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LOWER BOUNDS FOR NONPARAMETRIC DENSITY
ESTIMATION RATES

By DAviD W. BoyD* AND J. MICHAEL STEELE
University of British Columbia

If fu(x) is any estimator of the density f(x), it is proved that the mean
integrated square error is no better than O(n-1).

1. Introduction. In Wegman’s paper [5] on nonparametric density estimation,
he states that it would be interesting to show that there is no density estimator
which has mean integrated square rate better than O(n~!). The object of this
note is to prove such a result, making no arbitrary assumptions about the specific
form of the estimator. This proof is given in Section 2. Our method applies to
some other measures of error, as we point out in Section 3.

To be precise, a density estimator f,(x) = fulxsxy, -+ -, x,) is a sequence of
Borel functions defined on R**'. If X}, X,, - -- are independent identically dis-
tributed random variables with density f(x), then f,,(x; X, -+, X,) provides an
estimate for f(x). The mean integrated square error is defined to be

(1) MISE (n) = E, {=. (f(x) — f.(x))" dx,
where E, denotes expectation according to the density f.

Tartar and Kronmal [3], and Wegman [4, 5] give a nice review of the exten-
sive literature of such estimators.

2. The main result.

THEOREM. For any density estimator fn(x), there is a square integrable density f,
and a constant ¢ > 0 such that

©) Ep§Za (f(x) = fu(x))dx = ¢[n,
for infinitely many n. Thus there is no density estimator for which MISE (n) is better
than O(n='). In (2), f can be chosen to be a normal density with mean zero.

Proor. We shall introduce a parametric family of densities f,(x), and use f,,(x)
to construct an estimator 8, for the parameter 6. Specifically, if n(x; 0, ¢) is a
normal density with mean 0, we define

(3) 0 = {in(x; 0, 0*) dx = (o),

andletJ = {0: 0 = ¢(s), ] < o < 2}, a closed interval. For each 6 ¢ J there is
a unique ¢ €[1, 2] for which (3) holds; we denote the corresponding density
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n(x; 0, 6*) by fy(x). Thus 6 = |} f,(x)dx. Let §,(x) be obtained from f,(x) by
truncating in the following way: §,(x) = min (max (f,(x), 0), 1) so that 0 <
g.(x) < 1. We use this to construct the following estimator of 6:

4 6, = §3da(x)dx.
The basic observation is that by Schwarz’ inequality we have

) (0 = 0,) = {85 (fo(x) — gu(x)) dx}* )
= G (fo(¥) — dux)?dx = §5(fo(x) — falx))"dx .

Thus, writing E, = E,,

(6) E(6 — 0, < E, §%0 (fy(x) — fu(x)) dx .
The theorem will thus be proved by exhibiting a §* such that
(7) En(0*% — 6, = c/n,

for infinitely many n.
By the Cramér-Rao inequality [6], page 188, one has

(®) Ey6 — 0,) = B0y + (1 + B/(9))*/ni(0),

where B(0) = E,(,) — 6, and I(6) = E,((3/36) log f,(x))*. The validity of (8) may
be justified most easily by checking that the steps of the proof of (8) in [6],
pages 182-188, are valid for the density f, used here. It is easily checked that
B(6), B'(0) and I(6) are continuous functions of §. Since J is closed, we have
sup,., I(6) = M < co. Let J, = [a, b] be any closed interval in the interior of
J, and let n, satisfy n,"t < (b — a)/8. Let §* = sup,., (1 + B'(6))*. If $* = f,
then there is an interval J, C J, on which (1 + B’(6))* = } and thus (8) implies
E, (60 — é”l) = 1/8n M for 6 € J,. On the other hand, if §* < %, we can argue as
follows: B(b) — B(a) = B'(c)(b — a) for some ¢ witha < ¢ < b. But 1 —|B'(c)| <
1 + B'(c) < Sso|B(c)] =1 — S = } and thus

©) max (|B(a)|, [B(b)]) = |B(6) — B(a)|/2 =z (b — a)/4.

Let 6, = aor b satisfy |B(6,)] = max (|B(a)|, |B(b)|). Then (8), (9) and the choice
of n, imply

(10) E, (6, — 0,)* = B(6,)* = 4/n, .

By the continuity of B(6), there is a closed interval J, C J, such that for 6 e J,
one has E (6 — 9”1)2 = 1/n,. Repeating the argument, we obtain a sequence of
nested closed intervals J; D J, D - .- and a sequence of integers n, < n, < - - -
such that E,(6 — 9,,k)2 = ¢/n, for 6 eJ,. Since the intersection (3., J, is non-
empty, there is thus a 8* for which (7) holds for n = n,, n,, - - .. This completes
the proof.

3. Further considerations. The application of Schwarz’ inequality in (5)
can be replaced by an application of Holder’s inequality to yield a priori lower
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bounds on the mean integrated pth power error for p > 1. We omit these for
the sake of brevity.

For certain specific classes of estimators one may obtain more precise lower
bounds. For example, Rosenblatt [2] shows that estimators of kernel type have
MISE (n) no better than O(n~*). Fryer [1] has made an empirical study of such
estimators for small n, when f is a normal density, and these indicate that the
rate predicted by Rosenblatt is attainable.

We wish to emphasize the fact that our result does not depend on any assump-
tions about the density f or the estimator f,. Moreover, the proof shows that,
even if f were known to be normal, with known mean, no improvement on the
rate O(n~') would be possible.
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