬁ)%,( ) ) p( 3 5 ( )

No? log> N

- ojw

fN

N%/log N

)log N3

= o(N~).
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The other terms are treated similarly. For ¢ € [N %, eN %], the same argument works
with the choice m = [N?), % <6< % Finally if (B) is satisfied, then there exists a
¢ > 0 such that

[n(tey(N — 1) < e™¢
for t > eN 2. Hence applying again the previous lemma with now m = (2/¢)log N,
we find
3
JraflsN e~y (e)] dt = o(N ~1).
eN2
5. Estimate for (IIN). The proof that (III) is o(N ~!) relies on (A) and (C) and
the following inequality.

LeMMA 5. If (A) and (C) are satisfied, then there exist positive constants K, and
K such that for all t and all integers N and m with 6 < m < N

I‘PN(’)I < E[|E[CXP(itcN2y-m+lh(Xp "Yj))IXm-i-l’ MY XN]|M_6]
X (1 + K25 tfefm®™) + Kg|t]'cym?.
ProOF. For1 <r <s < N let
Er,s =B (X, -, X,)= 27’-12;-“1"()(:, Xj)
Then
(1) = E[ E[exp(itey(B,, y — B,,_1, m))exp(itcy B,y )
xexp(itcN(EN—l,N - ~m, 1) P SURREIIER XN]]‘
Hence, using a conditioning argument and then an expansion for exp(itcy B,,_, ,,)
l¥n(2)] < EIE[CXP(itcN(Em,N ~ By, m))expitey Bp_y )l Xppsrs =+ Xy]l
< 23:-0|t|kcﬁE|E[exP(itcN(§m,N - Em—l, m))ﬁr:—l,lem+l9 Tt XN]I
+|t|* N E(BE_\ )

The rest of the proof is essentially the same as in Lemma 4.
Now if (C) is satisfied, then there exists a constant y > 0 such that

|E[CXP(”CN2y-m+1h(Xp Xj))]le+l’ T, Xyl <e™
uniformly for ¢ € [N%/log N, N log N] except on a set Ay with

PlAy] = o( ) Hence,

Nlog N
SN ()] de = o(N 7).

6. Examples. In this section we replace condition (C) in Theorem 1 by an
alternative condition (C’) which is more tractable for some applications. Let
X, X, -+, Xy be iid. random variables with df F and let U, U,,- - - , Uy, be
ii.d. random variables with a uniform distribution on [0, 1].
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Let Dy C [0, 1]V (cartesian product of N unit intervals) be a set such that

P[Dg] = o( ) For

NlogN )
iy = (uy, - - -, uy) € Dy

and
Iy, 5,(F () = 5 S0 h(F (), F ()

we state the alternative condition as follows:

(C) There exist a positive constant ¢ and an interval I, C [0, 1] of length at
least 1, where 7 is a positive constant, such that

@D Ay z(F~ !(u)) is monotone and differentiable w.r.t.  on I,

(i) |@/%uwhy z (F ~!(w))| > ¢ on I, where c is a uniform constant w.r.t. N and
D,,.

It then follows from the paragraph preceding formula (5.21) in Albers, Bickel,
van Zwet (1976) that, under conditions (A) and (C’), for each § > 0 there exists a
b > 0 such that

|E[eith~,aN(F"(U))]| <1-b,

uniformly in N and Dy, for all # > é. From this remark we immediately have the
following theorem:

THEOREM 2. If conditions (A),(A’) and (C') are satisfied then sup,|P[oy 'Uy <*]
— Ky(x)| = o(N 7.

We now consider two examples where, for simplicity, we assume an underlying
distribution F which is uniform on [0, 1}.

2
Example 1. sample variance. Let h(u,, u)) = M - % and take

2
0<e<jy,

€ _ 1
1=(1-¢1-3)c[0,1] and DN={uN:—ﬁ2y_,u,.<1—2s}.

If Sy = Ey.lUj then the Markov inequality yields
E { etSN}
P| Dy <
[Dx] exp(tN(1 — 2¢))
It nows follows by elementary calculus that there exists a choice for ¢, ¢ > 0, and
e, 0 <e <3, such that log ¢ + #(1 — 2¢) — log(e’ — 1) is positive, which implies
1 1
that P[Dg] = o( Niog N
that (C') is satisfied.
But for u € I and 4, € Dy we have

h] 1
'@hzv,a,,(“) =y - sz?’_,u, >e

= exp[ —N{log ¢ + #(1 — 2¢) — log(e* — 1)}].

). Hence it only remains to find a positive constant such
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indicating the validity of the result of Theorem 2 for the sample variance.

Example 2. Gini’s mean difference. 'We now take h(u,, uy) = |u, — u,| — 3 and
consider for 0 < ¢ <%

I=(1-e1-3)c[o1]

and Dy, = {uy: u, >1—e,)~,u >1—¢ and y, <1 —¢ for j#
1—-
it v 0, i} With DN—U[ ]DNkandforuEIanduNEDN we have
-0
9 N -2k
' NuN(u) lNz-la |u ujl >_N—[(N_k)_k]= N > &

It only remains to prove that P[Df] = o( ), which follows from the

1
Nlog N
Markov inequality as in the previous example.

REMARKS.

1. For Gini’s mean difference where X, has df F the following general result
can be proved in an analogous way. Suppose there exist positive constants
0 <e <31, mand M such that F has a density f on (F~!(1 —¢), F~'(1 — ¢/2))
with m < f < M then (C) is satisfied for I, = (1 — ¢, 1 — ¢/2) and Dy, as before.

2. From the equality (David (1970) page 146)

G= (g)‘lz'ﬁ'xi - Xl= N(N ,-.(r (N + D)X,y

it follows that Gini’s mean difference is also a linear combination of the order
statistics X,. y, * * + , Xy. n- Hence it is interesting to compare our result with that
in Theorem 2.1 of Helmers (1976). His conditions are satisfied with J,(s) = J,(s) =
4(s — %) and B = y = 2. Further for the functions A,(u), hy(u, v),hy(u, v, w), de-
fined in Helmers (2.1), (2.2) and (2.3) we have h,(F(x)) = 2g(x), hy(F(x), F(y)) =
2¢(x, y), hy(u, v, w) = 0, which implies that the two expansions coincide.

Finally we observe that condition (A’) may be dispensed with. This follows from
remark (ii) on page 11 in Helmers.
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