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THE CONVERGENCE OF GENERAL STEP-LENGTH
ALGORITHMS FOR REGULAR OPTIMUM DESIGN CRITERIA

By CHIEN-FU Wu! AND HENRY P. WYNN
University of California, Berkeley and Imperial College, London

For a regular optimality criterion function ®, a sequence of design
measures {£,} is generated using the iteration £,,, = (1 — a,)¢, + a,%,, where
£, is chosen to minimize V ®(M(£,), M(£)) over all ¢ and {a,) is a prescribed
sequence of numbers from (0, 1). This is called a general step-length algorithm
for ®. Typical conditions on {a,} are a, — 0 and X ,a, = . In this paper, a
dichotomous behavior of {£,} is proved under the above conditions on {a,} for
® satisfying some mild regularity conditions. Sufficient conditions for conver-
gence to optimal designs are also established. This can be applied to show that
the {£,} as constructed above do converge to an optimal design for most of the
trace-related and determinant-related design criteria. )

1. Imtroduction. Since the introduction of optimum design algorithms (Wynn
(1970, 1972), Fedorov (1972)) there has been a successful search for algorithms for
more general optimality criteria (Fedorov and Malyutov (1972), Gribik and
Kortanek (1977), Whittle (1973), Atwood (1973, 1976 a, b)). This has been stimu-
lated in part by the parallel development of the general equivalence theorems of
Kiefer (1974). Some special algorithms have also been developed for the original
D-optimality criterion (Silvey et al. (1978), Titterington (1976), Tsay (1976)).

More recently still the thesis of one of the present authors (Wu (1976)) draws the
connection with the vast area of optimization theory and algorithms (see for
example the books by Luenberger (1973), Polak (1971), Mangasarian (1969)).
While this must inevitably lead to some simplification of the subject, the authors
believe that it is useful to highlight the special features of the optimum design
algorithms and even that optimization theory may gain a little in the process.

As is usual we consider a convex functional ® on the space of £ X k moment
matrices M(£) = [m,(£)], ; where ‘

m;(§) = fofi(x)fi(x)é(dx)

and £ is a probability measure on the compact set X (the design region) on which
the f(x)’s,i = 1,- - -, k, are continuous.

The purpose of optimum design theory is to find design measures which are
®-optimal, that is to achieve

inf ®(M(£))
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over all probability measures £ on X. Let 9N be the set of all M(§) which is a
compact convex set in R*. At this point we could abandon all reference to
moment problem and design and treat the problem purely as a convex program-
ming problem. We shall, rather, retain the design notation to draw out the special
features. Three of these are:

(i) The measures with support at a single point play a special role in that they
give the extreme points of IN.

(ii) The functional ® may be + co at some points of I, typically for singular
M($). For example for D-optimality ®(M) = — log det(M) = co when M is singu-
lar.

(iii)) ® may have some special statistical meaning.

We shall use the directional derivative notation

VO(M,, My) = lim, - 3 ((1 — @) M, + aby)

2,
V20(M,, M,) = lim %12’((1 — @) M, + aM)
[s4

a—0t

when these quantities exist. ,

Necessary and sufficient conditions for ®-optimality are discussed in Kiefer
(1974) under various assumptions on ®. Briefly they stem from the necessary and
sufficient condition for local minimum:

Vo(M(E*), M(§) >0  forall M(£)in ON.

The algorithms in this paper are of the kind discussed by Wynn (1970), Fedorov
(1972) and Tsay (1976). A sequence of measures is generated using the iteration
(11) £n+l = (1 - an)gn + anzn
in which £ is chosen to minimize V ®(M(£,), M(£)) over all £ and the general
assumptions:

(1.2) a, —>0and ZFa, = c© 0
When & is differentiable at M, i.e.,

N
R
N

v oM, =[ “’(M')] ,

am,.j
V ®&(M,, M,) is linear in M, — M,. That is,
VO(M,, My) = tr(V &(M,) (M, — M))).
For this reason min,, V ®(M,, M,) is achieved in such cases when M, is an
extreme point of N in which case

M, = f(X)f(x)"
for some X in X, i.e., F)T V B(M,)f(X) = min, co f(x)7 V DM )f(x).



CONVERGENCE OF STEP-LENGTH ALGORITHMS 1275

~ Thus algorithm (1.1) has the following form:
(13) £n+l = (1 - an)gn + angx,,

where £, is concentrated at x, with

(14) J0e)T V S(M(E,)f(x) = min, co f(x)7 V @(M(E,))f(x).

An important special case of (1.3) is the choice @, = (n + 1)~'. This occurs in
sequential design of experiments. Suppose we have already performed the experi-
ments at {x;}7_; up to the nth iteration (therefore, M(§,) = n=137_ x,xT) and the
next experiment is chosen to be performed at x,,, with x,,,; chosen accord-
ing to (14); then M(,,,) = (1/(n + D)Zitxx” = (1 = (1/(n + D)HME,) +
(1/(n+ 1))x,,,x7L . General results proved in this paper will give an answer to
the optimality of the above sequential procedure. Algorithms of this general kind
are also useful in conjunction with a faster finite dimensional algorithm given by
discretizing the design space.

Fedorov (1972, (2.6.21), (2.10.12)) gives the algorithm for D and L-optimality but
without proof. The proof for the D-optimality case has been known to the second
author for some years. Tsay (1976) gives it in detail following Wynn (1970) closely.
The proof for L-optimality has not been given except in the special case a, =
1/(n + 1) which requires further analysis (see Pazman (1974), Wynn (1975)).

The main purpose of this paper is to discuss the asymptotic behaviors of the
algorithms mentioned above. A dichotomous theorem is proved in the next section.
Sufficient conditions for convergence to optimal designs are discussed in Section 3.
In the last section, we will show that most of the trace-related and determinant-re-
lated family of criteria satisfy the conditions in Section 3, including L-optimality
and Kiefer’s ®,-optimality. Under some additional conditions the result also holds
for nonsingular D,-optimality. Thus the convergence problem of algorithms (1.1) is
settled for most of the commonly used optimality criteria. It will be seen that the
main difficulty is the unboundedness mentioned in (ii) above. There seems to be
little work on similar problems in the optimization literature. (For more general
results in the framework of convex programming, see Wu (1976, 1978).)

2. A general result. For clarity we split the main result into two parts, first
stating a theorem which emphasizes the possible unboundedness of the algorithm
and then giving extra conditions in the next section which prevent this possibility.

Our initial regularity conditions are:

(A1) @ is convex and bounded below on 9N (but possibly + o) and achieves
its minimum at M(£*) in 9.
(A2) For any constant K (> min @), let
W(K)={M €9 : ®(M) <K}.
(i) V*®(M,, M,) is continuous in M, (and M,) for finite ®(M,) and (i) sup
(| V2O(M,, M,)| : M, € W(K), M, € O} = B(K) < oo.
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These are straightforward regularity conditions given in terms of directional
derivatives. Condition (A2) can be weakened, following similar conditions in
optimization theory, to a Lipschitz condition on V®. This theory is developed by
Wu (1976, 1978).

DicHOTOMOUS THEOREM. Under (Al) and (A2), define a sequence { M(§,)}¢ in
O satisfying
£n+l = (l - an)gn + angn
Jor which
(i) &, achieves inf, V ®(M(E,), M(§)),
(i) 0<a,<1,a,—>0and ZFa, = .

Then either
(@) B(M(E,)) > P(M(EY)
or
(b) there is a subsequence §, with

<I>(M (ﬁn,)) — 0.
PrOOF. Suppose that (b) does not hold. Then there is a K such that M(§,) €
W(K) for all n. Expanding by a Taylor series in a,:
21 Q(M(E,1) = 2ME,)) + o, V O(M(E,), M(E,))
+ai VO((1 - &, )M(E,) + &,M(E,), M(E,))

for some a, with 0 < &, < a,,.
Now assume that

O(M(E)) > d(M(¢*) + ¢ forall n

By convexity and the definition of £,

0 <e < O(M(£)) — P(M(£))
22) < -V O(M(E,), M(Y))

< =V o(ME), ME,)).

But the V?® term in (2.1) is bounded. Thus since a,, — O there is an n, such that for
all n > n,
(23) B(M(E,+1) < AME)) — a5
Summing (2.3) and using 3a, = oo we see that ®(M(£,)) > — oo, contradicting
(A1). Thus there is an infinite subsequence M(§,) with ®(M(§,)) — D(M(EY)).

Now from (2.1) and the boundedness of - V2® there is an n, such that for all
n>n;

(2.4) O(M(§,+1)) < ®(M(E)) + &

However, also using (2.1), (2.2) and the boundedness of V?®, there is an n, such
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that for all n > n,
(2:5) D(M(E,) > D(M(E¥)) + &
implies
Now choose an n; > n,, n, such that

B(M(£,)) < O(M(£)) + ¢
and (2.4) and (2.5) force

D(M(E,)) < D(M(E¥)) + 2¢
for all n > n,. The theorem is established. []

3. Conditions to eliminate unboundedness. Throughout this section, the condi-
tions of the dichotomous theorem are assumed. To eliminate conclusion (b) in that
theorem and thus give convergence to the optimum, additional conditions are
needed. A few of them are listed below.

(C1) @ is bounded above on 9.

From the proof of the theorem this condition eliminates (b) trivially. However, it
typically does not hold for many optimality criteria used in the optimal designs of
experiments if convexity is to be preserved, as has already been mentioned.

(C2) ®(M(£,)) is monotonically decreasing.

The condition clearly removes (b) since the whole sequence is bounded by the
initial value. But it is also inappropriate since condition (ii) in the theorem does not
in general give monotonicity. Monotone or optimum step length algorithms must
be treated separately (see Fedorov (1972), Atwood (1973, 1976 a, b)). The next
condition is more properly stated as a theorem.

(C3) For any initial &, with finite ®(M(£,)) there is an &, depending on &, such that
if a, < & for all n, (b) cannot hold.

Since the proof is much more involved, it will be given in the appendix. A more
general result for algorithms not necessarily of the form (1.1) can be given in the
general framework of convex programming. The undesirable condition @, < & in
(C3) can also be removed via a theorem of Polyak (1967) if ME) — ME,) is
chosen, instead, to be a “support functional” to W(®(M(£,))). (For details see Wu
(1976, 1978).)

This condition is not very helpful in practice since it requires additional searches
to get a suitable @. The following condition (C4), motivated from the original
proofs for D-optimality, is more useful. It implies that there is an i; such that
a, < (), the @ in (C3), for all n > i;. An alternative proof that (C4) removes (b)
can be given based on this connection with (C3).
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(C4) There exists a K < oo such that for any M(§) & W(K), the largest a*(§)
which achieves

infoeaer ®((1 — @) M() + aM(3)),

with & chosen to minimize V ®(M(£), M(£)) over all £, is greater than a positive
constant 7 depending only on K.

This says that the optimum step is bounded away from zero when ®(M(£)) is
bounded away from the infimum. From the convexity of ® and V ®(M(£), M(§)) <
0, d((1 — a)M(¢) + aM()) is monotonically decreasing in 0 < a < a*(£).

PROOF (that (C4) eliminates (b)). Take K in (C4) and K’ such that 0 > K’ > K
> min ®. Assume (b) holds. We can find a subsequence {M(§,)}5Z, with (i)
M(E,) & W(K) for all s > 0, (i) a, <71 < a*(,) for all n > n, (111) d(M(E,)) <
<I>(M(£ ., ) foralls > 0.

Now (ii) and the remark after (C4) imply that for r > 0

B(M(¢, ) > (M, 1 11))

for all M(§, .,) € W(K). Therefore in order for (iii) to be true the sequence must
return to W(K) between n, and n,, ,. That is, there exists a largest integer n, with
n, < n; <ng,y and M(§,) € W(K). For this n;, we have

B(M(%,,,)) > ®(M(¢,,)) (by condition (C4)).

Thus we have found an infinite subsequence { M(§,)}Z, such that
M(t,) € W(K)  forall s>0
(3.1) and ®(M(%,,,)) - .
From |[M(,) — M¢,,.)| <a, -2 max{|M|: M € 9} -»0 and dist
(OW(K), 3W(K")) > § > 0 (from (5.1)), there exists an n, such that
M(¢,.,) € W(K')  forall n) >n,.
But then ®(M(§, .. )) is bounded in W(K’), contradicting (3.1). ]
(C4) holds true for D-optimality. In this case

_d@®) -k

k(d® - 1)

where d(£) = sup, co f(x)"M(£)"'f(x) > k + & for some § >0 and all M($) &
W(K) (see the inequality in Wynn (1970), (4.5) or Fedorov (1972), (2.5.13)).

The possible difficulty of verifying (C4) for many different criteria has led to a
search for simpler conditions in terms of the first and second derivatives. What is
needed is a condition which essentially controls the behavior of the second
derivative for large ®. We give in (C5) and (C6) two such conditions. In (C5), a
decreasing function of ® is well behaved and in the specialized version (C6) is
exhibited a precise relationship between first and second derivatives. This has

a*(§) =
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proved useful in practice (see Section 4), being satisfied by some well-known
criteria. Conditions of this kind which control the behavior of unbounded function-
als do not seem available in the optimization literature.

(C5) There exists a strictly decreasing continuous function 4 of ®(M) and a
constant K < oo such that

() Y(M) = h > ®(M) is uniformly continuous on IN..
(i) VA(M, M) exists and > 0 for M & W(K) and M achieving inf,, V
(M, M).

PROOF (that (CS5) eliminates (b)). We prove this by showing that (C5) = (C4).
With no loss of generality we will assume that sup ®(M) = oo and A(0) = 0.

An equivalent condition to (C4) will be verified: there exists a positive 1
depending only on K such that ®((1 — a)M + aM) is | in « for 0 < a < 1 where
M achieves inf,, V ®(M, M,) and ®(M) > K’ for some K’ > K.

From (ii) and A, Y((1 — @)M + aM) is increasing in a provided it does not
exceed A(K) (h(K) > 0).

Let D = 2 sup{|M| : M € 9} and s(¢), the reverse modulus of continuity of ¢,
be inf{|M, — M,| : [W(M)) — Y(M,)| > t, M}, M, € IN}. From uniform continu-
ity of ¢, s(¢) > 0 for ¢ > 0.

Thus if Y(M) <2h(K) and n = s(h(K)/2)/ D, then Y((1 — a)M + aM) is 1 in
a for 0 < a < 7. This is equivalent to

((1-a)M+aM) is | in a for 0<a<ny
for B(M) > h“(h—(zK—)) - k" 0

The function 4 in (C5) should be chosen to make 4 ° ®(M) a nice function of M
and also A(x) — 0 fast as x — c0. We found A(x) = e~ % or x ¢ for some large
value of d particularly useful.

For h(x) = e~ %, (C5) becomes a very simple condition, which therefore also
eliminates (b).

(C6) There exist positive d and K such that

d(V (M, M))’ >V*&(M, M) forall M & W(K)
and M achieving inf,, V ®(M, M)).

4. Applications. From the results in the previous sections, in order to show
that the {£,} constructed in (1.1) converge to an optimal design (conclusion (a) in
the dichotomous theorem) we need to check the sufficient conditions discussed in
Section 3 for various criteria, and the regularity conditions (Al) and (A2). For
Examples 1 and 2, (A1) and (A2) certainly hold.

ExamPLE 1. ®(M) = tr(M ~') (A-optimality criteria).
We need the slight assumption that there is at least one nonsingular M in 9.
The following fact will be needed in checking (C6).
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Let A, > - - - > A, be the ordered eigenvalues of M ~'. We can find constants ¢
and ¢ independent of M such that
(4.1) A} < sup, f(x)"M ~(x) < eAl

The RHS inequality follows from the boundedness of |f(x)| over %X. The LHS
inequality follows from the following simple argument:
Let M 2= 3k_A%,zT be the spectral decomposition with z,,- - -,z the

normalized eigenvectors of M ~2. Then
supa f(x)"M ~(x) = supy Sk NH(f(x)"z)”
> supy AH(f(x)"2,)’
> (a0 (fx) "2, E(dx)

where M(¢) is some fixed nonsingular matrix in 9N,
=ANzIM(¢)z, > A

where ¢ is the minimum eigenvalue of M(£), since |z,| =L
Now with ®(M) = tr(M ),

VoM, M) =u(M*(M—-M))
VM, M) =2te(M¥(M—- M)M (M- M)).

Since M achieves inf u, VO(M, M), M = f(%)f(x)" where x achieves
sup, f(x)"M ~*(x). Thus (V&(M, M)y’ = (tr M ™' — (%)M “H(2))* > (A —
SkA)? for large A, (from (4.1)). This shows that (V &(M, M))? is of the order A{ as
A, — 0. It is also clear that V2®(M, M) is at most of the order A as A, — co. Thus
(V ®(M, M))* dominates V2®(M, M) eventually as A; — co. Since tr(M N> oo if
and only if A, — oo, condition (C6) is established.

EXAMPLE 2. ®,(M) = tr(AM ~%) for A positive definite and p positive integer
(Kiefer’s @,-optimality criteria).

Convexity of ®,(M) was shown in Kiefer (1974). By a linear transformation on
9N, we can assume, with no loss of generality, that 4 = I.

Vo,(M,M)=pte(M?" (M- M))
V2(I)p(M$ M) =p2r+s=p+2; rs>1 tr[M_’(M - M)M_S(M - ﬁ)]

With the same technique developed in Example 1, it is easy to see that
(V®,(M, M)> ~A}**D and V2@, (M, M) ~A{*? as A, - 0. Condition (C6) is
thus established. The result actually holds for any p > 0, but the calculation of V @
and V?® is much more tedious.

ExaMPLE 3. ®(M) = — log det M*, M* is the information matrix for estimat-
ing the first s (s < k) parameters of 0 (D,-optimality criterion).
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For nonsingular M, make the partitions
fx) = fi(x) , _ M, M, M_1=[M” M'2J
fa(x) M5 M, M M2

where f,(x) is s dimensional and M,, and M are s X s. (Therefore det M* =
det M /det M,,.) Define

d(x, M) = f(x)"M ~'f(x), dy(x,.M) = f(x) Mz f(x),
d*(M) = max(d(x, M) — dy(x, M)) = d(%, M) — dy(X, M) = d*(%, M).
The following conditions are sufficient for convergence of the algorithm in the

dichotomous theorem.

42) (1) M) and M(£*) (the information matrix of an optimal £*) are nonsin-
gular.

(2) For any nonsingular M,
() sup{d(X, M) :d*(M) < K < o0} < 0

.. . (X, M T
(i) lim sup———d(x, %) < 1asd*(M)— oo.
Since the proofs in Sections 2 and 3 only involve the convex combinations of

{M(&)}s° and M(£*), from assumption 1, we can restrict the following discussions
to nonsingular M’s.

V&M, M) = min,, V&M, M,) = —max,(d(x, M) — dy(x, M) — s)
= — (a*(M) - 5),
VOM, M)=tr M~ '(M —M)M (M — M)
—tr My, '(My, — My)M3; (M, — M)
= (d(x, MY’ — 2d(%, M) + k) — (dy(%, M)’ — 2dy(%, M) + k — )
=5+ d*(M)(d(x, M) + dy(%, M) — 2), '
where M = f(x)f(x)T. . _

According to assumption 2(i), V2®(M, M) is bounded for d*(M) < K < o (this
is equivalent to ®(M) < K’ < o). Assumption (A2) is thus satisfied while it is
known that (Al) is true for D, -criterion. The sufficient condition (C6) is equivalent
to: there exists ¢ < oo such that

c(d(%, M) — d(%, M)) > d(%, M) + dy(%, M)
for all M with ®(M) > K, K a constant. This is obviously implied by assumption

2(ii). Thus under assumptions 1 and 2 we have convergence to optimality for this

.

Using the stronger results which are available for more specific sequences such
as a, = 1/(n + 1) (see Pdzman, 1974), the conditions 2(i) and (ii) in (4.2) may be
avoided. However, in the absence of such results for the present fairly arbitrary
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sequences, conditions of this kind may be necessary to control the behavior of Ve
for large and small ®.

We now show that 2(i) and (ii) in (4.2) do indeed hold for certain one-dimen-
sional polynomial regression models. Notice first that

d,(x, M)

43 e
(43) d*(x, M) ¢
for a finite constant ¢ independent of M implies both 2(i) and 2(ii) of (4.2).

Consider polynomial regression on an interval [— 1, 1], so that

fi(x) = x*~/ j=1--- k.
The first s parameters are to be estimated. Let £ be a probability measure on

[—1,1] for which M({) is nonsingular. Let py(x),- - -, Pi_1(x) be the first k
orthonormal polynomials with respect to £ Then

d(x, M) = ZjZ5p/(x)
d*(x, M) = 2jZ;_ 7/ (x)
dy(x, M) = 2257 p}(x)-

Thus
) 4, M) < DI A fz‘é“ff(%)
ar(x, M) Sk} p (xk N, pi-1(%-1)
where %; achieves sup;_; y p,(x)| forj = , k — 1. Thus (4.3) is implied by
P,+1( +1)

where ¢, is a constant independent of £. Such a bound on the rate of increase of
orthonormal polynomials seems unavailable in the literature so we prove it here.

Write
p=k(x—a) - (x—a)
Piy1 = kj+1(x -B) - (x- '81‘+1)’
so that
k;
Tk

Y+ 1

(%) (5 — ) - (5~ o)l
Pj+1(_‘+l) |(xj+l_B)' t (f»_,, _:Bj+l)|‘
Now [(X; — @) - - - (X — a)| 2/ since the zeros of orthogonal polynomials on
[—1, 1] are contamed in [—1, 1]. Furthermore
|fj+1 — B > sup—, 1]|pj+l(x)|/sup[—l, 1]|P;+1(x)|

>@G+1)73
the last inequality following from a theorem of Markov for arbitrary polynomials
on [—1, 1] (see Todd (1963), (4.1)). It remains to prove that |;/(k; | is bounded.
This can be shown using properties of Hankel determinants but the following is
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neater. Since p,,(x) — (Kj.1/k)xp(x) is a polynomial of degree j, multiplying
through by p;, ,(x) and integrating gives

=L lxpj(x)pj+l(x)§(dx),

K
so that

< LB )] 2y a(x)16(d)

<1,
by the Cauchy-Schwarz inequality.
By collecting together the last three inequalities, we have

(%)
Pj+1( +1)

This establishes (4.4) and (4.3) and hence conditions 2(i) and (ii) in (4.2) for this
example. The slight generalization to an arbitrary interval [a, b] is straightforward.

kit
< V(@ + 1)%D,

APPENDIX

The following notation is needed in the proof:

OW(K) = boundary of W(K) in 9,

dist(4, B) = min{|M, — M,| : M, € A, M, € B} for 4, B C I,

D =2max{|M|: M € 9},

P(K) = sup{| VO(M)| : M € W(K)} (= sup{|VO(M)| : M € IW(K)} if ®is
convex) where /2-norm is assumed throughout.

PROOF (that condition (C3) eliminates conclusion (b)). Choose K, K’ such that
o >K >K > ®M,) and a = min(K — 9*)/B(K’), (K’ — K)/D - P(K"))
where ®* = inf(®(M): M € I }.

There are three stages to the proof. In the first stage we prove that M(§,) €
W(K) implies M(£,,,) € W(K’). In the second stage the stronger result that
M(£) € W(K) for all n is established. The third stage is to appeal to the
dichotomous theorem.

(i) ME) € WK)= ME,.,) € WK
IM(&,40) — ME)| = a,|M(E) — ME)| < e, D <a-D < (K"~ K)/P(K').

It remains to prove that (K’ — K)/P(K’) < dist@W(K), dW(K")). This is geomet-
rically quite obvious. An analytic proof is the following.
Choose M € IW(K), M’ € 0W(K’) and let g(u) = ®((1 — w)M + uM’).

0<g(l) —g(0)=K—-K

= [KVOM + u(M' — M)),M' — M) du

< maxgc, | VO(M + u(M' — M))| [M' — M|
< P(K)|M’' - M|.
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This implies that
(5.1) dist(@W(K), dW(K")) > (K’ — K)/P(K’).
(i) ME,) € W(K) for all n.

Since M(§,) € W(K), we need only to show that M(§,) € W(K)= M(§,.,) €
W(K) for any n. From (i), M(£,,,) € W(K’) and the upper bound B(K’) of V>®
over W(K’) can be invoked. This upper bound plus (2.1) gives
(5.2)

B(M(E,,1) — B(M(E,)) < o, (V O(M(E,), M(E,)) + a,B(K))
< a,(—®(M(£)) + ®* + a,B(K’)) from (2.2).
Case 1. If ®(M()) > ®* + a,- B(K’), then
B(M(&,,1)) < ®(M(E,) < K from (5.2).
Case 2. If ®(M(£)) < ®* + a,- B(K’), then
O(M(E,, ) < (1 — a,)B(M(E,) + a,®* + a2B(K’) from (5.2)
< (1 - a,)(®* + ,B(K")) + a,®* + o?B(K’)
= ®* + q,- B(K') < ®* + a-B(K') < K.

(iii) From (ii) ®(M(¢,)) < K for all n and the rest of the proof is exactly the
same as that of the dichotomous theorem. []
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