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TIME SERIES PREDICTION FUNCTIONS BASED ON IMPRECISE
OBSERVATIONS

By LAWRENCE PEELE! AND GEORGE KIMELDORF?
0ld Dominion University and University of Texas at Dallas

Let T C I be sets of real numbers. Let { Y(#) : t € I} be a real time series
whose covariance kernel is assumed known and positive definite. The mean is
assumed either to be known or to be an unknown member of a known class of
functions on I. For each fixed s € I, Y(s) is predicted by a minimum mean
square error unbiased linear predictor Y(s) based on (¥(#): ¢ € T}. If y(s) is
the evaluation of Y(s) given that the sample path for {Y(¢):t € T} is an
unknown element of a known collection of functions on 7, then y(s) is a
prediction for Y(s) and the function y is called a prediction function. Mean-
estimation functions are defined similarly. For certain prediction problems
based on imprecise observations, characterizations are obtained for these func-
tions in terms of the covariance structure of the process. For a particular
prediction problem y is shown to be a spline function interpolating a convex set.

1. Introduction. Let I denote a set of real numbers and let {Y(¢) : 1 € I} be a
real time series of the form

(L.1) Y(#) = my(1) + X(2),

where { X(#)} has mean 0 and known positive definite covariance kernel k given by
k(s, t) = E[X(s)X(?)]. The mean function m, for {¥(¢)} is assumed either to be
known or to be an unknown member of a known class M of functions on /. Given
any subset T of I, let L[Y(¢) : ¢t € T] denote the vector space of finite linear
combinations of elements of { Y(¢) : ¢+ € T} with inner product given by <U, V')
= Cov(U, V). Denote the completion of this inner-product space by L{Y(¢) : t €
T), so that LY Y(¢) : t € T] is the Hilbert space generated by { Y(¢) : # € T} with
inner product determined by <{Y(s), Y(¢)> = k(s, ?).

For each s € I let Y(s) be predicted by an element Y(s) € L{Y(?): ¢t € T).
Suppose that the sample path for { Y(¢) : ¢t € T} is not known, but it is known that
the sample path belongs to a certain known collection of functions on 7. An
evaluation y(s) for ?(s) is made by choosing a statistically likely sample path for
{Y(?) : t € T} and then evaluating ¥(s) based on the chosen sample path. Thus,
Y(s) is a prediction for Y(s), and the function y is called a prediction function.
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802 LAWRENCE PEELE AND GEORGE KIMELDORF

If the mean function mj, is unknown, then for each s € I, my(s) is estimated by
an element Z(s) € L Y(¢) : t € T). An evaluation 2(s) for 2(s) is made, and the
function Z is called a mean-estimation function.

Consider the case when T = {¢,¢, - ,¢t}. Let Y =
[Y(2), Y(8), - - -, Y(¢,)). Let S C R" and suppose that S is observed in the sense
that it is observed that Y € S. So, although the actual value A° of Y is not
observed, it is observed that Y € S. For example, rather than observing Y(#)
directly, we might be able to observe only the greatest integer that is less than or
equal to Y(#). On the other hand, if S consists of a single n-vector, t}len this type of
observation reduces to the usual precise observation. Let A = [A;, A, - - - , A,] be
an estimate for A’. If, for each s € I, Y(s) is predicted by a random variable
27216(5) Y(2), then the function y defined by

(1.2) P(s) =Z1_6()h,  for sET

is a prediction function. Similarly if, for each s € I, m(s) is estimated by a random
variable 27_,d(s) Y(¢), then the function 7 defined by

(1.3) #(s) =3 d(s)\, for seI

is called a mean-estimation function.

In this paper prediction functions and mean-estimation functions based on
imprecise observations are characterized in terms of the reproducing kernel Hilbert
space (RKHS) with reproducing kernel k. Certain prediction functions based on
imprecise observations are shown to be types of spline functions; for example, one
prediction function is a spline function interpolating a convex set.

2. Preliminaries and notation. For fixed s € I, a random variable f(s) is
called a minimum mean square error unbiased linear (MEUL) predictor for Y(s) if
among random variables W satisfying the conditions

2.1) unbiasedness: E, (W) = m(s) forall m e M,
(2.2) linearity: W € L*[Y(¢):t € T],

the minimum of E[W — Y(s)]* occurs when W = ?(s). Similarly, a random
variable 2(s) is called a minimum variance unbiased linear (MVUL) estimator for
my(s) if 2(s) is a random variable W which has minimal variance among random
variables W satisfying (2.1) and (2.2). -

Let I be an interval on the real line and £ be a gth order linear differential
operator of the form

(2.3) £ =S9_,a%,

where the functions ay, a;, * * *, a, on I have g continuous derivatives. A function
g is called an L-spline of interpolation to a set of points {(¢,, A)),
(3 Ay, - -, (1, A,)} if, among functions g in a certain class (depending on £) of
functions on I, § minimizes

[1[(Bg)(1)]? at
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subject to the constraints
)=k for j=1,2---,n

Let I be a set of real numbers. Each nonnegative definite kernel k* on I X I is
the reproducing kernel for a unique RKHS which will be denoted H(k*). Let
k*(-, t) denote the element of H(k*) given by [k*(-, ?)](s) = k*(s, ¢) for s € I. For
T C I,let L[k*(-, t) : t € T] denote the collection of finite linear combinations of
elements of {k*(-,?) :t € T}, and let L}[k*(-, ¢) : t € T] denote the closure of
Llk*(-, t) : t € T]in H(k*).

3. Background material. Previous papers on prediction functions have
assumed that observations are precise. Kimeldorf and Wahba (1970a) showed that
for a particular type of Gaussian time series with known mean, a prediction
function, with prediction based on conditional expectation, is a particular type of £
spline. For a particular time series prediction problem with unknown mean,
Kimeldorf and Wahba (1970b) showed that an MEUL prediction function is an £
spline. Peele and Kimeldorf (1977) extended the results of Kimeldorf and Wahba
(1970b) and characterized mean-estimation functions for certain estimation prob-
lems. The following generalization by Peele and Kimeldorf (1977) of a lemma of
Kimeldorf and Wahba (1970b) will be used in the present paper.

LemMMA 3.1. Let H= H, ® H, be the direct orthogonal sum of real Hilbert
spaces H, and H,. Let P; be the projection operator onto H, and J be a closed
subspace of H such that P,(J) = H,. Then for any given elements, w, i € H:

(@) there exists a unique element w = W € J which minimizes ||\W — w|* subject

to the constraint P\(W — w) = 0;
(b) there exists a unique element u = &t € H for which ||Py(w)||* is minimized
among elements u satisfying it — u € J*;

©) <a,w) =<, w).

4. Prediction with known mean. Suppose that {Y(¢) : t € I} has the model
(1.1) with my(r) = 0; that is, M consists only of the zero function. Suppose for
some S C R" it is observed that Y € S. That is, the n-vector value A° taken on by

the mean-zero n-vector Y is an unknown member of the known set S. Let
K = [k(#, t)],x, and suppose that there exists an element A € S minimizing

(4.1) NKTIA
for A € S. Statistical justification for estimating A° by an element A € S which

minimizes (4.1) for A € § is provided by Lemma 4.1 and Lemma 4.2.
The following result is well known.

Lemma 4.1.  If Y is multivariate normal with mean zero and covariance matrix K,
then an n-vector A minimizes (4.1) for A € S if and only if A maximizes the likelihood
function for A € S.

Now suppose that Z = [Z,, Z,, - - - , Z,]' is an n-vector of orthonormal, mean-
zero random variables and Z is not necessarily multivariate normal. If Z is known



804 LAWRENCE PEELE AND GEORGE KIMELDORF

to have taken on some unknown vector value B° in a known subset S of R”, then
an intuitively appealing estimate for B° is any n-vector ﬁ € S minimizing E(Z —
BY(Z — B) = =)= E(Z, — B for B=[B,, By~ - -, BY € S. Equivalently, f° is
estimated by an n-vector B € S minimizing 27_, ,81.2 for B € S.

Let 9 be a one-to-one linear operator from R” onto R". Observing that Y € S is
equivalent to observing that the random vector J(Y) € J(S).

LEMMA 4.2. An n-vector A minimizes (4.1) for A € S if and only if for each
one-to-one linear operator § on R" such that (Y) is an n-vector of orthonormal
random variables, X minimizes E(F(Y) — SA)Y(T(Y) — I(A)) for A € S.

Proor. Each one-to-one linear operator § from R” to R" corresponds to a
unique n X n nonsingular matrix Gg in that I(A) = GgA for all A € R". It can be
easily seen that, for any nonsingular matrix G, the covariance matrix for the
n-vector GY of random variables is GKG’. Hence, the random variables in the
n-vector GY are orthonormal if and only if GKG’ = I, or, equivalently, G'G =
K ~'. Hence, if 9 is a one-to-one operator from R” to R", then 9(Y) is an n-vector
of orthonormal random variables if and only if the matrix Gg satisfies G5Gq =
K ~'. Hence, if 9(Y) is an n-vector of orthonormal random variables, then it
follows that for A € R",

(T (TA) = (GsA)(Gad)
=XNG5GgA
=XNK7'A

Thus, in view of Lemma 4.1 and Lemma 4.2, the unknown vector A% will be
estimated by a vector A which minimizes (4.1) for A € S if such a minimizing
vector exists.

THEOREM 4.1. Let {Y(¢) : t € I} have the model (1.1) with my = 0. For fixed
t €1, let 35_,6()Y () be a random variable W minimizing E(W — Y(2))* for
W € L[Y(t), Y(t,), - - -, Y(2,)]. Suppose that for some S C R", it is observed that
Y € S. If there exists A € S which minimizes (4.1) for X € S, then the prediction
function y, given by (1.2), minimizes

ly “2H(k)
among all functions satisfying

(@ y € H(k)
and

®) [y y(0), - -, y@)) €S.

ProoF. Let J = L[k(:, ), k(-, ty), - - -, k(-,t,)]. Let H, = {0} and H = H,
= H(k). Note that H(k) is isometric to L Y(?):¢ € I] and J is isometric to
L{Y(¢), Y(1), - - -, Y(2,)] under the mapping taking k(-, f) to Y(¢). Now apply
Lemma 3.1 as follows. Let A € R™. If ¢ = K ', then u, = Z]_,¢;k(-, 1) satisfies
u() = A forj=1,2,- - -, n. It can be easily seen that u, is the unique function

of minimal norm among those functions u € H(k) satisfying u(z) = A; for j =
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1,2, - -, n. Furthermore, [u,]*> = (K 'AYK(K~'A) = NK~'A. Hence, it re-
mains only to show that y = u;. For fixed ¢ € I, 27-16(0Y () is the unique
random variable P,(Y(?)) where Q = L[Y(¢), Y(t,),- - -, Y(t,)]. Note that
25 G(Dk(-, 1) = Py(k(-, t)). Let W = k(-, t) and & = uj. It follows from Lemma
3.1 in the manner of Kimeldorf and Wahba (1970b) that W = 2516(Dk(-, 1),
4 =1 = u3 and
2() = 252,60k

= 27..16(0<a, k(- 1))

= i, .60k (-, )

=<a, w)

=4, w)

= ug, k(-5 1))

= u;‘(t).

REMARK 4.0. If {Y(¢) : ¢t € I} is Gaussian, then for fixed ¢ € I, the Theorem
4.1 prediction y(¢) = 2}=lc“j(t)}:j for Y(¢) is the maximum likelihood prediction for
Y(t) based on Y € S. That is, y(¢f) maximizes the joint density of
[Y(2), Y(2),- - -, Y(2,)] subject to [Y(¢)), Y(¢,),- - -, Y(¢)] € S.

REMARK 4.1. If S is a closed subset of R”, then there exists an n-vector A
minimizing (4.1) for A € S. If S is also convex, then A is the unique n-vector
minimizing (4.1) for A € S. If the hypotheses of Theorem 4.1 are satisfied and if
there exists a unique n-vector A minimizing (4.1) for A € S, then the prediction
function y of Theorem 4.1 is the unique function y minimizing || y}ﬁ,(k) among the
functions satisfying (a) and (b) of Theorem 4.1.

In the following example the prediction problem examined by Kimeldorf and
Wahba (1970a) is altered by assuming that observations are imprecise rather than

precise.

ExaMpLE 4.1. Let £ be of the form (2.3). Let H, denote {f: f € L*(— o0, 0),
?-!f is absolutely continuous on compact subintervals of (—oco, c0) and £
f € L (— o0, 0)}. Let {Y(¢) : t € (— o0, )} be a Gaussian process with mean
zero and covariance kernel k where k satisfies { f € H(k)} = H, and £ maps H(k)
isometrically onto L?*(— co, o0). (See Kimeldorf and Wahba (1970a) for details.)
Suppose that the values of Y(¢)), Y(¢,), - - -, Y(z,) are not known precisely but for
some S C R, it is observed that Y € S. Suppose that S is a closed subset of R";
hence, there exists A € S minimizing (4.1) for A € S. Since the process is Gaussian,
it follows from Lemma 4.1 that A is a maximum likelihood estimate for the
unknown vector value A° of Y. For ¢ € (— o0, 0), let

2560 Y(4) = E[Y()Y(1), Y(1p), - - -, Y(1,)],
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and let
() = 16O,

Then the conditional expectation prediction function y is an £-spline of interpola-
tion to S. That is, y minimizes [*_[(Sy)(¢)]* dt among functions satisfying y € H,

and [)’(tl)’y(tﬁ’ U ’y(tn)]l € S.

ReEMARK 4.1. If, in the previous example, there exists a unique element A
minimizing (4.1) for A € S, then the conditional expectation prediction function y
is the unique £-spline of interpolation to the set S.

REMARK 4.2. Suppose that the mean function m;, for the process {Y(¢) : t € 1}
is assumed to be known, but it is not assumed that my(f) = 0. A prediction
function can be constructed and characterized for this process; the construction
and characterization correspond to the special case M = {my,} of Section 6.

5. Unbiased linear prediction and mean estimation. In this section, {Y(¢) : ¢t €
I} is assumed to have the model (1.1) where M is a finite-dimensional linear space
of functions on I. Let M, = M N H(k) and let M, satisfy M, N M, = {0} and
M +M,=M. Let {f,:i=12,---,q} be a basis for M,, and let k,(s, t) =
1o f(s)f(2). Let kyg=k, + k. Then {f:f € H(k\)} = M, and H(k,) is the
orthogonal sum of H(k,) and H(k). For elements ¢, ¢,,-- - ,t, of I, let J, =
Llko(-, ) :j=1,2,---,n] Let Y =[Y(), Y(),- - -, Y(¢,)] and X =
[X(2), X(t,), - - -, X(¢,)]. For each m € M, let m = [m(z,)), m(ty), - - -, m(¢t,)].
Let M = {m = [m(t,), m(t,), - - -, m(¢,)] : m € M}. Note that observing that Y
€ S, given the knowledge that m, is an unknown element of M, is equivalent to
observing that X € S — M. The procedure for estimating the n-vector A° of values
taken on by Y will be not to estimate A° directly, but to estimate the unknown
n-vector A’ — m,, of values taken on by X in the manner of Section 4.

The condition

(5.1) Py(J) =M

is equivalent to the condition that, for each ¢ € I, there exists an unbiased linear
predictor for Y(z). Also, (5.1) implies that each element of M corresponds to a
unique element of M. As before, lAet K = [k(#, t)],x, Suppose the sets S and M
are such that there exist elements A € S and h € M minimizing

(52) (A — m)’K (A — m)

for A € S and m € M. Then A — i estimates the unknown value A° — m, taken
on by X, and A estimates A°.

THEOREM 5.1. Let {Y(?) : t € I} have the model (1.1) where M is a finite-dimen-
sional linear space of functions on 1. Suppose that it is observed that Y € S,
equivalently, it is observed that X € S — M. Assume that (5.1) is satisfied. For fixed
tel let Y(t) = 25160 Y () be the MEUL predictor for Y(t). If there exist
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elements A € S and 2 € M that minimize (5.2) for A € S and m €M, then the
MEUL prediction function y given by (1.2) minimizes

| Pag () aaho)
among functions satisfying
(@ y € H(ky)
(b) [y(tl)’y(t2)> T ’y(tn)]' € S.

ProoF. For fixed t € I, if W = ko(-, £), H = H(ky), H = M, and H, = M,
then an application of Lemma 3.1 yields an element W = X7_,6;(1)k(*, ¢,) such that
27.16(0Y () is the unique MEUL predictor for Y(#). For any n-vector A =
A Ay - - -, A € R, it follows from Theorem 3.1 of Peele and Kimeldorf (1977)
that the function #,, where #,(¢¥) = 27_,6(H)A; for ¢ € I, is the unique function
u € H(ky) minimizing ||P,.(u)|> subject to the condition u(z) =X\ for j =
1,2, - -, n It follows from (5.10) of Peele and Kimeldorf (1977) that P,,.(i,) is
of the form X7_,ck(:,t). Hence if m, = Py(d,), then | Parc(@I> = (A —
m,)’ K ~'(A — m,). It now follows from the minimizing properties of #, that

| Pag ()| = ming cp(A — m)’K~'(A — m).

Since y = 4y, the theorem follows.
REMARK 5.0. A special case of Theorem 5.1 is considered by Wahba [4].

REMARK 5.1.  If the hypotheses of Theorem 5.1 are satisfied and if the elements
A and @ are the unique elements minimizing (5.2), then the MEUL prediction
function y of Theorem 5.1 is the unique function y minimizing || P, .(»)||* subject
to constraints (a) and (b).

REMARK 5.2. If S is a closed and bounded subset of R", then S — M is closed
and, consequently, there exist elements Aesand heM minimizing (5.2) for
A€ Sand m € M. If S is a closed subset of R" and if S and M are orthogonal
with respect to the Hilbert space R", then S — M is closed and there exist elements
A € S and i € M minimizing (5.2) for A € S and m € M.

REMARK 5.3. If S is a closed, convex, bounded subset of R” andif M N {s = s,
—5,:5 €S,5, € S} = {0}, then there exist unique elements A € S and i € M
minimizing (5.2) for A € S and m € M. If S is a closed, convex subset of R” such
that S and M are orthogonal subsets of R", then there exist unique elements Aes
and M € M minimizing (5.2) for A € S and m € M.

EXAMPLE 5.1. Let £ be of the form (2.3). Let H, = {f: D?"!f is absolutely
continuous and Lf € L0, 1]}, and let {f, :i=1,2,- - -, g} be a basis for the
null space of £. Let M be the null space of £. Let k be such that { f € H(k)} =
{(f€EH,:(Df)0)=0fori=0,1,---,q— 1}, and £ maps H(k) isometrically
onto L0, 1]. (See Kimeldorf and Wahba (1970b) for details.) Suppose that



808 LAWRENCE PEELE AND GEORGE KIMELDORF

{Y(¢) : t €[0, 1]} has the model (1.1) with the above k and M, and let T =
{t;, 6 -+ + 5 1,3 €0, 1] satisfy rank [fi($)lgxn = 4- (This matrix condition is
equivalent to condition (5.1).) Suppose that for some S C R, it is observed that
Y € S where Y = [Y(2), Y(tp), - - -, Y(2,)]. If there exist elements A € S and
fa € M that minimize (5.2) for A € S and m € M, then the MEUL prediction
function y of Theorem 5.1 is an £-spline of interpolation to S. That is, y minimizes
[Y(Cy)(®F dt among functions y satisfying y € H, and [y(1)), y(%), - -+ » Y@l
€ S.

REMARK 5.4. If, in Example 5.1, the elements X and i are the unique elements
of S and M that minimize (5.2), then the MEUL prediction function y is the unique
£ -spline of interpolation to S.

THEOREM 5.2. Suppose that the hypotheses of Theorem 5.1 are satisfied. For fixed
t €1 let 2(t) = ;?=1cfj(t) Y(t) be the MVUL e;'stir{latar for my(t). Then the MVUL
mean-estimation function %, where Z(t) = Z}_,d(OA; for t € 1, is P,(y) where y is
the MEUL prediction function of Theorem 5.1.

Proor. The proof is an immediate consequence of Theorem 3.2 of Peele and
Kimeldorf (1977) and Theorem 5.1.

REMARK 5.5. Let A° € R”. Since A° — M is closed and convex, there exists a
unique element m € M minimizing (5.2) form € M. Suppose that (5.1) is satisfied.
It can be seen that the unique element m = M € M satisfying
[m(t,), m(t,), - - - , m(z,)] = i is the MVUL mean-estimation function Z of Theo-
rem 3.2 of Peele and Kimeldorf (1977).

6. Biased prediction functions. In previous prediction problems with an un-
known mean function, M was a linear space and unbiased linear prediction was
possible. Suppose now that the process has the model (1.1) with M assumed only to
be a set of functions on I such that the linear span of M is finite-dimensional.
Suppose that unbiased linear prediction is not possible. As before let #,, 1, - * - , £,
be distinct elements of 7, and let M = {[m(¢)), m(ty), - - - , m(t,)] : m € M }.

Suppose it is observed that Y € S, or, equivalently, it is observed that X € § —
M. If there exist elements A € S and f € M minimizing (5.2) for A € S and

m € M, then any element /1 € M satisfying [#(2)), i(ty), « - -, m(2,)] = f is as
good an estimate for m, as any. Let W = Z5_,6(0)X(¢) minimize E(W — (0%
for W € L[X(1,), X(t,), - - + , X(z,)]. Given that Y is observed to be in S, the

random variable l?(t) = (1) + 27_16(DX (1) is a predictor for Y(¢), and the
function y where

(6.1) #(0) = m(e) + 2,6 (0)R — M(b))

is a prediction function.

THEOREM 6.1. Let {Y(f):t € I} have the model (1.1) where M is a set of
functions on I. For fixed t € I, let £}_ () X() be a random variable W minimizing
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E(W — X(0))? for W € L[X(t)), X(t,), - - * , X(t,)]. Suppose that for some S C R",
Y € S is observed. If there exists an element i € M and an element A € S such
that fa and A minimize (5.2) for m € M and A € S, then the prediction function y
given by (6.1) satisfies

17 = Al < Iy — mlyw

for all functions y € M + H(k) and m € M satisfying
(@ y—me H(k)

and

®) @D y(1), - - -, y(@)] € S.

PrROOF. Let A=[A, Ay - - -, A) €R" For t €1, let u(£) = Zj_ (DN,
Hence #, is the unique element of H(k) of minimal norm among functions
interpolating the points (¢, A)), (Z5, A,), - -« , (t,, A,). It follows that y — m € H(k)
and y € M + H(k). Condition (b) follows from (6.1). The theorem follows from
the observation that for A € R", i, = Z7_,¢k(-, 1) where ¢ =[c, ¢, - - -, ¢,]

satisfies K¢ = A and hence ||i,]|*> = ¢’Ke = (K TN)K(K~']A) = NK A

REMARK 6.1. Let S = {A°} for some A° € R”, and let M be a finite-dimen-
sional linear space of functions on /. Since A% — M is a closed, convex subset of
R", there exists a unique element m € M which minimizes (5.2) for m € M. Let &,
be defined as in Section 5. If condition (5.1) is satisfied, then for each ¢ € I there
exists an unbiased linear predictor for Y(f) and the prediction function y of
Theorem 6.1 is the same as the MEUL prediction function of Theorem 3.1 of Peele
and Kimeldorf (1977). If condition (5.1) is not satisfied, then unbiased linear
prediction for Y(¢) for all # € I is not possible. Also the prediction function y of
Theorem 6.1 will not be unique if condition (5.1) is not satisfied since there will
exist a nonzero element m € M such that m is the zero n-vector.

ExaMpLE 6.1. Suppose that the prediction problem of Kimeldorf and Wahba
(1970b) is altered by assuming that rank [f(#)],x, <¢; so, unbiased linear
prediction is not possible. It follows from Remark 6.1 that the prediction function
of Theorem 6.1 is a nonunique £-spline of interpolation to the points {(¢, A) : j =
1,2,---,n}.

7. Infinitely many imprecise observations. Let {Y(¢) : # € I} have the model
(1.1) with mean zero. A new look at the prediction problem examined in Section 4
provides a method for predicting with infinitely many imprecise observations. In
Section 4 it is assumed that T = {¢, ¢, - - ,t,}, and Y =
[Y(#), Y(2), - - -, Y(¢,)] is observed to be in some known set .S of n-vectors. The
unknown value A° of Y is estimated by a vector A that minimizes A’K ~'A for
AES. Let uy = =7 ,¢k(-, 1) where ¢ = K~ 'A and [c}, ¢5,- - -, ¢, = ¢. Then
uy € H(k), uy(t) = A, for j=1,2,- - -, n, and |[lu,||> = NK~'A. Let k. be the
restriction of the function k on 7 X I to the set T X T. Then k(-, ) is a function
on 7, and the function uy r on T defined by u, r = 27_,cikr(, ;) satisfies
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uyr € H(kp), up (t) =N for j=1,2,---,n and |u, 7l = VKA
Hence, observing that Y € § is equivalent to observmg that the sample function
for {Y(f) : t € T} is in the set s where s = {f € H(ky) : [ f(8)), f(£), - f(t )

€ S}, and choosing A to minimize X’K ~'A for A € S is equivalent to choosmg fto
minimize || |/ for f € s.

For the case when T contains infinitely many elements, the natural extension of
the previous procedure is to assume that the sample function for {Y(¢) : t € T} is
known to belong to a known subset s of H(k;) such that there exists f € s which
minimizes || f||3 Heky fOr f € 5. Consider the case when T is a sequence {f;}72,. Let
{Y} 721 be the Grgm-Schdet orthonormalization of {Y(#)}72,; that is, for a
positive integer n, Y, Y,/||Y,|| where

= Y(z,) — 22 KY(L), Y)Y,

Hence, {}7!.};"_1 is an orthonormal basis for L[Y(?) : t € T). Let f € H(k,), and
let F be the isometric image in LY Y(¢) : t € T] of f under the isometry taking
kr(-, t;) to Y(#). Then f is the sample function for { Y(¢) : ¢t € T} if and only if for
each positive integer n, Y(t,) = f(¢,) = {f, kr(-, t,))> = {F, Y(t,)). Equivalently, f
is the sample function for {Y(t) t e T} if and only if for each positive integer n,
Y, =(F, Y,). Since F= j=1<F, )’}}Y. and IlfllH(kT) = ||F|)? it follows that
IIf || H(kp 18 the sum j_,<F Y> of the squares of the values of the sequence
(Y, :}7=1 of orthonormal random variables. Thus, estlmatmg the sample function for
{Y(t) t € T} by a function f which minimizes ||f]3 Hkyy for f € s is justified
statistically. For W € LY Y(¢) : t € T}, if w is the isometric image in H(k;) of W
under the usual isometry, then it follows from the previous sentence and the
paragraph immediately preceding Theorem 5.1 of Peele and Kimeldorf (1977) that
{f, W) Hk,) estimates W. For fixed ¢ € 1, let Y(t) € LY Y(t) t € T] be a predictor
for Y(¢), and let w, be the isometric image in H(ky) of Y(t) Then the function y
defined by

(7.1) () = {4, WD H(kr) for t€1
is a prediction function.

THEOREM 7.1. Let {Y(t) : t € I} have the model (1.1) with my=0. Let T =
{t;}52,. For fixed t € I, let ?(t) be a random variable W minimizing E(W — Y(¢))?
for W € L{Y(¢) : t € T]. Suppose that the sample function for {Y(:te T} is
known to belong to a known subset s of H(ky), and suppose that f minimizes || f|| Hikr)
for f € s. The prediction function y given by (1.1) minimizes

ly ||31(k)
among functions satisfying
(@ y € H(k)
and

® yres
where yr is the restriction to T of y.
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ProOF. LetJ = LAk(-,1):t € T]. Then L}k,(-, t) : t € T] is isometric to J
under the linear mapping & that takes k;(-, #) to k(-, ¢) for each ¢t € T, and the
quantity {f, W, DHyy Of (7.1) is equal to (F(f), F(W) )y For f € LAk(-,0): t
€ T}, 9(f) is the unique function u € H(k) that minimizes ||u|* subject to the
constraints u(f) = f(¢) for ¢t € T. Since [|F (Nl gy = I fll rayy F( f) satisfies the
conditions of the theorem. It remains only to show that the prediction function y is
the function %( f) For fixed ¢t € I, let w = k(-, ). Now apply Lemma 3.1 with
u= GJ(f), H, = {0}, and H = H, = H(k). The function # of Lemma 3.1 is # and
the isometric image in H(k) of Y(¢) is w. Since y(¢) = {f, WD oy a0d W = F (W), it
follows that

2(0) = <F(F), > aq
= (i, ‘0>H(k)
= (4, W>H(k)
= (@(f), k(s 0)D b
=[%(F)]®.
Hence, y = %(f) and the theorem follows.

ExampLE 7.1. Let £ be the derivative operator. If Example 5.1 of Kimeldorf
and Peele (1977) is altered to fit the hypotheses of Theorem 7.1, then the prediction
function  of Theorem 7.1 will minimize [J[(Sy)(¢)]* d¢ among functions y satisfy-
ing y € H, and constraint (b) of Theorem 7.1.
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