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CONDITIONAL PROPERTIES OF STATISTICAL PROCEDURES
FOR LOCATION AND SCALE PARAMETERS

By G. K. ROBINSON
University of Sheffield

A systematic investigation of the conditional properties of statistical proce-
dures for location and scale parameters is commenced. These conditional
properties are compared with the known admissibility properties of point
estimators in the same situations.

1. Imtroduction. This paper may be viewed as being a continuation of Robin-
son (1979). The definitions and notation are the same as that paper. This paper
investigates the conditional properties of some statistical procedures for location
and scale parameters more for the purpose of investigating the nature of the
conditional properties than for passing judgement on the statistical procedures.

The main reason for choosing location and scale parameter problems is that
many admissibility results are known for them. A review of these appears in Zacks
(1971). The ones which the reader needs to be familiar with are

(1) The multidimensional mean is admissible as an estimator of the mean of a
multivariate normal population for one and for two dimensions but inadmissible
for three or more dimensions.

(2) When we have n independent observations on a normal population with
unknown mean and unknown variance, o2, the minimum-mean-squared-error
equivariant estimator of o2,

1

\2
n+12(x,~—x)

is inadmissible. This was shown by Stein (1964). These two results remain true with
assumptions weaker than normality. We shall investigate conditional properties
which may be compared with these admissibility properties.

Many of the estimators discussed in this paper will be described as being Pitman
estimators. By a Pitman interval estimator we mean one where the confidence
function may be derived using an appropriate improper prior (uniform for location
parameters, density § ! for a scale parameter #) and Bayes’ theorem. As discussed
by Pitman (1938), for confidence sets which are as in Fisher’s and Neyman’s
theories these posterior confidence levels agree numerically with those theories. By
a Pitman point estimator we mean the Bayesian posterior expectation of a parame-
ter based upon a uniform prior if the parameter is a location parameter or a 8 ~2
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CONDITIONAL PROPERTIES FOR PARAMETERS 757

prior density for a scale parameter §. The symbol y will be used to denote an
ancillary statistic, and Y will denote the space of its possible values.

2. Relevant betting procedures for Pitman interval estimators for location param-
eters. Buehler (1959) proved that Pitman estimators based on one observation on
a location parameter family of distributions do not allow the existence of relevant
subsets, provided that a single moment exists. Stein (1961) extended this result to
the case of a single p-dimensional observation depending on a p-dimensional
location parameter, but he required the existence of p + 1 moments for his proof.
Both these results avoid the problems which ancillary statistics seem to bring. In
this section we show that no moment condition is necessary to prove Stein’s result.
When several observations are made, relevant betting procedures may exist (an
example is given for two observations on a distribution whose first moment does
not exist) but a moment condition is sufficient to ensure the nonexistence of
relevant betting procedures.

It should be remembered that every scale parameter family of distributions can
be transformed into a location parameter family by a logarithmic transformation.
Thus an improper Bayesian interval estimator for a scale parameter 4 based upon a
#~! improper prior density is equivalent to a Pitman interval estimator for a
location parameter, so the results of this section are applicable. For point estima-
tion the situation is more complicated as we shall see in Section 4.

ProposiTiON 2.1. Suppose X = (X, X5, - -, X,) is a vector-valued random
variable with probability density f(x — 0) depending upon a location parameter
0=(0,,0,---,8,). Provided

a(x) = fl(x)f(x - 0) do’

there is no relevant betting procedure for the interval estimator {I(x), a(x)).

REMARK. It is sufficient to prove that there can be no positively biased relevant
selection for any interval estimator of the type described in the proposition. If a
relevant betting procedure, s(x), exists for the interval estimator <{/(x), a(x)> then
the selection k(x) is positively biased relevant for <{J(x), B(x))> where k(x) = s(x),
J(x) = I(x) and B(x) = a(x) if s(x) > 0 while k(x) = — s(x), J(xX) = O\ I(x), the
complement of the set /(x), and B(x) = 1 — a(x) if s(x) < 0. This argument is also
used in the proofs of Propositions 2.2, 2.3 and 3.1.

PROOF OF PROPOSITION 2.1. Suppose that a positively biased relevant betting
procedure does exist for {/(x), a(x)), i.e., there is a number ¢ > 0 and a nontrivial
selection k(x) such that

2.1 E[ {xy(0) — a(X) — e}k(X)] >0  forall @.
Clearly & < 1. First, find real numbers 4 and B such that
P[A<X<B|§=0]>1-Ce
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where C = 27773 and the vector symbol A denotes (4, 4, - - - , A). Define D = B
—A.
Fori=1,2,3,- - consider

&) = [ie-(i-1)p, e+ impk(x) ax
as a function of t = (¢}, £, - - -, £,). The function g(t) is bounded and continuous
so there is a point a, such that

(1 + ¢/10)g,(a;) > g(t)  forall t
By (2.1)
22 J;= Jla,—a—iD, a,—A+iD]fo{X1(x)(0) - a(x) — e}f(x — 0)k(x) dx d@ > 0.
Changing the order of integration,
(2.3) Ji = Jx Jla,-a-iD, a,—A+iD]{X1(x)(0) - a(x) — e}f(x — 0) dOk(x) dx.
For x € [a, — (i — 1)D, a, + iD],

f[a,—A—iD,a,—A+iD]{X1(x)(0) —a(x) — e}f(" —0)do
<SCe—e(l —Ce)< —e+2Ce<0

since the region of integration for z = x — 0 contains at least 1 — Ce of the total
probability. Hence the contribution to the integral in (2.3) from this region of X is
less than

(24) g(a)(—¢e +2Ce) < —3eg,(a).
The contribution to the integral in (2.3) from the region
x €[a, — iD,a, + (i + )D] \[a, — (i — 1)D, a, + /D]
is less than the integral of k(x) over the region which is
(25)  fia-iD a+G+npik(x) dx — g(a) < (1+ ¢/10)g;,4(a;,1) — &)
To find a bound to the contribution to the integral in (2.3) from the region
x & [a, — iD, a, + (i + 1)D), divide the region into hypercubes of the form [t, t +

S] where § = (2i + 1)D. Index the hypercubes by a vector n = (n, ny, - - - , n,) s0
that the nth hypercube is

[a; — /D + nS, a; —iD+ (n+1)S].
The contribution to the integral in (2.3) from the nth hypercube is less than
f[a,—ﬂ)+ns, a,—iD+(n+1)s]k(x)f[a,—A—iD, a,—A+iD]f(x —0) do dx
< [la—iD+nS, 8, iD+@+1)s1K(X) dX[ns—2iD+a, @+1)s+a1f(2) 4z
< (1 + ¢/10)g/(a)/(n-1)s+B, @+ns+a1f(2) dz
where, again, z = x — 0. Now

S/ i@-1s+B, @+ns+af(2) dz < 27Ce = §€
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because the summation is a sum of probabilities of regions for z; no more than 27
regions overlap at any point; and no region overlaps the region [A, B] which has
probability at least 1 — Ce. Therefore, the contribution to the integral in (2.3) from
X €& [a;, — iD, a, + (i + 1)D] is not more than
(2.6) %5(1 + ¢/10)g,(a) < %Egi(ai)'

Combining (2.2), (2.3), (2.4), (2.5) and (2.6) we obtain

(1 +¢/10)g;,1(a;4) > (1 + e/4)g,(a)).
Therefore,
gr1(a1) > (1 + ¢/8)g(a);

and, by induction,

(2.7) g@) > (1+¢/8) 'g(a).
However, from its definition,
(28) £(a) < (i + 1)D}".

The nontriviality of k(x) ensures that g,(a;) > 0; so the geometrically increasing
lower bound in (2.7) must exceed the more slowly increasing upper bound in (2.8)
for some large i. This contradiction establishes the result.

2.1. Examples of relevant betting procedures for Pitman interval estimators.
Consider the location parameter family of density functions

f(x16) =3B{1+|x—8)}7"7°
where 0 < B8 < 1 and x and 8 are real. For two observations, x,; and x,, the interval
estimator {(3x, + 3X,, o), 3> is a Pitman interval estimator. However, for arbi-
trary 8 > O there is a number y > 0 such that
(2.9) P[0 >3X, +3X,0 <X, <yX,| <8 forall .

Thus the subset 0 < x, < yx; of the sample space is a negatively biased relevant
subset for this interval estimator and a positively biased relevant subset for the
interval estimator {(— 00, 3X; + 3X,), 3 >

The assertion of the last paragraph is clearly correct when § < 0. To prove it
when @ > O let us define

P, = P[}X, +}1X, <0and 0 < X, <vX,],
P, = P[3X, +3X, >0 and 0 < X, <vX,].

Considering the regions of the sample space of which these are probabilities, it is

clear that

P, < P[0 <X, <20and0 <X, <2v8],
1
2’

and that, provided y <
P, >P[X,>0/yand0 < X, <0].
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Using the formula
P[X =0 >t] =31+

and noting that the probability density of X, is less than 1B(1 + 38)'7#
throughout 0 < X, < 2y provided y < 3:

Po<{1—-(1+6)")}yep(1+18)""""

P,>i1+8/y—-0)F{1-(1+6)").
Hence

P,/P, < 4v8B(1+16)""P(1 + 0/y — 0)°

< 4y0B(1 +10) " P {(1 +10)(1 + 2/7))"

< 8By(1 +2/v)
—-0 as y—-0.

The probability in (2.9) is smaller than P,/ P, so the assertion is proved.

This class of example shows that if only moments of order less than 8 < 1 exist
then there may be relevant betting procedures. The next result shows that the
existence of a first order moment is sufficient to ensure that there are no relevant
betting procedures.

ProposITION 2.2.  If {I(X), a(X)) is a Pitman interval estimator for a real location
parameter, 8, then no relevant betting procedure exists provided that E[|§]] exists
where £ is the Pitman point estimator of 8.

Proor. From Pitman (1938) we see that x can be written as an ordered pair,
(£, ), where £ is the Pitman estimator of # and y is an ancillary statistic. We will
sometimes use alternative notation to take advantage of this: I(§, y) for set
function, a(§, y) for the confidence function, g(§ — 6|y) for the density of £ — 4
given y (it is independent of #) and G(y) for the distribution function of y so that
integrals over all y values are written in the form [, - - - dG(»).

By the remark after Proposition 2.1, we only need to prove that no positively
biased relevant selection exists.

Suppose that for some & > 0 there is a nontrivial selection k(x) = k(¢, y) such
that

(2.10) E[{x;x(0) — a(X) — e}k(X)] >0  forall 6.
If [«k(x) dx is finite, then we can change the order of integration to show that
f@E[ {XI(X)(O) - aX) - f}k(x)] dad
= [ak(X)[o{X100(8) — a(x) — &} f(x]|0) db dx
—efxk(x) dx < 0.

This is in contradiction with (2.10).
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Therefore, we suppose that [ok(x) dx is infinite, and consider
h(R) = %R E[ {xix(8) = a(X) — e} k(X)] db
= J JZk(E 2)/E {Xe0(0) = ald y) — &} g6 — 0]y) df dt dG(y).
Defining A(y) by
(2.11) PLIE = 8] > A()|y] = Le;
and using the bounds
2R {xi(8) — al€,y) — €} g6 — 0]y) db < —1e
(provided e < %)
for |§| <R — A(y);
SR r{Xue(0) — a(§,y) — €} g(¢ — 0]y) db < 1
for R — A(y) < |¢§| < R; and
k(& Zr{Xie0(0) — al&y) — e} 8¢ — 0]y) dB < [ pg(& — 8]y) db
for |¢§] > R; we find that
h(R) < [y/~% R r8(& — 6]y) df dt dG(y)

+/y24(y) dG(y)

+ [ R R k(& )~ 3€) dE dG(y)

+ [y RIZR8(E — 8]y) db dE dG(y).
Now

JZaSErg(E — 0]y) db dt < [ZR [®.g(¢ — 8]y) db dt
= 2els,_ 12 Rg(z]y) du dz
= f"_wlZlg(ZIy) dz

where z = ¢ — f and u =1(¢ + 9).
Similarly,

JRIZR8(E — 0]y) db dE < [2|z]g(z]y) dz.
Therefore,

h(R) < [y[% |z g(z]y) dz dG(y) + (2 + €)[yA(y) dG(y)
—3ely R rk(&, y) d dG(y).
However,
J¥IZlzl8(2]y) dz dG(y) = E[|§ - 6]] < oo
from (2.11)
A(y) < (2/e)E[IE - 0] |y],
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so that

JyA(y) dG(y) < (2/e)E[[§ = 0]] < oo;
but [4k(x) dx is infinite. Hence hA(R) — — o0 as R — oo in contradiction with
(2.10).

For interval estimation of a p-dimensional location parameter, 0, I suspect that
the moment condition necessary to ensure that no relevant betting procedure exists
is either that E[|¢]] exists or that E[|§”] exists where |¢| denotes the norm of the
Pitman estimator, & of 0. It would be of some interest to see how the moment
condition varied with p but this is not very important.

It can be shown that, no matter what the moment condition, any Pitman interval
estimator can be changed so that there are no relevant betting procedures by
altering it to make no conclusion (i.e., to quote either /(x) = ©® and a(x) =1 or
I(x) = ¢ and a(x) = 0) whenever any two observations differ by more than a
preassigned amount. The only result which I have is the following one which
concerns p separate location parameters, not the general p-dimensional situation.

PROPOSITION 2.3. Suppose that we observe X whose distribution depends upon a
vector 0 = (8,,0,,- - -, 8,) of location parameters. Suppose that the situation is
really one of p separate location parameter problems, so that

f& — Oly) = TI7_,g(& — 61»)
where £ = (§, &, - -, §)andy = (V" - s Vp)s where & is the Pitman estima-
tor of 0, and y, is the ancillary statistic containing the remainder of the information in
the observations depending on 6,. The function g(& — 0,|y,) is the density of § — 6,
given y,. Provided E||§ — 0,|F] exists for i = 1,2, - - -, p there is no relevant betting
procedure for any Pitman interval estimator for 0.

PROOF. Suppose that there is a positively biased relevant selection k(x) for
some Pitman interval estimator {I(x), a(x)) so that

(2.12) E[{xi(0) — a(X) — e}k(X)] >0  forall 6.
Define a sequence of unnormalized prior densities

h,(0) = I, (1 + |0i|/m)_2
and calculate the corresponding posterior probabilities that 8 € I(x)

B, (x) = fl(x)hm(o)ﬂlt')=1gi(‘fi — 6]y, d0 '
" -[G)hm(o)H€=lgi(§i - 0;[)’;') do

Using the inequalities
{1+ |x/m]} {1 = @/m)lx — al} < {1 +]a/m|}"?
< {1+ |x/m|} {1 + @/m)|x — a| + (3/m)(x — a)’}
Lol [{1+ @/m)le = 8] + (6/m7)(& — 6)") 86 — 81y) | 46
foll_ [ {1 — (2/m)l& — 8]} &(& — 61y)] 40 '

Bon(X)
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Hence, using the first of the lemmas in the appendix,

Ba(X) < a(®) + 3g[IL_, {1 + /m)[t] + (6/mD)i2} — V]I, g,(¢y,) dt,
this integral contains 3”7 — 1 terms and it will be less than 5‘3 at least whenever
(2.13) 6/m)[= lt]g(t]y) dt, <37Pie for i=1,2---,p;
and
(2.14) (18/m?)[2 t7e(t|y,) dt; < 377e  for i=1,2,---,p.

Now Proposition 2.2 implies the case p = 1 of this result, so we may assume that
P > 2. Since E[|§ — 6,|7] exists, the probabilities (in the probability distribution of
;) that (2.13) and (2.14) are violated must both decrease more rapidly than m 7 as
m — 0.

Define g(m) to be the probability that one of the inequalities (2.13) and (2.14) is
violated for some i. Now B,,(x) < a(x) + %e except with probability g(m), so

limm_,wfehm(O)E[ {xi%(8) — a(X) — s}k(X)] do
< lim,, ... foh(0) E[ {x100(8) — Bn(X) — ye} k(X)]40
+lim,, , . [oh,,(0)g(m) dO
= —j¢efeE[k(X)] d0
since

lim,,_, . [eh,(8)g(m) d0 = lim,__(2m)’q(m) =0
and a change of order of integration shows that
fehm(O)E[ {XI(X)(O) - Bm(x)}k(x)] d6 = 0.
However, since k(X) is a nontrivial selection,
JeE[k(X)] d0 >0
so we have a contradiction with (2.12).

3. Semirelevant betting procedures for Pitman interval estimators for location
parameters. As Example 4.2 of Robinson (1979) illustrates, semirelevant betting
procedures may exist for Pitman interval estimators even if all moments of the
underlying distribution exist. However, if the confidence set, I(x), is always
balanced (in a sense to be defined) about the Pitman point estimator of a real
location parameter, then no semirelevant betting procedure exists. This will be
proved as Proposition 3.1. For a 2-dimensional location parameter it seems natural,
in the light of the known results on the admissibility of Pitman point estimators, to
conjecture that there can again be no semirelevant betting procedures for “bal-
anced” interval estimators. For 3-dimensional location parameters there may be
semirelevant betting procedures even for “balanced” interval estimators, as is
shown below.
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Suppose that @ is a real location parameter. Using ¢ for the Pitman estimator of
and y for the maximal ancillary statistic, let g(§ #|y) denote the density function
of £ — @ for given y.

PROPOSITION 3.1.  Suppose {I(x), a(X)) is a Pitman interval estimator of § which
is balanced about £ in the sense that

(3.1) Ji(—0)g(§—0|y)dd =0  forall x.

Provided that E[£?] exists, that the function g(§ — 0|y) is continuous in £ — 0 and
that I(x) is such that the measure of J(8) A J(8") tends to zero as § — 0’ where
J(@) = {x € X: 0 € I(X)}, there is no semirelevant betting procedure for
I(x), a(x)).

Proor. Suppose that a selection k(x) is such that
E[{xix(0) — a(X)}k(X)] >0  forall 6.
Consider the sequence of prior densities proportional to
h,(8) = (1+ 62/m?)" m=1,23-"-,

and let B,,(x) denote the posterior confidence in /(x) based on the mth prior.
Using Lemma 2, condition (3.1) and Lemma 1:

B (x) = Lol 82/m?)"'g(¢ — 0|y) db
g 2 (1+ 82/m?) " 'g(¢ — 8]y) do

m

27! 2% 3
f«x){l +—2} {1 —m2—+£;(0—£) +—r;1—2(0 —&)z}g(ﬁ— 0|y) dd

<a(x) + (9/’"2) V(y)
where V(y) = E[(¢£ — 0)*y]. Note that E[V(y)] = E[(§¢ — 8)?] which is finite.
Now

L =1im,,_,/®oh(0)E[ {xs00(8) — a(X)}k(X) ] df

< lim,_, /% (0)E[ {xix)(0) — ,Bm(x)}k(x)] d
+lim,, f°_°°° h(8)E[(9/m*)V(y)k(X)] db
=0

since a change of order of integration shows that

2 (@) E[ {x:00(8) — B(X)}K(X)] db-=0
and the bound A(X) < 1 shows that the second limit is zero.

If k(X) were to be a positively biased relevant selection then L would have to be
strictly positive (by arguments like those used in the proof of Proposition 7.3 of
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Robinson (1979)). Therefore there can be no positively biased relevant selection
and hence, by the argument accompanying Proposition 2.1, there can be no
semirelevant betting procedure.

COROLLARY. There are no semirelevant betting procedures for the usual interval
estimators for the mean of a normal distribution with known variance.

3.1. An example of a selection which is semirelevant for a class of Pitman interval
estimators. Consider the selection

1
k(x) =(1+ R?»™2
where R is the distance from the 3-dimensional sample mean to the origin. Let p
denote the distance of the population mean, 0, from the origin, and consider a
sphere of radius r centered at 6. The average of the probability of selection over the
surface of the sphere is

J72mr sin o(1 + p2 + r* — 2ur cos ¢) " 2r do
[627r sin ¢r do

K(r’ .“') =

where ¢ is the angle between 8 and the vector from a variable point on the surface
to 0. Now

K(r, p) =3/ sin (1 + p* + r* — 2pr cos qb)_% do
= /2 {1+ (e 7Y = (1 (e )]

which is monotone decreasing in r since
= 2 {0+ e Y (0 - )]
+ (1/21”)[(# + {1+ (p+ r)z}_%— (p= {1+ (- r)z}—i]
G- )
+ (14 p2—pn) {1+ (p— r)z}“%]

_1 _1
SEH@[{1+ (=)= {1+ (e + )]/ )
<O0. '
Thus, for all values of 0 the selection k(x) includes points near to @ more often than
points far from 0. Therefore this selection will be a positively biased semirelevant
selection for any Pitman interval estimator {I(x), a(x)» such that
I(x) = {0: 10 — ¢ < ¢}
where £ is the Pitman estimator of @ and ¢ is a constant.
4. Admissibility of confidence regions for the multidimensional normal mean.

From Proposition 8.2 of Robinson (1979), which showed that the absence of
semirelevant betting procedures implies admissibility with respect to squared-error
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loss, and Proposition 3.1, it follows that the usual interval estimates for the
one-dimensional normal mean are admissible with respect to squared-error loss. I
have tried to use the selection of Example 3.1 to prove the inadmissibility of the
usual confidence regions for the 3-dimensional normal mean but have not been
successful. For the 5-dimensional case I can demonstrate inadmissibility.

PROPOSITION 4.1. Spherical Neyman confidence regions for the 5-dimensional
normal mean are inadmissible with respect to squared-error loss in the case where the
covariance matrix is known.

ProOF. Let 0 denote the population mean, let X denote the sample mean, and
suppose that the confidence region is |x — 6] < a with associated confidence level
a. Let R = |x| and p = |0] and consider the selection

k(x) = (1 + R?)™!

The average value of k(x) over the surface [x — 0 = r is

_ Josin’e(l + p® + 1P = 2pur cos¢) " 'do

/5 sin’d¢
= (3/8ur)[2x — (x* = Dlog{(x + 1)/ (x = 1)}]
where x = (1 + p? + r?)/(Q2ur). Note that x > 1.

For r > p differentiation under the integral sign shows that K(r, u) is decreasing
as a function of r. For r < p differentiate the closed form:

oK(r,p) _ —3
or 8ur?

2 x+1) 1+p,2—r2{ _ (x+1)}
2x — (x 1)log(x_1 + r 2 — x log pa— .

K(r, )

X

For given x, the extreme values of the expression in square brackets are at
(1 + p? = A/(pr) =0 and (1 + p? — r?)/(pr) = 2x. The first of these extreme
values is positive since K(r, p) is positive. The second of the extreme values is

x + 1 )
x—1

x+1
x—1

2x — (x* — l)log( ) + 4x — 2x? log(

=6x + (1 — 3x?)log{1 + 2/ (x — 1)}
>6x + (1 - 3x){2(x = 1)7" = 2(x — )%}
(using the Taylor series for log(1 + z))
= (x — 1)7{12x? — 10x + 2}
>0 since x > 1.
Thus K(r, p) is a decreasing function of r in this region also. Therefore the
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selection k(x) is positively biased semirelevant. Further, since

d*[2x — (x* = Dlog{(x + 1)/ (x = 1)} ] B 8
dx® I
= —8(x 4+ 2x +3x ¥ +4x710+...),
(4.1) K(rop) = Gur){(5)x7" + (F)x 7+ -+ )

S (1 ()P
the series in x converging for x > 1 and the last series being asymptotic as y — oo.
Now let {I(x), a) denote the given interval estimator for @ and define

Bs(x) = a + 6(1 + R?)™!
where § > 0. The difference
E[ {xix(0) — a}z] - E[ {X1(0) — :Ba(x)}z]

is a function of p since all the functions are spherically symmetrical. Denoting the
difference by dy( 1),

dy(1) = E[ {xux(0) — a}28(1 + RH) ™' - 8%(1 + RY)7?].

From (4.1) and the shape of I(x) it is clear that E[{x,x)(0) — a}(1 + R}~ ']p*
tends to a strictly positive finite limit as g — 0. It is also clear that E[(1 + R%)~?]u*
tends to a finite limit as u — co. Hence there is a number §, > 0 and a number p,
such that dg(p) > 0 for all § < §, and all p > p,,.

Now for p < pg, E[{X;0)(0) — a}(1 + R?™1 is strictly positive (since k(x) is
positively biased semirelevant) and, therefore, bounded away from zero. However
E[(1 + R»)™?] is bounded, so, for sufficiently small 8, dy(p) > O for u < p,. This
completes the proof.

In Section 6. of Robinson (1979) the concept of a relevant betting procedure for
multidimensional point estimation was discussed. Since the p-dimensional sample
mean is a uniform limit of proper Bayesian estimators, there are no relevant betting
procedures for this sample mean as an estimator of the mean of a p-dimensional
normal population with known covariance matrix no matter what the value of p.
From Proposition 2.3, we know that the usual confidence intervals for the p-dimen-
sional normal mean do not allow relevant betting procedures for any p. The
admissibility results in this situation seem to be more closely related to semirele-
vant selections than to relevant selections.

5. Relevant betting procedures for Pitman point estimators of location and scale
parameters. It seems intuitively reasonable that the conditional properties of
Pitman point estimators should closely parallel those of Pitman interval estimators.
Regrettably, it is not trivial to construct proofs by analogy to the proofs of Sections
2 and 3.
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An additional difficulty with point estimation is that the problems of location
and scale must be considered separately. If 6 is a location parameter then e’ is a
scale parameter where an observation x on the location parameter family is
transformed to the observation e*. However, if the estimator T has good condi-
tional properties as an estimator of # then it is unlikely that e” has good
conditional properties as an estimator of e®.

For a location parameter, §, the Pitman point estimator of §, denoted &, is the
improper Bayesian estimator for a uniform prior distribution and is unbiased. The
method of proof of Proposition 2.3 is sufficient to prove that there is no relevant
betting procedure for ¢ provided E[|§’] exists. Semirelevant betting procedures
always exist since the betting procedure
(5.1) s(x) =1 if ¢<a

= —1 if £€>a
is semirelevant for any real number a. This betting procedure guesses that if § > a,
it is too large, while if £ < a, it is too small.

For a scale parameter, §, Pitman (1938) has shown that the improper Bayesian
estimator of #” based on a § ~!~™ prior density is unbiased provided m > 0. We
shall denote this estimator by 7, and call it the Pitman estimator of ™. The
betting procedure given in (5.1) is semirelevant for 7,, provided a > 0 and there
should again be results showing that relevant betting procedures do not exist if
certain conditions hold.

6. Conditional properties of statistical procedures in situations involving both
location and scale parameters. In this section we make no attempt to discuss
general situations involving location and scale parameters. We restrict ourselves to
one or two normal distributions with unknown location and scale parameters.

For a single normal distribution with unknown mean, p, and variance, o2, Stein
(1961) showed that the usual interval estimators for u based on the #-distribution
allow the existence of positively biased relevant selections but not negatively biased
relevant selections. Buehler and Fedderson (1963) exhibited a positively biased
relevant subset for an interval estimator based on two observations and Brown
(1967) has shown that positively biased relevant subsets exist for any number of
observations. A published proof of the nonexistence of negatively biased relevant
selections appears in Robinson (1976). Cohen (1972) has discussed the length of
interval estimators of ¢, but nobody has investigated their conditional properties.

Even less is known about the conditional properties of statistical procedures in
situations involving two normal populations. Fisher (1956) showed that negatively
biased relevant subsets exist for tests of hypotheses and interval estimators based
on the ideas of Welch (1947). Robinson (1976) has shown that there are no
negatively biased relevant selections for interval estimators based on the Behrens-
Fisher solution to the two means problem. Presumably positively biased relevant
selections exist for the Behrens-Fisher solution (possibly based on the relevant
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subsets for the z-distribution), but no other conditional properties seem to have
ever been discussed for this situation.
The only definite result of this section concerns
> 1

—\2
§ =n_1 ?=1(xi_x)

as a point estimator of 2. Here X » Xo -+, X, are n( > 2) independent observa-
tions from a normal population with mean p and variance o2 both unknown, and
X is the average of X, X,, - - - , X,. We show the relevant subsets exist for s

PROPOSITION 6.1. For any number 8 such that 0 <8 < 1/(n — 1) there is a
number a such that

E[s2| |X|/s <a] > (1+ 8)d2

PrOOF. It is clear that o ~2E[s?| |X/s| < a] is dependent only upon the ratio
p/ 0. Therefore, we can assume without loss of generality that o = 1. Denoting the
conditional density of s given |X|/s <k, u, > = 1 by f(s| | X|/s < k, p), equation
(6.1) of Brown (1968) states that f(s| | X|/s < k, p) has strict monotone likelihood
ratio with respect to f(s| | X|/s < k, 0). Hence

E[s"| |X|/s <k,p, o= 1] > E[s*|X|/s <k,p=0,0= 1].
Now E[s? |X|/s <k, u =0, o6 = 1] is a continuous function of k for 0 < k < oo;
lim, ,,E[s*| |X|/s <k,p=0,0=1] =1
since s is an unbiased estimator of 02; and
limk_,oE[s2| |X|/s <k,u=0,0= 1]
E[s3|p.=0,o=l] n

TE[slp=00=1] n-1’

where we have used the independence of X and s for p = 0 and that the range of
values of X for given s is of length 2ks. The result follows.

Stein’s positively biased relevant selection and Buehler and Fedderson’s and
Brown’s relevant subsets for interval estimators for u are also based on the ratio
|X|/s. The lengths of confidence intervals based on the ¢-distribution are always
multiples of s, so it seems reasonable that in a subset where s* seems to be too large
the probability of covering p seems also to be too large.

It is natural to conjecture that there is no ¢ > 0 and conditioning set C such that

E[s)X€ C] < (1—¢)o* forall p,o>

A proof along the lines of the proof of Theorem 1 in Robinson (1976) should be
fairly straightforward.
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It is also natural to conjecture that there is no § > 1/(n — 1) and conditioning
set C such that

E[32|X € C] > (1+8)s®> forall p,d?
since

n =\2 1 n 2
i — %)< ;Ei-l'xx‘

and (1/n)2x?, being the improper Bayesian estimator of 6* based on a ¢ 2 prior
density for 0% with u = 0, should have good conditional properties as an estimator
of o2

7. Discussion. A major issue raised by this paper and its sister paper, Robin-
son (1979), may be most clearly seen in the light of the results on admissibility and
conditional properties of the multidimensional normal mean. Within decision
theory, Stein’s (1956) result that the three-dimensional normal mean is inadmissible
seems unavoidably applicable, so that if one rejects the idea that all decision-
making ought to be Bayesian then one must search the complexities of Efron and
Morris (1973) and similar work for methods of estimation. However, within
inference it may be argued that admissibility is not an applicable concept, that
conditional properties, like the nonexistence of negatively biased relevant selections
for interval estimation, are more appropriate, that the multidimensional normal
mean is a perfectly reasonable statistical procedure and that there is no need to
combine unrelated estimation problems.

APPENDIX
Here two elementary results are established.

LemMa 1. IfO0<x < 1land0< (x+ z)/(1 +y) < 1, then
[x = (x + z)/ (1 + p)| < 3 max{|y|, ||}
Proor. If |y| <3 then
x —(x+2)/(T+p) <zl +]x+z=(x+2)/(1+))
=zl + |(x + 2)y/ (L + )| < |z| + 3|0 + 2|
<z + 31yl +3lzl < 3 max{|y|, |2]}.
If |y| >3 then |
3max{|y|,|z|]} 2 1> |x —(x + 2)/ (1 + )|
LEMMA 2. For all real m, x and 8 such that m = 0
2

{1 +"—2}_l{1 —2—"2(0—):)—%(0—)02]

m m? + x

92" AN 2x 3 2
<{1+?} <{1+;} {l—m(ﬂ—x)+?(0—x)}.
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PrOOF. Subtracting {1 + §2/m?} ™! from each of the three expressions, multi-
plying by (m? + x?)*(m? + %) and rearranging terms shows that the pair of
inequalities is equivalent to

— 3x%9%(x — 0)* — m*(x — 0)*(4x* + 2x0 + 30%) — 2m*(x — 0)?
<0< 3x%%(x — 0)* + m¥(x — 0)*(2x% — 2x0 + 360%) + 4m*(x — 0)°.

This pair of inequalities is clearly valid.
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