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UNIVERSAL BAYES ESTIMATORS!

By A. L. RUKHIN
Purdue University

Let x;, - - -, x, be i.i.d. random variables with a distribution depending on
the real parameter. Under what conditions is a generalized Bayes estimator
independent of the choice of the even loss function? The known answer to this
question is that this independence holds if the posterior density is symmetric
and unimodal. The description of distributions and corresponding generalized
prior densities on the real line, for which the posterior density is symmetric and
unimodal, is presented. These families form an important subclass of all
exponential laws with two-dimensional sufficient statistics.

1. Introduction. Let p,, § € R' be a family of probability measures given on an
abstract space X and such that each distribution P, is absolutely continuous with
respect to some o-finite measure p on X. We assume throughout the paper that the
coincidence of distributions P, and P, implies 6, = 6,. Let A be a generalized prior
density on R'. Suppose that the posterior density is defined almost everywhere
(p X - -+ Xp)and is given by

7,(8) = (I p (x> 0)IMB)[ 2 oo(TT; p(x;, 0))N(O)dB] ",

where p(u, 0) = (dPy/dp)(u), u € X, x = (x},- - - , x,) € X", § € R'. Also, let
W(§, 8) = W(8 — 0) be the loss function depending only on the difference be-
tween the estimator § and the true value of the parameter §. This function is
assumed to be nonincreasing on the negative half-line and nondecreasing on the
positive half-line. The generalized Bayes estimator 8(x) of # based on the random
sample x satisfies the equation

€)) 2 W(8(x) — )7 (0)d0 = inf,cpi [ W(t — 0)7 (6)dD.

In general this estimator depends on the choice of the loss function W. However,
the exact form of this function is rarely known to the practical statistician.
Therefore, it seems rather natural to investigate the situation where the estimator
0(x) is the same for every loss from a certain set of loss functions under considera-
tion.

The above problem was solved by the author (Rukhin (1974)) for the case of a
location parameter family and a constant density A. A description was obtained of
the distributions for which the best equivariant estimator of the location parameter
is independent of the choice of the -even loss function, for which integrals in (1)
converge (cf. also Kagan, Linnik, Rao (1973) pages 255-258).

The following result is well known and often discussed in the literature (Britney,
Winkler (1974), Sakrison (1970), Sherman (1958), Van Trees (1968) and Viterbi
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(1966)). If the continuous (in ) posterior density 7, (f) is unimodal and symmetri-
cal with respect to the point 8(x) then §(x) is optimal relative to every even loss
function W, for which integrals in (1) converge. We call such estimators universal.

If a generalized Bayes estimator is the same for every even loss function from a
sufficiently large set U and, say, is the uniquely determined generalized maximum
likelihood estimator, then the posterior density (assumed continuous) is unimodal
and symmetrical. More precisely let W be some set of even differentiable loss
functions W for which the integrals in (1) are finite and the differentiation in 7 on
the right side of (1) is allowed under the integral sign. Suppose also that the set U
possesses the following property: if for some continuous function g

FW()g(dt =0
for all W € A, then g(z) = 0.
Then (1) implies

[P W ()7 (8(x) — t)dt =0

or
[EW ()7 (8(x) — 1) — 7 (8(x) + 1)]dt = 0.

Thus if the Bayes estimator §(x) does not depend on W from U

7 (8(x) — 1) = 7,(8(x) + 1)

i.e., the posterior density is symmetric. The unimodality follows from the unique-
ness of the generalized maximum likelihood estimator. This property can be
deduced also from the uniqueness of the Bayes estimator for some loss functions,
for example, those corresponding to the problem of confidence estimation of 8.

In this paper we describe, under mild regularity restrictions, the densities p(u, 8)
and generalized priors A(9) for which the posterior density is symmetrical and
unimodal. Hence in these, and practically only in these, cases is the best estimator
universal.

2. The main result. We prove the following

THEOREM. Let {p(u,0), 8 € R', u € X} be a family of probability densities
given on the pathwise connected topological space X. Assume that p(u, 8) is continu-
ous in u for every fixed @ and continuous in 0 for fixed u, the function N(@) is
continuous, and both these functions are positive. Suppose further that the posterior
density m.(0) is defined for all x € X" for some n > 3, except for x from some
nowhere dense set N, and that 7 (0) is symmetrical with respect to the point 8(x),
x € X" — N, and unimodal (i.e. increasing for 8 < 8(x)). If (X" — N) = R then
either

(19 log p(u, 8) + n~'log A(8) = A,(u)e*® + Ay(u)e ™ + As(u)
and

8(xp, - -5 %,) = (20) 7' log(214,(x)/Zi41(x))
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or
29 log p(u, 8) + n~"log A(8) = B,(u)8% — 2B,(4)8 + B,(u)
and

8(xp, - - -5 x,) = Z1By(x)/Z1By(x)).

PrOOF. 1. The conditions of the theorem imply that for x € X" — N, B € R
7. (6(x) — B) = 7,(8(x) + B). Moreover, if for some real B and t7, (¢ — B) = 7, (¢
+ B), it follows from the unimodality and symmetry assumption that ¢ = §(x).

It is also clear that if the inequality = (¢t — B) < 7 (¢ + B) is valid for some

B > 0, then 6(x) > ¢.
Let

o(u, B) = log p(u, B) + n~'log A(B)
so that

7 (1) = exp(Zie(x;, 1)) [ /20 exp(Zie(x; B))dB] -
Define for a fixed ¢ the function
R(u, B) = ¢(u,t + B) — o(u, t — B).
The relation 8(x) = ¢ signifies that
) 1R (x, B) =0
for all B, x & N. The unimodality of = () implies that if (2) holds for some B # 0
then this relation is valid for all B.

Note that if x € N then the sum Z{R,(x;, B) is positive for some B > 0 if and
only if 8(x) > ¢. This remark shows that since (X" — N) = R/,

at(B) = infuRt(us B) < 07
and that
B.(B) = sup,R(u, B) > 0.

The connectedness of X and continuity in u of the function R,(u, B) for every
fixed B show that the image R(X, B) of X under the mapping R,(-, B) forms an
interval (closed or not) with boundary points «,(B) and B,(B).

2. If the inequality

3) - (n=1)7'B(B) < |a(B)| < (n = 1)B(B)
holds for some B # 0, then for every u there exist x,, - - -, x, with the property
R(u, B) + Z5R(x;, B) = 0.
Thus if (3) is valid for some B # 0, the set
E ={u:3xp -, %,8(u x5 ",x,)=1)}

coincides with X and (3) holds for all B # 0.
We next show that the set 7, = {¢ : u € E,} contains an open interval except for
u from a nowhere dense set. This remains to be proven only if (3) fails. Thus
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assume, for instance, that (n — 1)|a,(b)| < B(B) for some B >0 and «a(B) €
R(X, B). Then

E; = {u:R(u, B) < (n - 1)|a(B)l}
and

T, = {t : Rr(u’ B) < (n - 1)|at(B)|}'
Suppose that there exists u, for which (u, x5, + - -, x,) € N for some x,, - - -, X,
and such that the set 7, does not contain a nonempty interval. Then because of
continuity of R,(u, B) in ¢ for fixed u one deduces that F, = {¢: R(u, B) = (n —
1)|a,(B)|}, and for all ¢ the inequality R(u, B) > (n — 1)|a,(B)| holds. This in-
equality implies that

R(u, B) + Z3R,(x;, B) > 0

for all ¢, i.e., 8(u, x,, - - - , x,) > ¢ for all 7, which is impossible. However the set u
for which (4, x,, - - -, x,) & N for some x,,- - -, x, is dense in X. Hence 7,
contains an interval except for u from a nowhere dense set.

If (n— 1)|a(B)| < B(B) for some B >0 but a(B) & R(X, B), then T, =
{t: R(u, B) < (n — 1)|a,(B)|} and the nonempty set T, is open and contains an
interval. The cases (n — 1)|a(B)| < B(B), B <0 and (n — 1)B(B) < |a(B)|,
B +# 0 are treated analogously. (Note that 8,(— B) = — a,(B)).

Thus T,, always contains an interval except for u from a nowhere dense set.

3. For u € E, and fixed ¢, B, # 0, the relation R,(u, B)) = R(u,, B,) implies
R(u, B) = R,(uy, B) for all B. In fact, since for some x,, - - -, X,

R;(’h Bl) = _EgRl(xj’ Bl) = Rz(uo’ Bl)}
one gets
Rt(u’ B) = _2'21Rt(xj’ B) = Rx(“o’ B)'

Thus for every B there exists a function g (dependent on ¢) defined on R(X, B))
and taking values in R,(X, B) such that

R(u, B) = g(R(u, B,)), u € E,.

If R (u,, B,) # R(u,, B)) for some u,, u, and S in the path connecting #, and u,,
then the set R,(S, B,) is a nondegenerate interval. The continuous function R(-, B)
is bounded on the compact set S, and the function g is bounded on the interval
R(S, B)).

The function g satisfies the following functional equation

glz)) + - +g(z,) =0

This equation is equivalent to the known Cauchy’s functional equation, and since g
is bounded on a interval there exists a real number m for which g(z) = mz. (cf.
Aczel (1966) pages 34-35). Thus we have obtained

R(u, B) = m(B, t)R,(u, B,)
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In other words, for all 1, B € R' and u € E, the following equation holds
o(u,t + B) — o(u,t — B)

= m(B, t)[ ¢(u, t + B,) — @(u, t — B))] = m(B, H)k(u, t).
Here the set T, = {¢ : u € E,} contains a nonempty interval except for u from a
nowhere dense set, and the functions ¢ and k are continuous. It is clear that
21k(x;, 8(x)) = 0 and that the relation Z7k(x;, 1) = 0 implies ¢ = 8(x).

4. For any fixed ¢, there exists u* € E, such that the set {1 : k(u*, 1) # 0} is
dense in 7,.. (If this were not true, then for all u € E, the set {7 : k(u, 1) = 0}
would contain a nonempty interval, contradicting the property of the function k
established in 3.) Therefore, for all u € E, one obtains with some u*

(4)  o@(u,t+ B) — @(u, t — B) = l(u, )[ p(u*, t + B) — @(u*, t — B)],
where l(u, £) = k(u, H)[k(u*, )]~ ".

Let W,(B) be an infinitely differentiable function such that [3W,(B)dB = 1 and
W,(B) = 0 for |B| > ¢, multiplying both sides of (4) by W,(B — s) and integrating
out B gives
() @t +5) = olut—s)=UuN][gu*t +5) = gu* 1~ )]
with

o.(u, s) = [2¢(u, B + s) W, (B)dB.

Note that ¢,(u, s) is an infinitely differentiable function of s. Therefore /(u, f) is
infinitely differentiable in ¢ within the interval where ¢ (u*, t + s) # @ (u*, t — 5),
¢ arbitrary positive, i.e., is infinitely differentiable in # outside some nowhere dense
set.

Differentiating twice by s on both sides of (5) we obtain

9,1+ 5) = ¢/ (w1 — 5) = Hu, D[ @/ (u*, 1 + 5) = @/ (u*, 1 = 9)].
Differentiating (5) twice by ¢ gives
@/t + ) =@/ (ut =) =1"(u, )] @/ (u* t + 5) — @(u*, 1 = 5)]
+20(u, ) @u*, t + 5) — Q(u*, t — 5)]
+1(u, ) @(u*, t + 5) — @(u*, 1 — 5)].
Here @/(u, t) = 3/30)¢.(u, t), I'(u, ) = (3/31) I(u, t) and the same notation holds
for second derivatives.

The last two relations imply that
I"(u, D] @ (u*, t + 5) — @ (u*, t — s)]

= =2U'(u, t)[ @,/ (u* t + 5) — Q)(u*, t — 5)].
We can assume that /’(u, ¢) does not vanish within some interval.
If it did, then /(u, f) = I(u) for ¢ taking values in some interval, and u € E,. It

would follow that k(u, t) = lu)k(u*, t) which contradicts the properties of the
function k established in 3.
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Thus the equation
11w _ elut 4 s) — @l(utt — )
2 '(u, 1) u*t+s)— @u*t—y3)
is established. It implies, for some ¢#, that

1 ’ ’
-3 [log I'(u, 1) — log I'(u, ty) ]

= log[q.(u*, t +5) — @ (u* 1 — 3)]
_log[(pe(u*9 tO + S) - (pz(u*’ IO - S)]'

Hence the following equation holds:
6) @.(u*t+5) = ou*, 1 —s)=h(u, )] @.(u* 1o + 5) — @.(u* 1, = 5)]

with A(u, 1) = [I'(u, ty)/ I(u, t)]%. From (6) it is clear that A(u, ¢) does not depend
on u.

The equation of type (6) is treated in Aczel (1966) page 176. Its solutions having
probabilistic sense are of the form

o.(u*,s) = D, cosh(as + F)+ C
=Ds*>+ Fs+ C,
where a, as seen from (6), is independent of . From (5) it follows that
o.(u, s) = D,(u)cosh(as + F,(u)) + C.(u)
= D,(u)s*> + F,(u)s + C,(u).
Letting € go to zero shows that
o(u, 5) = Aj(u)e™ + Ay(u)e™™ + As(u)
= B,(u)s* — 2B,(u)s + B;(u).
The form of the corresponding estimators follows easily and this completes the

proof.

REMARK. The same method can be used in the case when the parameter space
is an open interval.

3. Discussion. It is worthwhile noting that the function g(u, 8) in 2° of the
theorem can be considered as a limiting case of the solution 1° as « tends to zero.
Therefore, we will speak here mostly about distributions corresponding to 1°. The
density in this case can be represented in the form

p(u,8) = C(B)B(u)exp{Al(u)e"‘” + Az(u)e_"‘”}
where C(8) = [AN(8)]'/", B(u) = {exp A,(u)}. Distributions of this form are of
exponential type and they have a two dimensional sufficient statistic for the
parameter § (namely X74,(x;) and X74,(x))).
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With the prior density
MB) =[C(8)] " exp{ae® + ae™*},

the Bayes estimator based on the sample of size n is a universal one. This density
belongs to the class of conjugate prior distributions.
If 6 is a location parameter, then the distributions in 1° have the form

(7) p(u, 0) = p(u — 8) = C exp{ — B cosh a(u — 8)}.
In this case the prior density
A(8) = exp{ — v cosh a(8 — 6,)}

can be chosen in such a way that the universal estimator exists for all sample sizes.
Statistical properties of the distribution in (7) were investigated by the author
(Rukhin (1974)). )

The author is not aware of nonlocation parameter distributions for which the
universal estimator exists for all sample sizes. However, it seems that the estimators
given in the theorem may be of use in other estimation problems. Because of the
relatively simple form of these estimators their distribution can be calculated but
resulting formulas can be very messy. The asymptotical distribution can be derived
from Rao (1965), page 321.

Note that the equation (6) has a solution of the form D, cos(as + F,) + C,. This
solution corresponds to the case of estimating the parameter § with values in the
circle. The analogue of the distributions (7) is the known von Mises distribution
with the density proportional to exp{D cos a(u — 6)},0 < u, § < 27ma™ !, With the
conjugate prior density A also corresponding to the von Mises distribution, the
universal estimator exists for all sample sizes.
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