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COMPARISON OF EXPERIMENTS AND INFORMATION
MEASURES!

By PreM K. GOEL AND MORRIS H. DEGROOT
Purdue University and Carnegie-Mellon University

Let &y = {X, Sy; Py, €O} and &y = (Y, Sy; 0p, § € O} be two sta-
tistical experiments with the same parameter space ©. Some implications of the
sufficiency of &y for &y, according to Blackwell’s definition, are given in terms
of Kullback-Leibler information and Fisher information matrices. For a scale
parameter , and k; > k, > 0, the experiment with parameter §*! is proved to
be sufficient for the experiment with parameter 8% for a class of distributions
including the gamma distribution and the normal distribution with known
mean. Some results of Stone are generalized to the class of experiments with
both location and scale parameters. A concept of sufficiency is proposed in
which & is more informative than & for a fixed prior distribution of @ if the
expected Bayes risk from & is not greater than that from &, for every
decision problem involving 6. This concept is then used to develop a definition
of marginal Bayesian sufficiency in the presence of nuisance parameters.

1. Introduction and summary. Let &, = {X, Sy; P,, § € @} denote a statisti-
cal experiment in which a random variable or random vector X defined on some
sample space Sy is to be observed, and the distribution P, of X depends on a
parameter § whose value is unknown and lies in some parameter space 0. Also, let
by = (Y, Sy; Qp, 8 € O} denote another statistical experiment with the same
parameter space ©. Blackwell’s (1951) method for comparing two experiments
states that the experiment &, is sufficient for the experiment &, (denoted
&y = &) if there exists a stochastic transformation of X to a random variable
Z(X) such that, for each § € ©, the random variables Z(X) and Y have identical
distributions. It was proved by Blackwell (1953) and Boll (1955) that this method of
comparison is equivalent to Bohnenblust, Shapley and Sherman’s method for
comparing two experiments [see Blackwell (1951)] which states that &, is more
informative than &, if for every decision problem involving # and every prior
distribution on ©, the expected Bayes risk from &, is not greater than that from
&y. LeCam (1964) generalized this notion to a concept of approximate sufficiency
or e-deficiency of &, relative to &,. Torgersen (1970, 1972, 1976) and Hansen and
Torgersen (1974) have extended these results and applied them to interesting
special classes of experiments. Some other papers on this topic are DeGroot (1962,
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1966), Torgersen (1977), Feldman (1972), and Gerber (1977). We shall now give a
summary of the results presented in this paper.

In Section 2, we summarize' various implications of the relation &, > & in
terms of Kullback-Leibler (K-L) information and Fisher information.

In Section 3, it is assumed that @ is a scale parameter in the distribution of Y and
that X has this same distribution except that 8 is replaced by 8%(k > 1). Let W
denote a random variable with distribution identical to that of X with § = 1, and
let @(#) denote the characteristic function of log W. As stated in Lemma 2, if
o(t)/(t/k) is a characteristic function, then &, > &,. It is noted that ¢(7)
satisfies this condition if and only if ¢(¢) is a self-decomposable characteristic
function [see Lukacs (1970), page 161]. Let G,(a, b) denote an experiment in which
a random sample of size n is taken from a gamma distribution G(a, b) with
parameters a > 0 and b > 0, for which the density function is

a—1
(1.1) g(w) = —l%l;(—a)-exp(-—w/b) forw > 0.
Also, let N,(u, 6®) denote an experiment in which a random sample of size n is
taken from a normal distribution with mean u and variance o2. The result in
Lemma 2 is used to prove that for any known numbers ¢ >0 and b > 0,
G,(a, b6%) > G,(a, bP) for all k > 1, and that N,(0, a*) > N,(0, ¢®) for all k > 1.

In Section 4, we extend some of the results obtained by Stone (1961) for a class
of experiments with location parameter # to the class of experiments with both a
location parameter u and a scale parameter o. Various results for normal distribu-
tions are summarized. We consider an experiment & *(¢) involving a random
variable having a pdf of the form (¢/a)f[c(x — p)/0o]. In Theorem 5 we study the
relation between the Fisher information matrices for two experiments & *(c,) and
& *(c,) when f is a symmetric function.

Since two experiments &, and &, may not be comparable in Blackwell’s sense,
Feldman (1972) introduced another definition in which &, is more informative
than &, for a fixed decision problem involving @ if, for every prior distribution on
O, the expected Bayes risk from &, is not greater than that from &,. In Section 5,
we propose an alternative definition in which &, is more informative than &, with
respect to a fixed prior distribution on @ if, for every decision problem involving 4,
the expected Bayes risk from &, is not greater than that from &,. We then apply
this concept to problems in which 0 is a vector with a given prior distribution, and
we are interested in decision problems involving only some of the components of 6.
We present a definition of the marginal Bayesian sufficiency of &, for &, in this
context. Some examples are given to illustrate the usefulness of this concept.

2. Relationships between sufficiency and information. Consider again two arbi-
trary experiments &, and &, with the same parameter space ® as defined at the
beginning of Section 1. We shall assume that there exist generalized probability
density functions (gpdf’s) p(x|0) and g(y|@) for the distributions P, and Q,, with
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respect to some o-finite measures p and » respectively. We shall now investigate the
implications of the relation &, > &, in terms of some well-known information
measures. Let = denote the class of all prior distributions on the parameter space
©. Given two prior distributions £, £, € E, let p(x) denote the marginal gpdf
Jep(x|0)d&(8), for i = 1,2, and let I,(¢,, &) denote the K-L information con-
tained in &, for discriminating between p,(x) and p,(x), defined by

pi(x)

dp(x).
pa) )
If &, assigns probability 1 to a point § = §,, we shall denote I,(§,, &) by I,(8,, &)
The K-L information 7,(§,, §,) contained in &, is defined analogously.

Lindley (1956) has shown that if &, > &y, then the Shannon information
contained in &, is at least as large as that contained in &,. That is, if &6, > &,
then
(22) JoIx(0, §)dE(0) > [oIy(0, £)dé(6)  forall £ € E.

If (2.2) holds for &, and &, we shall denote it by &, >,&,. The following
stronger version of Lindley’s result was proved by Sakaguchi (1964).

(2.1 Iy, &) = fs,,Pl(x)IOg

LemMa 1. If &y > &y, then
(23) L(0,§) >1,(0,¢€) forall 6 €O® and (€ E.
In fact, this result can be easily extended as follows:

THEOREM 1. If &6y > by, then
(2.4) L(¢, &) > 1I,(8,¢) forall §,& €E.

Proor. The relation &, > &, is preserved when the parameter space © is
enlarged to include all convex combinations of the basic distributions P, of X and
convex combinations of the distributions Q, of Y. Therefore, the distribution £ in
(2.4) can be assumed, without loss of generality, to be degenerate. Hence, the
theorem follows from Lemma 1. [}

The following example shows that Lemma 1 is stronger than Lindley’s result.

ExampLE 1. Let &(4,, 6,, 8;) denote an experiment in which a coin with
unknown probability of heads @ is flipped n times and the parameter space ©
contains only three points 0 < 8, < 6, < 8; < 1. Blackwell (1951) remarks that the

experiment &, = &(0, 1, 1) is not sufficient for the experiment &, = &(0, 3, 3

, 35
even though our intuition suggests the contrary. In other words, suppose that there
are only three possible states of nature and we have a choice of either (i) observing
n flips of a coin &, for which the probability of heads is 0, %, or 1 according as 4,,
8, or 8, is correct, or (ii) observing » flips of a coin &, for which the probability of
heads is 0 if @, is correct, but is 3 if either 8, or 8, is correct. It would seem at first
glance that &, must always be at least as useful as &, but Blackwell pointed out

that this conclusion is not correct.
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Lindley (1956) showed that &, >, &, for these experiments. However, it can be
shown that Iy(6,, §) > I,(0,, §) if and only if 3¢, + £, < 1, where & = £(6,). Hence
(2.3) does not hold for § = 8, and a prior distribution £ for which 3¢, + &, > 1.

Since &, is not sufficient for &, in this example, there must be a decision
problem in which the expected Bayes risk from &, is less than that from & x- The
following simple decision problem has this property. Suppose that the hypothesis
H, : § = 0, is to be tested against the alternative H, : § # 6, with the usual 0 — 1
loss function and the prior distribution ¢ defined by £@,) = A and £(6,) = £, =
(1 = N)/2. If A satisfies 2"~' < A/(1 —A) <2"~! + 1, then it can be shown that
the Bayes rule for the experiment &, is to reject H,, if the number of heads is 0 and
the Bayes rule for the experiment &, is to accept H, regardless of the outcome.
Since the outcome of &, is of no value to the experimenter in this decision
problem, it can be shown that the expected Bayes risk from &, is larger than that
from &,.

The converse of Theorem 1 does not necessarily hold. In fact, it follows from
Torgersen (1970, Proposition 18) that if © is finite and, in his terminology, &, is
more informative than &, for testing problems, then (2.4) holds, even if &, is not
sufficient for &,,. :

The relation &, > &, implies a similar ordering in terms of Fisher information.
Let @ = (0, - - -, 8,) and suppose that © is an open subset of R*. Let i,(0) and
iy(0) denote the k X k Fisher information matrices for the experiments &, and &,
respectively, under the standard regularity conditions such as those given in
Kullback ((1968), pages 26-27). We shall use the notation &, >,.&, whenever
ix(0) — iy(0) is nonnegative definite. The next theorem essentially follows from the
development given in Kullback ((1968), pages 26-28). A sketch of the proof of this
result is also given by Barndorff-Nielsen in his discussion of Torgersen (1976). For
k = 1, the result had been proved by Stone (1961).

THEOREM 2. If &y = &y, then &y >;6,.

REMARK 1. It should be noted that if i,(0) — i,(8) is nonnegative definite and
iy(0) is nonnegative definite, then [i,(0)| > [i,(0)| (see Rao (1973), page 70). In
other words, the generalized Fisher information in &, is at least as large as that in
by.

REMARK 2. A counterexample which shows that the converse of Theorem 2
does not necessarily hold is given by Hansen and Torgersen (1974).

3. Comparison of normal experiments with known mean and unknown variance.
In this section we shall consider experiments in which a random sample can be
taken from a normal distribution for which the mean is known and the variance is
unknown. Without loss of generality we shall assume that the known value of the

mean is 0.
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To begin we note that N,(0, 6?) > N, (0, 0> + k?) where k is a given constant. To
see this, suppose that the random variable X is distributed as N(0, ¢2), the random
variable Y is distributed as N(0, 62 + k?), and the random variable W is indepen-
dent of X and has the distribution N(0, k%). Then X + W has the same distribution
as Y for every possible value of 2. Hence, N,(0, 6%) > N,(0, o> + k?). However, it
is well known that if &, > &, when only one observation is taken in each
experiment, then this same relation holds when a random sample of n observations
is taken from each experiment [See Blackwell (1951)]. It now follows that N, (0, ¢?)
> N0, o + k7).

Next, we note that for any given constant k # 0, the experiments N, (0, ¢ and
N,(0, k%6?) are equivalent in the sense that each is sufficient for the other. This
follows from the fact that multiplying each observation in the first experiment by k&
or multiplying each observation in the second experiment by 1/k maps each
experiment into the other one.

We turn now to the much more difficult problem of determining whether either
of the experiments N, (0, 6?) and N, (0, 6%) is sufficient for the other, where k is a
given positive constant. We shall prove that for k, >k, > 0, N,(0, 0**1) >
N, (0, ®*2). First we present some related results.

LEMMA 2. Let W be a nonnegative random variable with pdf g(w) and let o(?)
denote the characteristic function of log W. Let 8 > 0 be an unknown parameter, let
k > 0 be a given constant, and let G,(8%) denote the experiment in which a random
sample of n observations is taken from the distribution with pdf (1/0%)g(w/6*). For
any given constant ¢ > 0, define

_ e _
3.1 Y. (1) = m, 0 <t< .
If 4y s (1) is a characteristic function, then G, (0%) > G,(8*?). Moreover, G\(8*) >
G,(Bi‘l) if and only if Yy, (¢) is a characteristic function.

The proof of this lemma follows from results in Boll (1955) or Torgersen (1972)
by regarding log 4 as a translation parameter in the distribution of log W.

It should be noted that y,(¢), defined in (3.1), is a characteristic function for all
¢ € (0, 1) if and only if ¢(¢) belongs to the class of self-decomposable characteristic
functions, introduced by P. Lévy and A. Ya. Khinchine (See Lukacs (1970),
subsection 5.11). Some interesting properties of this class (also called L-class by
Gnedenko and Kolmogorov (1954)) are as follows:

(i) All self-decomposable characteristic functions are infinitely divisible.

(i) If @(¢) is a self-decomposable characteristic function, then y,(¢) is infinitely
divisible.

(iii) All stable characteristic functions are self-decomposable.

(iv) The necessary and sufficient conditions for ¢(¢) to be self-decomposable in
terms of Lévy’s and Kolmogorov’s canonical representations of an infinitely
divisible characteristic functions are given in Theorems 1 and 2 of Chapter 6 in

Gnedenko and Kolmogorov (1954).



COMPARISON OF EXPERIMENTS 1071

We shall now assume that g is the density function of a gamma distribution
G(a, b), defined in (1.1), with known values of a and b, and prove that the
assumptions in Lemma 2 hold for this pdf.

THEOREM 3. Let G,(a, b) denote the experiment in which a random sample of n
observations is taken from the gamma distribution G(a, b) with pdf (1.1). Then
G,(a, b9*") > G,(a, b0*2), where @ > 0 is an unknown parameter, and a, b, k, and k,
are given positive constants with k, > k,.

PrOOF. Let @(¢) denote the characteristic function of log W, where W is a
random variable with pdf (1.1), and let a = k,/k,. Then
= (® 1 it a—1,-w/b
3.2) o(?) = [§ 5T (a) wiw® e ™"/ %dw,

= b"T(a + it)/T(a).
For a < 1, consider

() _ B"9T(a + if)
(3.3) Y1) = 2ty = " T(a + i)

The Weerstrass expansion of 1/T'(z) (see Whittaker and Watson (1935), page 236)
is

= ze?

(3.4) ﬁ ;‘;.{(1 + ?)exp(—Z/j)}

where v is the Euler’s constant. Therefore, after some algebraic manipulation, y,(?)
can be written as

_ pil-a) i1 a+ita) % Jtatita) ui-ay
(3.5) () = b1~ Pexp{ —yit(1 a)}(a+it (ST )

or, equivalently, as

(3.6) ¥, (1) = exp{ —it(1 — a)(y — log b)}[a +(1- a)(l + %)—1}

. -1

’Xnﬁll:a_'_(l — a)(l +j.:-ta) }eit(l—a)/j.
The first factor in (3.6) is the characteristic function of a degenerate random
variable T, with probability one at the point [—(1 — a)(y — log b)], and the factor
e1=®/J js the characteristic function of a degenerate random variable T; with
probability one at the point (1 — «)/j,j = 1,2, - - . Furthermore, [a + (1 — a)
(1+ (it/(j + a))"'] is the characteristic function of a random variable Z,j =
0,1,2,- - -, which takes the value 0 with probability a and, with probability
(1 — a), has the pdf

3.7) f(2) = (J + a)exp[(j + a)z] for z<0
=0 for z>0.
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Let {T;,i=0,1,2,--- }and {Z,i=0, 1,2, - - } be independent sequences of
independent random variables with the distributions defined above. Define S; =
Z)-o(T; + Z)), and let y(¢) denote the characteristic function of ;. It follows from
(3.6) and the above discussion that

(38) Yo(£) = limy_, ().
It is obvious that y,(0) = 0. Furthermore, since the gamma function I'(z) is
analytic for complex arguments except at the points z = 0, —1, —2,- - -, where

it has simple poles, Y, (¢) is continuous at ¢t = 0. Hence by the continuity theorem
(Theorem 3.6.1, Lukacs (1970)), ¢, (¢) is a characteristic function. It now follows
from Lemma 2 that G,(a, b8*') > G,(a, b9*?) for all k, > k, > 0. []

REMARK. (i) An alternative way to prove that S/_o(Z; + T, converges in
distribution to a random variable Z, is to use Theorem 3.7.3, Lukacs (1970). Since

2o Var(Z, + T) = a(l — @)S2,1/(i + @)’} < o0, Y(f) converges to a char-
acteristic function {,(¢) as j — co.

(ii) Another proof of the fact that y,(f) is a characteristic function could be
given by proving that ¢(¢) is self-decomposable by using either Theorem 1 or
Theorem 2 in Chapter 6 of Gnedenko and Kolmogorov (1954). However, we prefer
the proof given above because it gives the specific form of the random variable Z
in the proof of Lemma 2.

(iii) Using Theorem 3.7.6 of Lukacs (1970), it can be shown that the distribution
function of the random variable Z is continuous.

We shall now prove the main result of this section.

THEOREM 4. Let k, and k, be given constants satisfying k, > k, > 0. Then
N,(0, 6**1) > N,(0, 6?*).

PROOF. As explained earlier, we can assume, without loss of generality, that
ky=1 and k, = k. Let X and Y denote the observations in the experiments
N,(0, 6%) and N,(0, o), respectively. Since X2/¢%* and Y?/0” have the same x*
distribution, it follows from Theorem 3 that the experiments in which X? is
observed is sufficient for that in which Y2 is observed. Furthermore, since X2 is a
sufficient statistic for the experiment N,(0, 0%) and Y? is a sufficient statistic for
the experiment N,(0, ¢?), it follows that N,(0, 6%*) > N,(0, 6%). Hence, N,(0, 0**)
> N0, ¢%. [

If X and Y have the distributions specified in the proof of Theorem 4, we now
know how to generate a random variable equivalent to an observation on Y from
an observation on X.

Let the random variable Z be as defined in the proof of Theorem 3, indepen-
dently of X, with a =3, b = 2, and a = k,/k,, and let Y’ be defined as follows

Y’ = |X|%?/>  with probability 1,
= —|X|%Z?/*>  with probability ;.

Then Y’ has the same distribution as Y for every possible value of ¢°.
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4. Comparison of experiments with location and scale parameters. Stone (1961)
considers the class of experiments {& (c); ¢ > 0} where & (c) is the experiment in
which an observation is taken from the pdf cf[c(x — )], for a fixed pdf f and
® = R. For given values of ¢, and c,, he obtains conditions under which & (c,) >
&(cy, &(c;) =6 (cy), or &(c;) =& (cy). Let () denote the characteristic func-
tion of the pdf f. Stone shows that if f(-) is bounded and ¢, > ¢, > 0, then a
sufficient condition for & (c;) > & (c,) is that

_ P(2/c))
(4'1) lIl(t) - tp(t/cl)

be a characteristic function. However, it follows from the references mentioned
after Lemma 2 that the boundedness of f(-) is not needed in this result. Further-
more, it follows that if ¢(7) is a self-decomposable characteristic function, then
b(c) = b(cyforalle, >c, > 0.

Stone also established that if f(-) is bounded and the family of pdf’s { f(u — 6); 8
€ R} is boundedly complete, then a necessary condition that &(c,) > &(c,)
whenever ¢; > ¢, > 0 is that y() be a characteristic function. In addition, if all the
cumulants of f(-) exist, Stone proves that y(¢) is a characteristic function, only if (i)
S(+) is a normal density or (ii) the even-order cumulants of f(-) are positive. After
proving this result, he states that “it is possible that condition (ii) is inconsistent
with & (¢)) > & (c,) whenever ¢; > c,, in which event, yet another characterization
of the normal distribution would be provided”. However, for f(x) = exp(—u), u >
0, and ¢; > ¢, > 0, it can be shown that y(¢) is a characteristic function and
therefore & (c;) > & (c,). Furthermore, all the cumulants of f(-) exist, all the even
order cumulants of f(-) are positive, f(-) is bounded, and the family of distributions
{f(u — 8); 8 € R} is boundedly complete. Hence, this result does not provide yet
another characterization of the normal distribution, as suggested by Stone.

A natural extension of the above results is to consider the class of experiments
{& *(c); ¢ > 0} such that & *(c) is the experiment in which an observation is taken
from the pdf (¢/o)f[c(x — p)/ o], where fis a given pdf and the parameter space is
©® = {(p, 0) : p € R, 0 > 0}. One may ask whether & *(c,) > & *(c,) for ¢, > ¢,
> 0. In particular, one may ask whether N,(u, 0?) is sufficient for N,(u, 6%/c?),
where ¢ < 1is a known constant. The answer is negative, as shown by Boll (1955).
In fact, it follows from Theorem 3.1 of Hansen and Torgersen (1974) that
N, (p, 6*/c}) = N, (p, 0*/cd) if and only if either n,c} = n,c3 and n, > n, or
nict >nyciand ny > ny + 1.

Stone (1961) also proved that in the location parameter case, & (c,) > & (c,) for
¢, > ¢y > 0, whenever the Fisher information exists. We shall now extend this
result to the family of experiments & *(c) with both location and scale parameters,
defined at the beginning of this section.

THEOREM 5. Suppose that the pdf f(x) is symmetric around the point x = 0. For
i=1,2, let &; denote the experiment in which n; independent replications of the
experiment & *(c;) are performed, where c, and c, are given positive constants. Assume
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that the Fisher information matrices i,(p, 0) and iy(u, 6) exist for these two experi-
ments. Then &, > &, if and only if n; > n, and n,c? > n,c2.

PROOF. It can be shown that if f(-) is symmetric, then the matrix i,(u, o) —
i,(, 0) is diagonal with diagonal elements (n,c} — ny,c2)4 and (n? — n2)B, where
A and B are the positive diagonal elements of the information matrix for the
experiment & *(1). Hence, i,(, 0) — i,(p, ) will be nonnegative definite if and
only if n,c? > nyc2 and n? > n2. ]

It has been pointed out by a referee that for any given pdf f and any positive
constants ¢; # c,, the experiments & *(c,) and & *(c,) are never comparable with
respect to the sufficiency ordering > .

S. Marginally sufficient experiments. In general, the relation &, > &, is
equivalent to the requirement that &, is at least as preferred as &, for every
decision problem involving the parameter 6 and every prior distribution on ©.
Therefore, it is a very restrictive relation and induces only a partial ordering on the
class E(®) of all possible experiments with parameter space ©. Feldman (1972)
studied certain properties of orderings of E(®) induced by the weakened require-
ment that in a fixed decision problem, the expected Bayes risk from &, be not
greater than that from &, for every prior distribution ¢ € E. Following DeGroot
(1962), he identified the decision problem with an uncertainty function (%)
defined on = and considered the experiment &, to be at least as informative as the
experiment &, with respect to U if WEX) < WE|Y) for all £ € E, where
QLX) is the expected posterior uncertainty if X is observed and the prior
distribution is £ and U(¢|Y) is the corresponding value for the observation Y.

An alternative possibility for comparing experiments is to consider a fixed prior
distribution £ and study the ordering on E(®) induced by the requirement that the
expected Bayes risk from &, be not greater than that from &, for every decision
problem involving 6. In this case, we will say that &, is at least as informative as
& with respect to the prior distribution £.

If &y is at least as informative as &, for a fixed decision problem, then every
experimenter interested in that decision problem will prefer & x to &y since any
risk function that can be attained from &, can be matched or dominated by one
from &y . On the other hand, if & is at least as informative as &, with respect to a
prior distribution £, then an experimenter with prior distribution £ on © will prefer
by to &y regardless of his decision problem. We shall now give an example to
illustrate this concept.

EXAMPLE 2. Let ¢; > ¢, > 0 be given constants and for i = 1, 2, let X, denote a
random variable with the normal distribution N(p, 0?/c?). Suppose that the prior
distribution of ( , 0) is concentrated on just two points such that Pr[(u, 6) = (0, 1)]
= ¢ and Pr(y, 0) = (g, 69)] = 1 — £ where 0 < £ < 1, g, and y, are known and
arbitrary. It follows from Bradt and Karlin (1956) that when the parameter space is
regarded as containing just these two points, N,(p, 0%/c?) is sufficient for
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Ny(u, 6*/¢), and therefore N,(p, 6*/c?) > N,(p, 0*/c2). Hence N,(p, 6*/c}) is
more informative than N,(u, 62/ c2) with respect to this prior distribution.

Torgersen (1976, Theorem 1) shows that if ® is countable, then the partial
ordering of experiments with respect to a given prior distribution £ such that
£(0) > 0 for each § € O is equivalent to the usual sufficiency partial ordering > .
However, the concept of relative informativeness with respect to a prior distribu-
tion £ is especially useful when the parameter @ is vector valued, 8 = (8,, 0,), and
the experimenter is interested only in @,; i.e., 0, is a nuisance parameter. For
example, in the experiment & *(c) defined in Section 4, corresponding to the pdf
(¢/0)fl(c/0)(x — )], the decision problems of interest may involve only p or only
0. A detailed discussion on the elimination of nuisance parameters in the frame-
work of classical statistical inference is given by Basu (1977). For a given prior
distribution, £(0,, 8,) = £,(0,)£,(0,]0,), a Bayesian statistician who is interested only
in @,, because the loss depends only on 0,, will eliminate 0, from the analysis and
use the prior pdf £,(0,) together with the conditional pdf
(5.1) g(x|0,) = fezP(xlob 0,)d£,(6,10,).

Consider a particular decision problem with® = {0 = (0,, 6,)|0, € 6,, 0, € 0,}
and a given class D of all possible decisions d, and let /(8, d) denote the loss
incurred from any decision d € D when @ € O is true. We shall say that the
decision problem involves only 0, if, for every pair (8,, ),

(5.2) 1[(8,, 0,),d] = I[(6,, 03), d] forall 03 €0,,

i.e., / depends only on the value of 8, and the value of d, and not on the value of 0,.
For such decision problems, we now present a natural and useful concept of
marginal Bayesian sufficiency with respect to a given prior distribution £(8;, 6,).

DEFINITION. The experiment &, is marginally sufficient for &, denoted by
&y > &4(0,), with respect to the prior distribution £(8,, 8,) if the expected Bayes
risk from &, is not greater than that from &, for every decision problem involving
only 8,, when the prior distribution is £(8,, 6,).

For each 6, € @, let G, denote the distribution on Sy represented by the
conditional pdf given by (5.1), and let H, denote the analogous distribution on Sy.
Also, let & = {X, Sy; Gy, 0, € ©,} and &3 = (Y, Sy; Hy, 0, € 0,}. If &3 >
& then it will be true that &, > &,(0,) with respect to any prior distribution £*
that yields the same conditional distribution £,(6,|0,) as £. In this case, we shall say
that &, > &,(0,) with respect to the conditional prior distribution £,(8,|0,).

We shall now give some examples of marginal Bayesian sufficiency.

ExampLE 3. For a given pdf f, let &*(c) denote the experiment defined in
Section 4, and let ¢(¢) = [re™f(u)du. For any joint prior distribution of u and o,
let £,(0) denote the marginal prior distribution of o and let ¢,(¢) = [g°p(t6)d€,(0).
It follows from (5.1) that if p and o are independent under their joint prior
distribution, then g(x|p) is of the form cg*[c(x — p)]. Therefore, if @,(?) is a
self-decomposable characteristic function, then it follows from the result of Stone,
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presented at the beginning of Section 4, that & *(c,) > & *(c,)(p) with respect to
the conditional prior distribution £,(o) for ¢, > ¢, > 0.

In particular, let f(u) be the standard normal pdf and let either (i) the prior
density of 6? be a gamma distribution of the form G(a, B), or (ii) the prior density
of (1/0% be a gamma distribution of the form G(%, B). By carrying out the
analysis indicated in this example, it can be shown that Ny(p, 6*/c)) >
N,(p, 6%/ ¢c,)(p) with respect to both of these conditional prior distributions of o?
given y.

ExamMpLE 4. Letc, > ¢, > 0 be given constants and, for i = 1, 2, let X; denote a
random variable with the normal distribution N[p, 6®/c;]. Suppose that our
interest lies in decision problems involving only 02.‘ If p and o are independent
under their joint prior distribution, and if the marginal distribution of u is a normal
distribution N(m, 72, then it follows that, given ¢, X; is distributed as N[m, ¢*/c}
+ 72). Let W be distributed as N[(1 — ¢,/c)m, (1 — (c3/c}))7*] independently of
X,. Then it can be verified that (c,/c,)X, + W has the same distribution as X, for
every possible value of o2 Hence, N,(u, 6%/c3) = N,(p, 6*/c?)(o?) with respect to
this conditional prior distribution of . In fact, using the joint distribution of X and
S? from a random sample of n observations given ¢ it can be shown that
N,(u, 6%/ c2) = N,(p, 0*/c})(o?) with respect to this conditional prior distribution
of p.

However, if the conditional prior distribution of u given o? is N(m, 62/7%), then
it follows that X; is distributed as N[m, 6*(1/c? + 1/7%)], given o°. Therefore, the
experiments N,(p, 02/c?) and N,(p, 6*/c?) are sufficient for each other with
respect to this conditional prior distribution of p. Furthermore, it can be shown
that the experiments N,(u, 62/c?) and N,(u, 6*>/c?) are sufficient for each other
with respect to this conditional prior distribution of p.

ExampLE 5. For given constants ¢, > ¢, > 0, consider again the normal experi-
ments N,(p, 62/c2), i = 1, 2, and suppose that the joint prior distribution of u and
o? is a conjugate normal-gamma distribution such that the conditional distribution
of p given o? is N[m, 62/7%] and the distribution of (1/¢?) is G(a, B). It follows
from Example 3 that for decision problems involving only o?, the experiments
N,(u, 02/ c?) and N,(p, 6%/ c3) are marginally equivalent with respect to this joint
prior distribution. However, for decision problems involving only g, it is not known
whether one of these experiments is marginally sufficient for the other with respect
to this conjugate joint prior distribution. We can prove, however, that for estimat-
ing any of the functions u, p/0, u/0° po and po® with squared-error loss, the
experiment N,(u, 02/c?) has a smaller expected Bayes risk than the experiment
N, (p, 62/ c2) for this conjugate prior distribution.

ExampLE 6. If a statistic 7(Y) is partially sufficient for the parameter 0,
according to Fraser’s definition (1956), then it can be proved that the experiment
&, in which only T is observed, satisfies &, > &y(0,) with respect to any prior
distribution £(0,, 0,) under which 0, and 0, are independent. For example, if
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Y, - - -, Y, are independent and identically distributed with a gamma distribution
G(a, B), then T = Z1Y; is partially sufficient for 8 in Fraser’s sense and, therefore,
&1 = &y(B) with respect to any prior distribution for which a and 8 are indepen-
dent.
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