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SOME ALGORITHMIC ASPECTS OF THE THEORY OF OPTIMAL
DESIGNS!

By CHIEN-FU WU
University of Wisconsin, Madison

The approximate optimal design problem is treated as a constrained
convex programming problem. A general class of optimal design algorithms is
proposed from this point of view. Asymptotic convergence to optimal designs is
also proved. Related problems like the implementability problem for the infinite
support case and the general step-length algorithms are discussed.

1. Introduction. The approximate optimal design problem, as first formulated
by Kiefer and Wolfowitz (1959), is an important approach to the optimality
problem of statistical design of experiments. Except for some cases with nice
response functions and design regions, it is very hard to obtain a closed form of the
solution. For different problems quite different techniques have to be used. It is
thus desirable to find iterative methods for obtaining optimal designs which do not
rely on the special structure of each problem. A few methods have been proposed
to cope with this type of problem, but they are either special for one design
criterion or utilize one optimization method.

The purpose of the present work is to investigate the problem more systemati-
cally from the viewpoint of optimization theory and algorithms. The optimal design
problem, in the sense of Kiefer and Wolfowitz, is reformulated as a convex
programming problem with some distinct features. To cope with these distinct
features, a class of optimal design algorithms is developed along a different line
from the standard convex programming methods. In Section 2 both the iterative
methods on a finite support and the changes of design supports are considered.
These two are combined to form a general class of optimal design algorithms.
Several modifications of the algorithms are also discussed. The associated proofs of
convergence to optimal designs are given in Section 3. For the infinite support case,
the implementability problem for the above algorithms is resolved by discretizing
the support set. Related convergence results are given in Section 4. Most of the
algorithms considered above involve a line search along the direction of iteration.
For numerical or statistical reasons, they may be replaced by a prescribed sequence
of step lengths before the execution of the algorithm. In Section 5 some general
convergence results are given for these general step-length algorithms.

A linear experiment is given by

y=0"x+¢
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where 6 is a k X 1 vector, x is from a compact set % of k X 1 vectors and ¢ is a
random error. Errors corresponding to different observations are assumed to be
uncorrelated, with equal variances and zero means. A design ¢ is defined to be a
probability measure on %X and its corresponding information matrix M(%) is
defined to be [4xxT&(dx). Let O be the collection of M(£) for all probability
measures £ on %X. ¢* is called ®-optimal if it achieves

(L1) inf(®(M(£)) : M(E) € M},

Typical examples of ® are ®(M) = — log det M (D-optimality), ®(M) =
tr(AM ~?) for A positive definite and p > 0 (Kiefer’s ®,-optimality or L-optimality
for p = 1) and ®(M) = maximum eigenvalue of M ~' (E-optimality).

Throughout the paper we assume that ® is convex and bounded below on I and
® is differentiable in a neighborhood of 9N* in the space of nonnegative definite
k X k matrices. M* = (M : M € O and ®(M) < o}. For a k X 1 vector v (or
a k X k matrix M), the L-norm |jv|| = Z%_,0? (or |M|| = =% ,_\m}) is assumed.

When & is well defined and differentiable, the & X k matrix V @ is defined as
0O(M)

E)m,.j

(Vo); =

The directional derivative
2 0((1 =~ Q)M(E) + aM(E))lamor = ¥ OME), ME — &)

= foxT V ®(M(§))x¢ (dx) — tr(V &(M(£)) M(£))
where {( V®(M), M> = tr(V ®(M)M) and {V &(M), xxT) = tr(V D(M)xxT) =
xT V ®(M)x since />-norm is assumed.
For convenience in presenting the algorithms, we shall use the following stan-
dard notation:

d(x, &) = —xTVO(M())x,
J(g) = maxxExd(x? g)’
d¥() = —t(V o(M(£))M({)).

In terms of the d-notation, the celebrated general equivalence theorem states that: £*
is ®-optimal < £*{x : d(x, £*) = d(£*)} = 1 & d(£*) = d*(¢¥). (See Kiefer, 1974).
Structurally, problem (1.1) is a constrained minimization problem over a convex
set generated by {xx 7}, cs. Some well-known optimization methods can certainly
be used in generating useful algorithms. But in the design situation, the optimal
design £&*, instead of its information matrix M(£*), is the main concern. This
excludes the use of duality theory, since we want to update the design at every
iteration. Another distinct feature of problem (1.1) is that {xx” : x € X} gives the
set of extreme points of M. When the design support has to be adjusted, iterations
along the directions of the vertices of I seem indispensable. To cope with these
novel features, a class of optimal design algorithms is suggested in the next section.
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2. A class of optimal design algorithms. When X has finitely many points
{x;}7=1, (1.1) can be rephrased as the following:

(2.1 min{ ®(Z7_ AxxT) : S\ =1, A > 0},
This is a typical constrained minimization problem with a nice constraint set, a
simplex. We can certainly apply some well-known methods in nonlinear program-

ming to this problem. Let £, be the initial design measure with positive compo-
nents. In Wu (1978), the following class of iterative directions is considered:

(2.2) h = (1TA1)(Ad) — (1TAd)(A1)

where 17 =(1,- - -, 1),d" =(d,,- - -, d,) with d, = d(x, &) and A is a positive
definite » X n matrix which may depend on &, Some reasons for considering (2.2)
are:

(I) h is a legitimate direction of iteration for probability measures, since

"_h = (ATAD)(ATAd) — ATAJ)(1TAL1) = 0.

D) (/3)P(M(&) + aZis 1 hxx)|amor = Ziaihx” V. O(M(E))x, =
—[(1TA1)(dTAd) — (1T Ad)?] < 0 with equality < d is proportional to 1 (since A is
positive definite) < §; is ®-optimal on X (from the general equivalence theorem).
As long as the initial &, is not ®-optimal, iteration along the direction A will
improve over &,

The A matrix in (2.2) can be quite arbitrary. For different statistical or numerical
reasons, different A’s can be considered. Examples of (2.2) include the gradient
projection method and its normalized version, conjugate gradient projection
method and its adaptive version, Newton and quasi-Newton methods. Derivations
and numerical comparisons of these methods and other popular methods in this
area are made in [11].

For an arbitrary design region %X, the algorithm may start on a proper subset of
% and change its design support when necessary. This is especially needed when
X is infinite. The idea of the general optimal design algorithm is to combine the
iterative methods (2.2) for finite design region and the methods of changing design
support discussed below.

If £ is not an optimal design, from the general equivalence theorem, {x €
X : d(¢, x) = d(£,))} is not included in the support of £, To improve over £, a
new support point y, with a large d(y,, §,) value should be introduced. That is

(2.3) L= (1 — )i, + af,

where £, is concentrated at y, with d(y,, £,) — d%£,) > r(d(¢,) — d%£,)), 0 <r <
1 and a, is chosen to minimize ®((1 — a)M(§,) + aM(§,)) over 0 < a < 1. Equa-
tion (2.3) with r = 1 was suggested by Fedorov (1969) and Wynn (1970). An
important modification of (2.3) is due to Atwood (1973), who suggested choosing y,
with low d(y,, §,) value and then allowing «, to be negative. For design problems
of moderate size, this method is highly recommended in [11].
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Since all the extreme points of the convex set M are of the form xx 7, algorithm
(2.3) only adjusts the design measure along the direction of the vertices of 9.
Therefore, it is called the vertex direction method. The general idea of adjusting
along the direction of the vertices was proposed by Frank and Wolfe (1956) in a
different context. Due to its numerical deficiencies, the F-W method is not used
too often in solving optimization problems. But in the optimal design context, in
order to improve over the current design, some new points have to be introduced.
The vertex direction method emerges as an indispensable tool. In fact, our choices
of y, and Atwood’s choices of a, seem to be new in optimization literature. Other
distinct features of the vertex direction method are discussed in the numerically
oriented paper [11].

The following optimal design algorithm combines methods (2.2) and (2.3). For
design & = (§Y), and h(£) = (h(£)); calculated according'to (2.2), a line search for
Q(M(§ + uh(£))) is performed on [0, i7] where
(24) i = min{£9/|h(£)] : h(&) < 0}.

Note that § + wuh(§) is still a probability measure for 0 < # < & If no optimal
design exists on the support of § and ®(M(£)) can not be improved very much on
its current support, the effort of the above line search on [0, #] is almost futile. So
when #27_h(§)d(x;, §), the directional derivative of @ at M(§) along h(§), is
small, the support of £ is augmented by the Fedorov-Wynn type algorithm and
then method (2.2) is repeated; otherwise, a line search on [0, @] is carried out. This
is the idea behind the following general algorithm. h; is the abbreviation for A(£).

ALGORITHM 1. Choose ¢, > 0, 0<r<1

Step 0. j = 0, choose a §, with ®(M(£,)) < co.

Step 1. Compute 4 and @ of § according to (2.2) and (2.4); if a2 1 h(§)d(x;, &)
< g, g0 to 3; else, go to 2.

Step 2. Let §,, = § + wh; where u; minimizes ®(M(§; + uh;)) over 0 < u < &,
Jj=j+1,gotol

Step 3. If d(§) = d*(), stop; else, choose a y; with d(y;, &) — d*(&) > r(d(&) —
d”(g)), let§,, =(1— a)§ + ajgyj with o; minimizing ®(M((1 — a)§; + agyj )) over
0<a<l,j=j+1gotol

REMARKS. 1. The one dimensional minimization in Steps 2 and 3 can be
replaced by other existing line search methods. The corresponding convergence
proofs can be adapted from Theorem 1 in an analogous way to similar results in
nonlinear programming. Interested readers are referred to [7].

2. The r in Step 3 of Algorithm 1 can be chosen to depend on j. A sufficient
condition on {r;} for convergence to optimal designs is given in Theorem 2.

3. Algorithm 1 can be interpreted as a sequence of minimizations over a
sequence of “polygons” inscribed in the convex set 9. Although it can be
considered as a special case of the interior penalty functions method (see [7]), the
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idea of using the general equivalence theorem to decide when and how to change
design supports (which is equivalent to choices of penalty function) seems to be
new.

A few modifications of the basic Algorithm 1 are given below. A/l the dotted lines
in the following modified algorithms refer to the basic Algorithm 1.

(i) A proper balance between Steps 2 and 3. From Remark 1 after Theorem 1 in
the next section, Algorithm 1 will skip Step 2 after a finite number of steps. To
benefit from the numerical efficiencies of the optimization algorithms in Step 2, a
proper balance between Steps 2 and 3 is needed. We can prolong the sojourn of the
algorithm at Step 2 by taking ¢, small, but the gain caused by doing Step 2 may
become very insignificant. On the other hand, big ¢, valug will drive the algorithm
to “permanent residence” at Step 3 too early. This dilemma is resolved by taking a
sequence {¢;}; in the following way.

ALGoriTEM 1.1.  Choose sequences {¢;}; and {g;}, both decreasing to zero.
Step0. k=0, =0,—-.

Step 1. ———; if #27_ h(§)d(x;; §) < &, go to 3; else go to 2.
Step 2. Same as in Algorithm 1.
Step 3. ———; else, leta,,, < J(gj) — d*&) < a,, set k = max(k, p), choose §,, |

according to (2.3),j = + 1, go to 1.

(ii) Choices of new design points. The main problem with Algorithm 1 is the
evaluation of J(g.) and the search for a new point y;. In terms of the asymptotic
convergence, it suffices to choose a y; with its d-value not too far away from the 4
value. The idea is borrowed from nonlinear programming where an iterative
direction, not far away from the steepest descent direction, is often used.

ALGORITHM 1.2. Let0<r <1, g > 0.

Steps 0, 1, 2. Same as in Algorithm 1.

Step 3. ———; else, choose a y; with d(y;, &) — d*&) > ¢, or r(d(§) — d*§)),

With this modification, the effort of finding y; is substantially reduced since the
choices of y; with d(y;, §) — d”(gj) > ¢, may be achieved in a finite number of
steps.

The following special case of Step 3 in Algorithm 1.2 is of particular interest (see
also Section 5).

Step 3'. ———; else, choose a y; with

Ay §) = dE) _d(r8) - d¥e)
M, — 2] SEXT (e, - 8))
Let d(§) = d(;, ) for some y; € X. Therefore
47, §) — d*(%)
IM(&, = )l
> rld(§) — (&)

d(y, §) — d¥¢) > |M(§, — §)| (from the choice of y;)
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where 7o = inf{|M(&, — §|/|M(& — 9|: x, z € X and B(M(H) < D(M(E)) < )
is positive if ®(M(£,)) is assumed to be infinite for all x € X.

(iii) Reduction of support size. The ultimate goal of the optimal design problem
is two-fold: to find an £* solving (1.1) and having the smallest possible support size.
(If the experiment is designed also to detect incorrect models, the design support
can not be too small. But still, designs with too large support are not desirable.)
The first is what we are striving to solve in this paper. The second is a much harder
problem. Our Algorithm 1 will sometimes reduce the support size if the u; in Step 2
of Algorithm 1 is @ The following modification will increase the chance of
reducing the support size.

ALGORITHM 1.3.

Step 0, 2, 3. Same as in Algorithm 1.

Step 1. ———; if @27 1 h(§)d(x;, §) < &, g0 to 4; else, ————.

Step 4. If ®(M()) < ®(M(§ + k), go to 3; else, let §;, | = §+ uh,j=j+
1, go to 1.

This is particularly useful when # is small and 27_ h,d; is moderate. In this case,
it is very probable that ®(M(¢; + ih;)) is smaller than @(M(£)).

3. Convergence proofs. To simplify the notation, M;, ®;, and A; will sometimes
be used for M(), ®(M(§)) and h(£). 4 and b will be used for d(x;, §) and (&)
when this does not cause any confusion. The following definition is needed in the

proof of Theorem 1.

DEFINITION 1 (Armijo search, [7]). Given 0 < a < 1 and 0 <r < 1, define g, to
be r™ with m the first integer such that

o(M(& + rriah)) — ®(M(4)) < ar™a V ®(M), Zi_ h(§)x,x")
= —ar"aZ]. h(§)d(x, §)
in Step 2 of Algorithm 1 or

O(M[(1 - r™)g + rmg,]) — B(M(£))
<ar™(VO(M), M(§, — §)> = —ar™(d(y; §) — d*(£)),
in Step 3 of Algorithm 1.

S h2dD > ¢, follows from Step 2 of Algorithm 1 and d(y;, §) — d*§) >
rd§) — d”(gj)) > 0 follows from Step 3 of Algorithm 1. This, together with
0 < a < 1 and the definition of tangent, implies that the 3, in Definition 1 is well
defined and positive.

Define F, to be the compact set {M : M € M, ®(M) < K < 00}. Uniform
continuity and continuity on Fy are thus equivalent.

THEOREM 1. Suppose V & exists and is continuous on Fypye ). Let {§} be the
sequence constructed by Algorithm 1. Then ®(M;) converges monotonically to the
optimal value ®* (the ®-value of an optimal design).
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Proor. If {§} stops at &, d&) = d%&) and & is optimal. Otherwise, there
exists an infinite sequence {§} with ®(M(£)) monotonically decreasing to P;
monotonicity is clear from the nature of line minimization and the choice of
iterative directions. If ® is not the optimal value, from the compactness of 9,
there exists an infinite subsequence {£, } which converges to a nonoptimal £'. From
the general equivalence theorem, there exists an a > 0 and an i such that

d(g,) — d¥¢,) >a  forall n >io
(i) Let B; be defined as in Definition 1. In Step 2 of Algorithm 1,
(3.1) O(M;,.1) — ®(M) < (M + i) — (M)
< —aBuZi h(§)d(x, §) < —aBe.
In Step 3 of Algorithm 1,
O(M;.1) — @(a) < o(M[(1 - B)g + BE,]) — (M(5))
(32) < —ap(d(y, §) - d*(§)) < —aBr(d(6) - 4*(g))
< —afra forall j=nm > i

The first inequality in both steps follows from the fact that ; is the line minimizer.
It remains to prove that §; (or ,8,5 ) is bounded away from 0 for j large. This will
imply that {®;} is not a Cauchy sequence, contradicting ®,\®'.
(ii) In Step 2,
o(M(§ + Ban)) — &(M(§)) — (- apaZi_ hPd)
=(VO(M( + )\,Bﬁhj)) -V <I>(M(£j)), BaZi_ h(£)xx>
(33) +(V O(M)), BaZi_ hi(§)xx"> + afaZi_ hPd)
0 < A < 1 from the mean value theorem
= B[V &(M(§ + NBah)) — V D(M(£)), uM(h;)>
— (1 = a)a21_hd?].
Inside the bracket, the second term > (1 — a)g,. Since both M(§) and M(§; + ith)
are in 9N, from the compactness of I, |#M(h;)| is uniformly bounded by a finite
constant M. We can therefore find a 8 such that for0 < 8 <
M(§ + Biahy) € Fomey)
and
|V <I>(M(£j + Bah)) — VO(M(£)) < (1 — a)ey/M.

Here the uniform continuity of V@ on Fg,, is used. Therefore the first term
inside the bracket is < (1 — a)g, and the whole expression in (3.3) is < 0 for
0< B < Bandallj.
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In Step 3,
o(M[(1 - B)% + B, ]) — 2(M(g)) — (—apld(y; §) — 4*E)])
(34) = B[CVO(M[(1 - M) +NBE,]) — VO(M(4)), M(§, — &)
= (1 = a)(d(y; §) - d*()) ],

0 < A <1 from the mean value theorem. Inside the bracket, the second term
> (1 — a)ra for all j = n, > i,. As argued above, we can find a 8 such that the
first term inside the bracket is < (1 — a)ra forall0 < 8 < Band allj = n,
Therefore, the whole expression in (3.4)is < 0for 0 < 8 < B and allj = n,
Let ji, be the first m such that 8 > r™; r is from Definition 1. Therefore,

(3.9 B >r°>0 forall j inStep2
>0 forall j=m >i, inStep3.

2
> .

(i) and (ii) give the desired result. []

REMARK 1. If Step 2 is carried out at the jth iteration, we have, from (3.1) and
(3.5), (M, ,|) — (M) < — af’*,. This can not hold for infinitely many ;’s, since
{®(M;)} is Cauchy. Therefore, Step 2 will be skipped eventually. Algorithm 1.1 was
designed to cope with this problem.

2. The proof of Theorem 1 also applies to a modified version of the basic
Algorithm 1; namely, to replace the line minimization in Steps 2 and 3 of
Algorithm 1 by the Armijo search method of Definition 1. :

3. The assumptions of Theorems 1 and 2 are met by the usual (smooth)
optimality criteria (see [4]). In fact, the second order differentiability condition on
F, with K finite is also satisfied.

Under the same assumption made above, we are going to give the convergence
proofs for Algorithms 1.1, 1.2 and 1.3 simply by adjusting the proof of Theorem 1.
All these modified algorithms share the same conclusion with the basic Algorithm
1.

PROOF FOR ALGORITHM 1.1. If the @ in the proof of Theorem 1 is not the
optimal value ®*, from the general equivalence theorem, lim infj(J(ﬁj) - d”(ﬁj)) >
0. Then the index k in Algorithm 1.1 will be bounded above by some N, and the &
will be bounded below by ey, > 0. This makes the modification the same as the
basic Algorithm 1. We can draw the conclusion from there that lim inf; (d(&) -
d¥)) = 0 and @,\ ®*, etc.

PROOF FOR ALGORITEM 1.2. From Step 3 in Algorithm 1.2, d(y;, §) — d*&) >
min(g;, r[J(gj) - d”(gj)]). Simply by making the following changes, the proof of
Theorem 1 can be used to give the convergence proof for Algorithm 1.2. (3.2) is
replaced by ®(M;,,) — ®(M)) < — af; min(e;, r[d(§) — d*E)) < —
af, min(e;, ra). (3.4) is replaced by (M[(1 — B) + BED — D(M(E)) —
(= aBld(y, §) = d¥E)) < p{lst term (same) — (1 — minley, d(3 §) -
d*g))).
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PROOF FOR ALGORITHM 1.3. At every stage, there is only a finite number of
support points. The algorithm will visit Step 4 of Algorithm 1.3 at most this number
of times and then go to the other steps. By omitting the §; constructed in Step 4, the
resulting infinite subsequences are constructed in the same way as in Algorithm 1.
Its convergence behavior is thus guaranteed by Theorem 1.

If the y; in Step 3 of Algorithm 1 is chosen such that d(y;, §) — d “(g,) = r,(:i(g,)
—-d ”(gj)) with ; — 0, what conditions on {r;} are required for the convergence to
optimal designs? For the sake of simplicity, the following theorem is proved only
for the iterative scheme (2.3). That is justified by the fact that Step 2 of Algorithm 1
will be skipped eventually (from Remark 1 following Theorem 1). Even for the
modified Algorithm 1.1, Step 3 will be visited infinitely many times.

DEFINITION 2. Let S be a subset of R? and f be a function on S. f is called
Lipschitz on S with Lipschitz constant L iff |f(x) — f(y)| < L|x — y| for all
X,y €S.

An analogue of the following theorem in the unconstrained case was obtained by
Zoutendijk (page 48, [7)).

THEOREM 2. Suppose V ® is Lipschitz oﬁ Fouey) With Lipschitz constant L. Let
{§} be constructed according to (2.3) with d(y;, &) — d*&) = r}((i(g) - d”(gj)),
r, > 0 and Ej‘;orjz = oo. Then ®(M)) converges monotonically to the optimal value
o+,

PROOF. Define the convex function gw) = o1 - M, + uM(gyj )) and [0, @]
= {u: g(u) < g(0), u €0, 1]}. # > 0 since r; > 0. In particular, the minimizing
in (2.3) is in [0, #]. It is also true that

(1 —w)M(§) + uM(8)) € Foury for 0<u<a
g(u) — g(0) = ufi V (M, + uM(§, — &)), M(§, — &) dt
= uf VO(M; + uM(§, — §)) — V (M), M(§, — §)> d
—u(d(y;, §) — d¥(%))

<@Lt M(§, — §)IF dt — ur(d(§) — %))
<ulLD/2 — ur(d(&) — d*(£))

where D = 4 max, cop/ M|, 0 < u < .

Define H(u) = u’LD/2 — ur(d(&) — d*(£)). HO) = 0; H(w) > g(i1) — g(0) = 0

and H’(0) < 0. Therefore, ¢, the minimizing u-value of H over the real line, is in
(0, #) and H(#)) = — rj2(¢7j — aL.‘*)2 /2LD.
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/H(u)

/
/
/

T~ glu)-glo)

~

FiG. 1

Figure 1 will help to understand the above arguments.
(M) — B(M)) = g(oy) — g(0)
(3.6) = min{ g(u) — g(0): 0 < u < 7}
< min{H(u): 0 <u < i} = H(d)

= —r(d - d¥)’/2LD.

If lim inf(d, — d*) > 0, (3.6) and £72 o} = oo will imply that Z(®;,, — ®) = —
0, a contradlctlon Therefore, there exist a subsequence {n;} with d - d‘t —0.
From the compactness of 91, there exists a subsequence ;) with §, e convergmg to
some ¢&'. Therefore d(¢) — d%¢) = 0 and <I>(M(£,,I(O))\<I>*. From the monotonicity
of {®,}, this implies that &, ®*. []

This theorem is particularly useful when the line minimization can be executed
easily. Attention should then be focused on the choices of {r;} (or equivalently the
choices of {x;}).

4. Discretization for the infinite support case. When %X is not a finite set, Step
3 of Algorithm 1 involves a search for the maximum d-value over the whole region.
In general this is not implementable on a digital computer. The usual practice is to
choose a finite subset X, of %X, work there for a while and if not satisfied, augment
the %X, and so forth. In this section, theoretical guidelines for choosing X, and the
convergence to optimal designs are given. Since the actual choice of %; will depend
on each specific problem, we do not intend to provide any recipe here. Although
the algorithms described below are not directly applicable, they do give some clues
to the computational aspects of the problem and clarify certain theoretical points.
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Choose an increasing sequence of finite sets X, c X, C ... such that

= - 1
4.1) Sup, e, d(x, §) = d,(§) >d(¢) - n’
for all M(§) € F, C < 0. (F is defined in Section 3). Therefore
sup,d,(£) = d(§).

Existence of such X,’s is guaranteed by the following lemma.

LemMA 1. If @ is continuously differentiable in a neighborhood of F, there exists
a sequence {X,,} satisfying (4.1).

The result follows from the boundedness of V® on F. and the compactness
(hence totally boundedness) of the set {xx” : x € %X }.

Having chosen the %, in (4.1), Step 3 in Algorithm 1 can be modified in various
ways involving finding the maximum over %X, each time. One such algorithm is
presented below.

ALGORITHM 2. Choose ny < 0.

Step 0. j =0, n = ny, choose a &, with B(M(§,)) < co.

Steps 1, 2. Same as in Algorithm 1.

Step 3. If d,(§) — d*(&) > 1/n, choose a y, from X,, with d(y;, §) = d,(§), let
§a=0—-a)§ + ajgyl with a; minimizing ®(M[(1 — a)§; + agyj]) over0 < a < 1,
j=j+1,gotol;else,n=n+1, goto3.

CoMMENT. When the algorithm loops at Step 3, we simply work on %, —
%,

n—1°
THEOREM 3. Let (£} be constructed according to Algorithm 2. Under the assump-

tions of Lemma 1 with C = ®(M,), ®(M,) converges monotonically to the optimal
value ©*.

ProoF. All the steps referred to in the proof are from Algorithm 2.

(i) oo-loop at Step 3: if this happens at §, E,,(gj) —d%¢) < 1/nforall n > n,
implies J(gj) =d “(g-) by (4.1). From the general equivalence theorem, £ is optimal.

(i) It is clear that {®;} is a monotone decreasing sequence. The proof of
Theorem 1 also shows that Step 1 in Algorithm 2 will be skipped eventually
(otherwise the sequence {®,} is not Cauchy). In terms of the asymptotic considera-
tions, we may assume that all iterations take place at Step 3.

If an co-loop at Step 3 does not happen, Algorithm 2 will construct a sequence
{£}% with {n}, the corresponding indices of the set X,,. From Step 3 and (4.1),

| —

d(y), §) — d¥(§) > — > d(§) — 4,(§)-

S
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Therefore,
d(y, §) — d*(¢) > (d(y, &) — d*(¢) + () — 4,(8))/2
= (d(&) — d%&))/2  forall j>N.

This choice of y; is a special case of Algorithm 1 with r = 3. Convergence of the
present algorithm thus follows from there. [J

5. General step-length algorithms. All the algorithms discussed before are

equivalent to the following iterative scheme:

(5.1) &1 =1 — a)§ + o,

where 7, is chosen in Steps 1 or 3 of Algorithm 1 according to various methods
considered there and ¢, is determined by a line search method. For economic
reasons, we may omit the line searches for «; and instead choose a prescribed
sequence {«;} before the execution of the algorithm. An important special case is
the choice o; = (i + 1)~ '. This occurs in sequential design of experiments. Suppose
we have already performed the experiments at {x;}7_, up to the nth iteration
(therefore, M(£,) = n~'S7_,x;x,7) and the next experiment is chosen to be per-
formed at x,,,; then M(£,,,) = (n+ D722 xx” = 01— (n + )"'M(E) +
(n+ 1)"'x,, ,x.,. Here the step length is set at (i +1)~! and no line search
methods are necessary. Such algorithms are called general step-length algorithms.
If & is not optimal for any finite / (therefore a; > 0, for all i), we want to know:
(5.2) What conditions on {«;} will give & — £*?

In optimization theory, this type of problem was treated by Levitin and Polyak
(1966) for the unconstrained case with ® bounded and by Polyak (1967) for the
constrained case. In the context of optimal design theory, it was treated by
Fedorov (1969), Wynn (1970), Tsay (1976) and Wu and Wynn (1978). The results
of this section are closely related to those in [12] but are different in form.

Since the ®-sequence is no longer monotone, the method of proof in Section 3
cannot be used here. A further complication is the unboundedness of @ on a
portion of 9. This is typically true for D-optimality or ®,-optimality. To cope
with this novel feature, new techniques are developed in the proof of Theorem 5
and in [12]. The author believes that the technique will be useful in other
optimization problems which share the same feature.

The following notation is needed for the proof of Theorem 4.

Fe={M:M €M, ®M)<K).
0Fy = boundary of  Fy in 9.
dist(4, B) = min{|M, — M,|: M, € 4, M, € B for A,B C 9.}
D =4 max{|M*: M € O}.
P(K) = maxy ep| VO(M)|(= maxy cop| VO(M)|if @ is convex).
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Let the o, and «; in (?.1) be chosen according to the following:

(5'3) d("'lia ﬁ,) - d#(gi) = ri(d_(gi) - dﬁ(gi))? o, r; >0,
a/r;—>0 and Z2 a1 = o,

where d(n;, §) = — <V ®(M(E), M(n)).

THEOREM 4. Suppose V @ is Lipschitz on Fy. with Lipschitz constant L(K'),
d(My) < K <K' < 0. If
' (54) sup;e;/r; < 2(K — ®*)/L(K')D
and

sup; o; < (K’ — K)/P(K,)Dl/z,

then the sequence constructed according to (5.1) and (5.3) lies in Fy and ®(M(§))
converges to the optimal value ®*.

ProoF. The idea of the proof is to bound the sequence from going too far and
proceed as if @ is bounded.
(i) M¢) € Fy= M) € Fy:
M — M| = a|M(n; — §)| < diDl/z < (K’ — K)/P(K').

It is then sufficient to show that (K’ — K)/P(K’) < dist(dFy, dF.). This is geo-
metrically quite obvious. An analytic proof is the following.
Choose M € dFy, M’ € 0F,. and let g(u) = ®(1 — w)M + uM’).

0<g(l)—g(0)=K — K= [{XVOM+ uM' - M)),M' — M) du
<maxgc,oi| VO(M + u(M' — M))| - M’ — M| < P(K')- |[M" — M|
This implies that
(5.5) dist(dFy, dFy) > (K’ — K)/P(K').
(ii) M, € Fy for all i: since M(§,) € Fy by assumption, we need only to show

that M(¢) € Fy implies M(§,,,) € Fy for any i. From (i), M(¢,,,) € Fy. and the
Lipschitz condition on F. can be invoked.

(M) — B(M,) = o[ V B(M(£) + to;M(n; = §))
—VO(M($)), M(n; — £)) dt + a( V &(M(£)), M(n, — §))
(5.6) < o L(K")[steo| M(n) = M) dt — a(d(n,, §) — d*(£))
< a?L(K')D/2 — ar(d(&) — d*(£))
< —ar(®(M(¢)) — ©* — o, L(K')D/2r,).
The last inequality follows from the convexity of .

Case 1. If &M, > ®* + o, L(K')D/2r;, then ®(M,, ) < ®(M)) < K from
(5.6).
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Case 2. If ®(M)) < ®* + o, L(K')D/2r,, then
O(M,,)) < (1 = ar)®(M,) + a,r,®* + o?LD /2 (from (5.6))
< (1 = ar)(@* + o,LD/2r) + o;r;®* + «?LD /2
_ 2K — &%) LD _
B LD 2
(iii) lim inf(®(M;) — ®*) = 0: from (ii) we can apply the Lipschitz condition to
all the M’s.
If lim inf,(®(M;) — ®*) = a > 0, from (5.6) and «;/r;, > 0, there exists an N,
such that

1
®* + o,LD/2r; < O* + K.

d(M,,,) — (M) < -—a,-r,--g— forall i> N,
This implies that 32 (®(M,, ) — ®(M))) = — (a/2)ZZ oa;7; = — o0, contradict-
ing the fact that ® is bounded below.
(iv) lim; ®(M;) = ®*: from (iii), there exists a subsequence {n;} such that
®(M, ) — @*. For each i, either ®,,, < ®, or &, < ®* + o, L(K)D /2r, holds (from
(5.6)). By induction, this implies that

0, < max, ;i1 {2, 4}

where A4, = ®* + o L(K)D/2r, and n; < k. Since both ®(M,) and sup;,, 4,
converge to ®* as i — oo, lim; ®(M,;) = ®* is established. []

When V @ is Lipschitz on 9L, (i) and (ii) in the above proof are not necessary, so
we can conclude the same result without assuming (5.4).

COROLLARY 1. Suppose V ® is Lipschitz on . Let {£} be constructed according
to (5.1) and (5.3). Then ®(M(&)) converges to the optimal value ®*.
For r, > r > 0, (5.3) becomes

(5.7 >0, o—>0 and ZIX,a = .

This is the condition under which the same type of problem was treated by the
aforementioned authors. In [12], (5.7), without the extra assumption (5.4), is shown
to be a sufficient condition for optimality convergence for many well-known
optimality criteria.

The undesirable upper bounds in Theorem 4 can be removed by imposing a
further condition either on ® or on the choices of u, in (5.1). The first approach was
adopted in Wu and Wynn (1978). The second approach originated with Shor and
was further expounded by Polyak (1967). The following is a restatement and
extension of Polyak’s results in the design context.

DEFINITION 3. A linear functional u of R? is a support functional to a subset Q
of R? at the point z, iff {u,z — z,) > O for all z € Q.

If ® is convex and differentiable in R? and Q = {z : z € RY, ®(z) < B(zy)},
then —V ®&(z,) is a support functional to Q at z,.
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DEFINITION 4. Let %) be a subset of R. z, € 9 is a projection of y € R onto
D iff |y — zo| = min{|y — z] : z € D}. z, is denoted by Pg(y).

Two design sequences are constructed by utilizing the concept of a support
functional. Throughout this subsection, we assume that ® is convex and continuous
in 9, a neighborhood of 9N in the space of k X k matrices

A, ME,) = Poyp(M(E) + o,N,/|N,|) where o; > 0, N, is a support functional
to the set {M : M € I, (M) < O(M(£))} at M(§).

B. M., ) = M) + o(M(n,) — M(&))/|IM(n; — &), M(n) € M, 0<
o < |M(n) — M(&)| and M(n,) — M(&) is a support functional to the set

{M: M e Ny, ®(M) < D(M(E)))
at M(§).

THEOREM 5. For M(§) constructed in A or B and {«;} satisfying o; >0 and

22 00y = 00, D(M(E,)) converges to the optimal value ®*.

This result is essentially the same as Theorems 1 and 2 of Polyak (1967). In the
design context, a proof was given in Theorem 8 in Wu (1976). All the technical
details are omitted here.

Two choices of the support functional in A or B are given below.

ExaMpPLE 1. When & is differentiable, the N, in case A can be taken to be
=V ®(M(£)). But the projection onto M which defines M(§ . ,) involves a search
over 9.

ExampLE 2. If the boundary of O in £(9N), the linear manifold spanned by
M, is equal to { xxT:x e X}, the convergence condition for the iterative scheme
(5.8) is quite interesting.

(5.8) §r=(0-0a)§ + a,"fx,’
where x; is chosen to maximize [d(x, &) — d*(¢)]/|xxT — M(¢)| over %. In order

that Theorem 5 can be applied, we have to show that M(§, — §) is a support
functional. From the above assumption on the boundary of 9,

—(VO(M), xx" — M,

max
xEX |,XxT _ MI <V ( )
— (M), M — M)
(5.9) | ~ Mmoo M — M|
_ _< V(I)(Mi)’ M - Mi>
= maXMesJK |M — M' .

The last equality follows from the scale invariance of the normalized directional
derivative in (5.9). Therefore x,x,7 — M(£) lies in the projection direction of
—V ®(M,) onto £(9MN), i.e., there exists a A, > 0 such that x,x,” — V &(M,) is the
projection of —A;, V &(M,) onto £(IN). If the initial M, is nonsingular, all the
succeeding M;’s are nonsingular and hence lie in the interior of O in L(IMN).
=NV ®(M,) — (x;x” — M,) is therefore orthogonal to £(9N).

(=NVO(M,) — (xx" — M),M — M)=0 forall M € 9N.
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From the convexity of ®, we also have
(VO(M), M — M)><0 forall M eI, satisfying ®(M) < ®(M,).

Together they give {x;x,” — M, M — M,» > 0 for all M € 9, satisfying ®(M) <
®(M;). Therefore x,x,” — M, is a support functional to the set {M: M €
Ny, ®(M) < ®(M;)} at M,. According to Theorem 5 with design sequence con-
structed in B, the convergence conditions are:

alxx” — M| -0 and  Z2galxx" — M| = oo.

If x; is chosen to maximize d(x, &) — d*(£), it does not necessarily satisfy the
assumptions of Theorem 5 and hence the result there can not be applied. Here we
do see the difference of the asymptotic behaviors of procedures involving two
different choices of x;: to maximize d(x, &) — d*(§) or [d(x, &) — d*&)]/|xx" -
M)
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