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PROBABILITY DENSITY ESTIMATION USING DELTA
SEQUENCES

By G. WALTER AND J. BLuM
University of Wisconsin-Milwaukee and University of Arizona

Let X}, X5, ..., X, be iid. random variables with common density func-
tion f. A method of density estimation based on “delta sequences” is studied
and mean square rates established. This method generalizes certain others
including kernel estimators, orthogonal series estimators, Fourier transform
estimators, and the histogram. Rates are obtained for densities in Sobolev
spaces and for densities satisfying Lipschitz conditions. The former generalizes
some results of Wahba who also showed the rates obtained are the best
possible. The rates obtained in the latter case have been shown to be the best
possible by Farrell. This is shown independently by giving examples for which
the rates are exact. Finally, a necessary and sufficient condition for asymptotic
unbiasedness for continuous densities is given.

1. Introduction. Many methods for the estimation of an unknown density
function f by means of functions of ii.d. random variables X;, X,, ..., X, ...
have been proposed in recent years. These include the kernel methods studied by
Rosenblatt (1956), Parzen (1962), Schuster (1969), Singh (1974) and Susarla and
Kumar (1975); the orthogonal series methods used by Schwartz (1967), Kronmal
and Tarter (1968) and Walter (1976); the interpolation methods considered by Van
Ryzin (1973) and Wahba (1971), (1975); and the characteristic function approach
studied by Blum and Susarla (1976). Farrell (1972) and Wahba (1975) have shown
that in certain cases these estimates are best possible.

In this paper we study a simple method which generalizes many of the methods
mentioned above. It is based on the use of “delta sequences,” i.e., sequences of
functions that converge to the generalized function 6.

Certain types of these sequences were already studied by Watson and Leadbetter
(1964) who called them “8-function sequences.” They established, among other
things, the asymptotic unbiasedness and the asymptotic variance of estimators
based on them but did not consider rates. Winter (1975) obtained the rate of strong
consistency as well as the rate of asymptotic bias for estimators associated with
delta sequences arising from the Fejér kernel of Fourier series. We shall consider
more general classes of delta sequences and shall primarily concern ourselves with
mean square rates of the estimators.

We shall consider several different types of delta sequence estimators with
several examples of each. The first type is appropriate for global properties of
densities and consists of delta sequences which converge at a certain rate in the
dual of a Sobolev space Wp(‘). This is the space of functions with s — 1 absolutely
continuous derivatives each of which, as well as the sth derivative, is in L?. For
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these estimators we calculate a mean square rate similar to that obtained by Wahba
(1975) for densities in W{,"). The other types are more appropriate for local
properties. In that case the estimators are shown to have a mean square rate of
convergence which depends on the Lipschitz continuity of the density at a single
point.

Some of our results are sharp since they give rates which have been shown by
Farrell (1972) and Wahba (1975) to be the best possible. We also present a simple
example for which the rate obtained (0(n~ %)) is exact. Finally, we prove a theorem
which shows that the estimators which give the best rates of convergence are not
asymptotically unbiased.

2. General delta-sequence estimators. In this section we consider delta
sequences having only the property that they converge to the delta function.
Without further restrictions we can only obtain very weak results. In subsequent
sections we shall show that the examples presented here satisfy the further condi-
tions needed for stronger results.

DErFINITION 1. Let J be an open interval of the real line R. A sequence
{8,,(x, 1)} of bounded measurable functions on J X J is a delta sequence on J if for
each x € J and each C* function ¢ with support in J we have

limm—-»ooflsm(x’ t)d)(t)dt = (I)(X)

Let {X,} be a sequence of i.i.d. random variables with density f(x). We shall

associate an estimator of f with the sequence §,,(x, ¢) by letting

0 Fum(%) = = Shm b, Xe).

Subsequently we shall adjust m and n so as to obtain a single sequence of
estimators.

EXAMPLES.
(1) A kernel estimator. Let
8,,(x, t) = mx,,-(x — 1) x,t €ER
where ¥, is the indicator function of [0, 7~ ']. This is the canonical example

of a Parzen kernel estimator [5].
(i) Histogram estimator. Let

8n(x, 1) = mETL 1 x;(x)x;(2) x,t€(0,1)
where x; is the indicator function of (0, 1/m), and ; is the indicator function
of [(j —1/m),j/m) for j=2,...,m. This is easily seen to be the usual

histogram estimator.
(ili) Orthogonal series estimators. Let {y,,(x)} be a complete orthonormal system
on (a, b) consisting of eigenfunctions of a compact operator on L(a, b). Let

8,(x, 1) = 7L 19 (x)Y(2), x, t € (a, b).

These are delta sequences (see [15], page 500). They include trigonometric
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functions, Legendre polynomials, and Hermite functions. In the case of
trigonometric functions we obtain the Dirichlet kernel. These include the
sequences studied by Schwartz [8] and Walter [16], but not those studied by
Kronmal and Tarter [4] or Winter [18].
We can also smooth the orthogonal functions as follows. Let {a,, ;} be the
matrix corresponding to a regular summability method (see [19], page 74). Let
8%, 1) = 22 a0, Fh (X (1) x, t € (a, b).
This is again a delta sequence. If the {a,, ;} corresponds to C — 1 summa-
bility and the {y, } are the cosine functions we have the sequence studied in
[4]. If they are the usual trigonometric functions we have the sequence studied
in [18]. :

(iv) An interpolation estimator. Let {§,,} be a sequence of functions converging to
the delta function and let #y, ¢, - - - ,z,, be m + 1 distinct points in (a, b).
Finally, let L,,(1) = (¢ — to)(t — t;) - - - (¢t — t,,). Then

L, (x

A (x, 1) = G—_—i”t()—ljn—g)—zf,&m(t - 1), x, t € (a, b)
is a delta sequence provided the (¢} are chosen, e.g., to be the zeroes of a
Jacobi polynomial. This follows from the fact that the A, (x, ¢)f(¢)dt are
approximations to the Lagrange interpolating polynomials which converge for
such choices of the {}.

(v) Fourier transform estimators. The estimator used by Blum and Susarla [1]
involves the inverse Fourier transform of the delta of the characteristic
function. It may be put in terms of the delta sequence

8,(x, 1) = -21—ﬂf’fmei‘("")ds, x,t €R.

As in the case (iii) we may smooth {§,,} via a regular summability method. In
particular, C — 1 summability yields
2 _
5, (x, 1) = 2 sin® m(x 2t)
T m(x —t)
(vi) An estimator based on Landauw’s sequence. This provides a polynomial ap-
proximation which differs from orthogonal polynomials and interpolation. It
is given by

x,t € R.

Su(x, ) =[1— (¢t = x?]"//L,(1 — &)™ at, tE(=L])

and, as with the Fejér kernel of trigonometric series, is nonnegative.

(vii) Estimators of density type. Let {Y,,} be a sequence of ii.d. random variables
with mean 0 and finite variance, having a bounded density. Let g,,(») be the
density of the sample mean. Then the functions

8,.(x, 1) = gn(x — 1), x,t €ER

may be shown to be a delta sequence by using the Chebyshev inequality.
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3. Mean square rates based on global properties. In order to establish the mean
square rate of convergence of our proposed estimator we must use some sort of rate
of convergence of the delta sequence itself. The type of convergence given in
Definition 1 can be shown to be characterized by the L? convergence of ap-
propriate antiderivatives (see [3], for example). We shall use this type of conver-
gence to define the rate.

DEFINITION 2. Let {6,,(x, )} be a delta sequence on J = (a, b) such that
@) 8,(x, -) € L¥a, b) for x € J;
@ii) [I8,,(x, |5 = O(m) uniformly for x € J.

Let s be a positive integer; denote by §$9(x, ) the antiderivative of order s with
respect to ¢ of §,,(x, £) which, together with its first (s — 1) derivatives, is zero at a;
denote by 8 9(f)(= §(x — £)) the function (x — #)’7!/(s — 1)!. Suppose for
such an s there exist numbers ¢ > 1 and 0 < 8 < s + (1/g) — 1 such that
(iii) 8$(x, -) — 8{79(-) € LYa, b) for x € J;

iv) 859, -) = 8<9()]l, = 0(m~#) uniformly for x € J;

W) 859 (x, b) — 8{9(b)| = O(m~#) uniformly for x € J and for k =
.-, :
Then {3§,,} is said to have (s, g) rate m~~.

Note. Condition (ii) is needed to standardize the rate of increase of m, since a
subsequence of a delta sequence is again a delta sequence.

THEOREM 1. Let s > 1, and let f be a density with f € W)(J). Let {§,,} be a
delta sequence of (s, q) rate m™P, where q satisfies (1/p) + (1/q) = 1. Then
2 E[ f,(x) = f(x)]* = O(n~1+1/01+28))

uniformly on J, where f:, is defined to be ﬁ,,m of equation (1) with m = [n'/1+2P)],
In order to prove the theorem we break up the mean square error into the usual
variance and bias terms. We have

() B[ = ST =5 [1,8305 000 dt = (18,03, D10 )]

+[/,8,(x, Of(1) dt — f(x)]*.
Now [,82(x, f() dt < || flllI8x(x, )II3 = O(m), where || fll, is finite since | f7(x)
= f@)| < pLafP £ (o) dx < pISIE/ IS, Similarly
(8%, Df(E) dt)* < 11 F13I18,.(x, )15 = O(m).

Note that || f|| < oo since f € L®(J) N L'(J).
To estimate the bias term we integrate by parts s times. We obtain

(4) 1/,8,(x, OAt) dt — f(x)|=1/,[ 8(x, 1) — 8(x — )] f(2) at|
<L [0 9(x, 1) — 8 x — )] fOr) dt| + O(m™F)
< 1857 2(x, +) = 8Dl + 0(m™F),

by Hoélder’s inequality. By hypothesis the last sum is again 0(m ~#). Combining the
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two estimates we obtain E[f, ,(x) — f(x) = O(m/n) + 0(m~2f). By choosing
m = [n'/(0+28)] we obtain the desired result.

REMARK (i). The rates obtained in this theorem are the same as those obtained
by Wahba [13] for certain kernel, orthogonal series, histogram and other methods.
Thus the theorem may be viewed as a partial extension and unification of the result
of Sections 4-6 of [13].

REMARK (ii). According to Wahba [13] again, a rate of n~/0+28~¢ cannot be
achieved uniformly over bounded sets in Wp(s) for any ¢ > 0 at any point x € R.
Although our theorem does not state that the convergence is uniform over such
bounded sets this can easily be seen to be true since each occurrence of f is
dominated by the Sobolev norm. Hence the rates are best possible in these cases as
well.

REMARK (iii). The requirement that B <s + (1/q) — 1 arises from the same
considerations. If 8 > s + (1/g) — 1, a rate which contradicts the result of [13]
would be obtained. We shall see that all of our examples satisfy this requirement.

This theorem can be applied directly to some of the examples in Section 2. The
first of these, the rectangular delta sequence of (i) with / = R and ¢ > 1 satisfies

1
|85 — 8¢ D), <Cm™g

and therefore has (1, g) rate m ~ /%, For s > 1 no antiderivative is in L? for ¢ > 1.
By the theorem the error is O(n ~2/@+9),

For some of the other examples the calculation of the rate is somewhat more
complicated but can be simplified by considering dominating (Parzen) kernels.
These kernels are themselves delta sequences for which we calculate the rate.

PROPOSITION 1. Let K(x) be a nonnegative function in L*(R) satisfying

(@ JK=1

() [|s|K(s) ds < oo for g = 1 or (b')[(log |s])|s|’K%(s) ds < oo for g > 1.
Then the delta sequence given by

8,,(x, t) = mK(m(x — t))

has (1, q) rate’m"/".

These are clearly delta sequences which satisfy the first and third condition of
the definition. The second condition follows from the inequality

(5) Pl fE oMK (mt)dt — 1, (x)|dx
= [% ST K(s)ds dx + [ [ K(s)ds dx

t w !
= —f"_w;K(t)dt + f3 ;K(t)dt

1 o
< ;f_w|t|K(t)dt
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for ¢ = 1, and similarly
1
(6) I8 K dx = —{ 3|/ °K "de + [7|[7K]")

<L L ool pmeps) L sl
“m o om/ | s

1.1 S 1E
St {fﬂSK(S)lqu e pd?}dt

L E o (s (1-p)a/p s ¢IK 9
<m+mf1f]t dt s79K(s)ds

1 4 € opog ssix
<t *log ss?K(s)ds

for g > 1.

DEFINITION 3. A delta sequence {4,,} is dominated by a kernel K if for x, t € R
@) §,(x, 0 > 0;
(®) [Zd(x, Ndt = 1;
(©) 8,.(x, t) < CmK(m(t — x));
where K satisfies condition (a) and (b) of Proposition 1.

COROLLARY 1. Let {8,} be a dominated delta sequence on R whose dominating
kernel satisfies the hypothesis of Proposition 1 for some q > 1; then {4§,,} has (1, q)
rate m~'/4,

That the rate of such delta sequences is the same as the corresponding rate for
the kernels, follows from the fact that

() [2|f5328,(x, t)dt — 1 ,.(s)|ds
=[O _[*x8 (x, O)dt ds + [$[5.6,,(x, )dt ds
< CfC [ EmK(m(t — x))dt ds + C[P[%. . mK(m(t — x))dt ds
= Cm{[% o J° K(mt)dt ds + [§[CK(mt)dt ds}

in the case K satisfies (b) and a similar result if it satisfies (b").

If {8,,} is defined on a proper subinterval J2 of R? we may extend it to all of R?
by the simple expedient of making it zero outside of J2 Thus this result could
apply to many of the examples given in Section 2.

Example (i) was already a kernel. Example (ii), the histogram, is dominated by
the kernel in example (i). Example (iii) is not positive in general, but when the {¢,}
are the trigonometric functions and the summability method is (C — 1), i.e., when
we have the Fejér kernel, the associated dominating kernel is 1/7(1 + t2). Example
(v) is similar to example (ii); the (C — 1) kernel of the Fourier transform is also
dominated by 1/#(1 + #%). Example (vi) is dominated by the same kernel provided
m is replaced by m? so that the rate is properly normalized.
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Hence each of these examples has (1, ) rate m~'/2 for ¢ > 1 and in the first two
for ¢ = 1 as well. The mean square rate of the associated estimator is, by Theorem
1, 0(n —2/(q+2)).

Delta sequence of densities (example (vii)) may be shown directly to satisfy the
conditions of Definition 2. We have for condition (iv) and s = ¢ = 1,

(8)  JPwl/iew8m — Li(x)]dx
= LS o B X + [T dx
= [S{Z% + [T} gndx < [} zmdx + /377 dx = 0(m™7)

by Chebyshev’s inequality. Condition (ii) is shown to hold by using the characteris-
tic functions. If ¢(w) is the characteristic function of Y, then ¢"(w/m) is that of
Y,,. The density of Y, is uniformly bounded by the L' norm of ¢"(w/m) which
satisifies
JZ | ™(w/m)|dw < m[% |¢™(2)| dt
< m|ipl%"2lel3 < mil gll3
provided that g € L2. Since g was bounded and is in L' it is also in L? and hence
Plancherel’s equality holds. The other conditions follow easily, and hence the
sequence {4,,(x, )} = {g,(x — »)} has (1, 1) rate m-1.
For the Dirichlet delta sequence of example (iii)

sin (m + 1/2)(¢
on(t) = 2(77 sin 1?23( )

=0 otherwise
< (m+1/2)/7 and

38,(1) = %{% + XZ%_, cos kt} =

We have ||

mll oo
sin (m + 1/2)t
2w sin 1/2¢ °
and hence that
x+7 1, sinkx

27 + ;2"=] k

8700 = % 5 + Sy cos ke e =

Thus
B(0) — Lo (x) = T(x) + 237, T2
T k
where
T(x)—x+ﬂ -7<x<0
= = T S
xX—m
=5 0<x<m
But 7(x) has Fourier series —1/7Z5_ 1(sin kx)/k whence it follows that
1 o sm kx , 1 _ 1 _
1T+ ;Ek 15 =—=2F e = som !
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and therefore that
1
18570 = Lyll, < 777m” 3.
For higher order integrals we see that

(10) 18579 = 89|l = 0(m—>*3)

by the same formula. Hence the (s, 2) rate is m~**!/2 forany s = 1,2, - -- .

The same procedure may be used for other orthogonal series on bounded
intervals and for the Fourier transform (see [15] for the former).

4. Local convergence rates. The results of Section 3 are global in the sense that
the convergence is uniform and the densities are assumed to belong to a Sobolev
space, W;,(s). We may also obtain pointwise results for a general class of delta
sequences, which we shall call delta sequences of Fejér type and whose behavior
approximates that of the Fejér kernel. In doing so we shall restrict ourselves to
convergence at the point 0, and require only that our sequences be composed of
functions of a single variable.

DEerFINITION 4. A dominated delta sequence on R is said to be a Fejér ype if its
dominating kernel is 7 ~1(1 + %)~ 1.

Note. By Corollary 1 such sequences have (1, g) rate m~'/% for g > 1.

This condition is satisfied by the Fejér kernel, by Landau’s delta sequence (vi),
by any positive Parzen kernel with compact support, by the Fourier transform delta
sequence, and by the histogram (ii).

THEOREM 2. Let f(x) be a bounded density which satisfies a Lipschitz condition of
order \, 0 <A< 1,at x =0. Let {8, be a delta sequence of Fejér type. Then the
estimator given by f, = f,, where m = [n"/1*™)] and

A 1
(11) fmn = ; ’il=18m(A,i)
where X, X5, - - - are 1.i.d. random variables with density f(x), satisfies
R 1
(12) E[f, — fO)]* = 0(n~"* 757).

The proof emulates that of the convergence theorem for C-1 means of Fourier
series ([19], page 90). The mean square error is given by

27 2
(13) B[, - 10 = Ll U g 5 o)

where m = [n'/(1+2), By Definition 4, ||8,,||,, = 0(m), and hence the first term in
(13) is dominated by Cm/n since [9,,f < || f|lo- The proof of the fact that

[/8,f — AO)] = 0(m ™)



336 G. WALTER AND J. R. BLUM

is similar to other proofs of the same result for the Fejér kernel. We split the
integral into five parts and show that each satisfies the correct inequality.

(14) 8,/ = f(0) = [8,(x)(f(x) = f(0)) dx
= (/2% + T3+ [ 13+ 17 )8 ()((x) = f(0)) dx

where 8 is chosen such that |f(x) — f(0)] < M|x[* for |x| < &. Going from right to
left we show first that

(15)  58,()(A(x) = AO)) dix| < [E18, (0] + If(O)I) dx
< -—Ilflh + Cfms |f(0)| = 0(m™").

For the next integral we have, for m > 1/,

16) 12, 18.(0)] |f(x) = fO)] d

< _C_f? If(x) f(o)l dx < = Mf]/m x dx
m x?

CM( 8 m=O-D . .
— (}\_1—”;\_1 )=0(m N+ 0(m™™).

The middle integral gives us no trouble either since

A7) [H8.] 1) = SO dx < CmMYE | dx = O(m ™).

The remaining integrals are treated the same as the first two. Hence the bias
term satisfies the desired inequality and the conclusion follows.

This result has been shown by Farrell [2] to be the best possible. Indeed his class
Co, With n(x) = x'** consists of those functions satisfying a uniform Lipschitz
condition of order A. He shows (Theorem 1.1) that the rate of mean square
convergence for any estimators cannot be better than n~!1*+1/01+2),

It might be observed that in both theorems the best mean square rate we have
been able to obtain for those delta sequences of nonnegative functions is 0(n~ 3) in
general. However, the kernel function K(#) = x,_1, 1)(¢) has an associated delta
sequence whose (2, 1) rate is m ~2. Hence the error for the estimator obtained from
this positive delta sequence is at least as good as O(n‘g). Again Farrell makes the
observation that this is the best possible rate for positive Parzen kernels. This also
follows from Wahba [13] in the special case of positive kernels.

We shall present an independent proof of these results by constructing simple
examples. However, we can only do so for delta sequences satisfying:

DEfFINITION 5. Let {§,} be a dominated delta sequence of functions with
common compact support. It is said to be regular if there exist a nonempty interval
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(a, b), a < 0 < b, and a number C > 0 such that
3,,(1) > Cmyx,, »(mt) 0<t<
where X, 5, is the indicator function of (a, b).
PROPOSITION 2. Let {4§,,} be regular. Then (i) there exists a density f(x) satisfying
a uniform Lipschitz condition of order A, 0 < A < 1, such that
E[ fon — FO] > Cmn ™" + Cym =2,
(ii) there exists a density g € C* such that
E[ §m — 8(0)]> > Cymn™"' + C,m =%
(iii) if the support of 8, is on [0, ), there exists a density h € C® such that
E[/;m,, - h(O)]2 >Cmn~'+ Cym2

for some C,, C, > 0.

Part (i) is weaker than Farrell’s result since it applies only to certain delta
sequences, while parts (ii) and (iii) are slight generalizations of his observations.

The proof is obtained by merely exhibiting an appropriate f, g, and 4. The first
may be shown to be f(¢) = at* + B for 0 <t <y and f(f) = B for —y <t <0,
where [— v, y] is the support of §,. The values of f(¢) outside of [— 7, Y] may be
adjusted in any way to make f a density and ensure as well that it satisfies the
Lipschitz condition. Then we have, if b > 0,

(18) |18, ()A(2) dt = f(0)] = |[§8,.()at’dt|

RN
> Cam/fb/™dt = Cab

1+A

m -,

and similarly if a < 0.

For the second part we take g(f) = at> + S again on the common support of the
8,. A similar calculation yields a bias term of O(m~2). For the third, we use
h(H) = at + B.

For the Fejér delta sequence itself (8,,(¢) = (sin’mt/2)/(2m sin’t /2)) the given
rate is the best possible in a stronger sense. Unless f is a constant on the interval
(—m, 7), the difference

[f(x = 0)8,,(2) dt = f(x)
cannot be 0(1/m) uniformly for |x| <= (see [19], page 122). Hence there is no
hope of coming up with any set of conditions that would improve the rate beyond
0(n~3) for this sequence.

5. An alternative theorem. We have seen in Section 4 that the mean square rate
of convergence of estimators arising from regular delta sequences is limited by
O(n~ 43). This includes many of our examples and is true in particular for the Fejér
sequence. However, we have also seen that the rate for the Dirichlet sequence
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estimator approaches 0(n~!) for sufficiently differentiable densities. Thus it ap-
pears that the latter and similar estimators ought to be a better choice. However,
this advantage is deceptive since it no longer holds if the density is merely
continuous. In fact, estimators based on the Dirichlet and similar delta sequences
are not asymptotically unbiased for continuous densities while those based on delta
sequences of Fejér type are. This is a consequence of the following result.

THEOREM 3. Let {§,} be a sequence of piecewise continuous functions in L'(R)

such that
@) /8, =1

(1) fix>y0m(X)|dx—>0 a5 m—>oc0  for y>0

(iii) §,,(x) -0 uniformly in |x| >y for vy >0,
Then

(V) [P ,|0.(x)| dx < A4
if and only if

[P0 8(%)0,,(x)dx —>g(0) as m— o0
Jor each density g which is continuous at x = 0 (i.e., E(8,(X)) — g(0) where X is a
random variable with density g). '

The sufficiency of condition (iv) has been proved in [17], page 104. In fact, the
conditions (i)-(iv) are exactly those hypothesized there.

In order to prove the necessity, we use the Banach-Steinhaus theorem ([15], page
165) and consider the Banach space C, of continuous functions with compact
support and || ||, norm. We define a sequence [7,,] of bounded linear functionals
on C, by 7,,(g) = /9,8 If (iv) is not satisfied, then there is a sequence of functions
{g,} in C, such that || g,|l, = 1, and

T, (8,)—> as k— oo,
for some increasing sequence {m}.
To show that this is the case, we first define g¥ by
gm(x) = 8,(x)/[8,,(x)I; 8,(x) #0
=0 8,(x) =0.
We then modify g} by setting it equal to O for |x| sufficiently large and by
smoothing it at points of discontinuity to get g,. We may do this in such a way that
|/ On&m = 08| <&

since §,, has only finitely many discontinuities on each compact set. If (iv) is not
satisfied there exists a sequence {m } such that

S8y 8, = J18,,] > o0
which in turn implies that
T, (&) = [8,, 8, — .
Hence
1T 1l = SuPug||=1|kag| > ka(gmk) —> 0
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and by the Banach-Steinhaus theorem, there exists a g € C, such that

sup,,|T,,(g)| = oo.

That is, we have (4,2 -4 g(0) for some continuous functions with compact support.
We may suppose that g(x) > 0, by adding a constant to g, since (§,, = 1. We then
truncate the new g by multiplying by the indicator function of an interval [—v, y]
such that (7 g = 1. This gives us a density, continuous at 0, for which

/8,8 # £(0).
Hence the conclusion.

REMARK (i). This is a standard type of proof based on the Banach-Steinhaus
theorem (uniform boundedness principle). See [19], page 298 for a typical applica-
tion to Fourier series. )

ReMARK (i)). The conditions (i), (i) and (iii) are satisfied for most common
delta sequences, in particular all those of Fejér type. Those of Dirichlet type (see
[2], page 323) can be modified (if necessary) to make them fit these conditions. The
former satisfy condition (iv) as well; the latter usually do not. Hence the estimators
based on the former are asymptotically unbiased for all continuous densities while
those based on the latter are not. This seems to be a greater advantage than the
improved rate associated with the latter.

REMARK (iii). There may exist a delta sequence which satisfies all four condi-
tions and shares the property of the Dirichlet sequence that the (s, 2) rate is m=s*a
for each positive integer s. We have been unable to find one and conjecture that
the two sets of conditions are contradictory.
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