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OPTIMALITY AND .ALM()ST OPTIMALITY OF
MIXTURE STORPING RULES!

By MosHE PoLLAK?
University of California, Berkeley

It is shown that for a test of a composite hypothesis on the parameter
6 of an exponential family of distributions, mixture stopping rules are al-
most optimal with respect to certain criteria of optimality and a unique
stopping rule is to be found among them which is optimal with respect to
another type of optimality.

1. Introduction and summary. Let Jdenote an open interval of real numbers.
Assume that for each § € J, P, is a probability measure under which X,, X,, - - -
are independent and identically distributed random variables with probability
density hy(x) = exp{fx — ¢(0)} with respect to some o-finite measure v. Let
S, =2 X (n=0,1,...;8 =0). For a given §,eJ and F a probability
distribution on J define

(1) S, 1) = Sy exp{(y — 0o)x — t[¢(y) — ¢(0.,)]} dF(y)
and
@) T=inf{n]f(S,m)Ze) (£>1).

Any T of this form shall hence be referred to as a mixture stopping rule. It is
shown in Robbins (1970) that
1
(3) Pyl < ) <
and statistical applications of such stopping rules are also discussed there. An
approximation for E, T (for 6 = 6, such that F has a derivative F’ with respect
to Lebesgue measure in a neighborhood of 4, F’ being positive and continuous
at 0) is given in Pollak and Siegmund (1975): (as ¢ — o)
1

4 ET—=_"__[21lo log lo O(1
4 ’ 21(0)[ ge + logloge] + O(1)
where 1(6) = (6 — 6,)¢'(0) — (¢(6) — ¢(8,)). (A more explicit form of O(1) can
be found in Pollak and Siegmund (1975).) »

The purpose of this article is to present optimality properties of mixture stop-
ping rules.
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For statistical applications, it is desirable to choose a stopping time T such
that E, T will be as small as possible for a wide range of values of §. For a given
6 + 6,, by using a mixture stopping rule whose F assigns unit mass to the single
point §, one may obtain E,T = (loge)/I(§) + O(1). This is smaller than (4) by
a term which is O(log log ¢); but it requires prior knowledge of # and hence is
impossible to implement in general.

A natural consideration under these circumstances would be to employ a
minimax approach. (4) would suggest minimizing sup,., [E,T — (loge)/I(6)]/
[(log log €)/21(0)]; or equivalently trying to minimize sup,., 2/(¢)E,T. Unfortu-
nately this is infinite: lim,_, (¢ — 6,)’E,T = co by Theorem I of Farrell (1964)
and I(6) ~ (0 — 6,)* for @ close to §,; also, clearly lim,_, I(§)E;T = co. These
considerations lead to attempting to minimize sup,.,<, 2/(f)E, T under the re-
striction that P,_, (T < oo) < 1/e, where [a, b] C J is an interval of finite length
and 6, ¢ [a, b].

Theorem 1 states that one cannot hope for anything substantially better than
that suggested by (4), i.e., infsup, ., 21(0)E,T = 2loge + logloge + O(1).
Therefore the class of mixture stopping rules is asymptotically almost optimal—
optimal up to a term of order O(1). Theorem 2 presents a Bayesian almost op-
timal property of mixture stopping rules.

With respect to a different criterion mixture stopping rules form a complete
class. Since (4) is exact up to order O(1), multiplying ¢ by a constant will not
change the right-hand side of (4). Thus if T is defined as the first crossing time
of a boundary in the (n, S,) plane, one would suspect a similar minimax result
if one changes (P, (T < o0), E,T) to the expected (,, ) number of times the
process (n, S,) remains (above, below) the stopping boundary respectively.
Theorem 3 states that the (unique) minimax solution is a mixture stopping rule.

2. Almost optimality. Without loss of generality it may be assumed that 0 =
$(0) = ¢(0).

LEMMA 1. Let 0 < a < b < oo satisfy ¢'(a) > ¢(b)/b, [a,b] < J. For any
& > 1 and probability measure G on [a, b] define N(¢; a; b; G) = inf {n| {} exp{yS,—
nd(y)} dG(y) = €}. There exist constants 0 < A, B < oo independent of &, G such
that E,N(§; a5 b0;G) < Alogé + B forall 6 ela, bl and & > 1.

ProOF. Define M(y) = inf {n|exp{rS, — n¢(y)} = &}. It follows from Theo-
rem 1 of Lorden (1970) that there exists 0 < D < oo such that E,{S,, —
[M(7)¢(7) + log €]/r} < D uniformly in 0 € [a, b], 7 €[a, b], § > 1 and so (by
Wald’s lemma) for all 4, y € [a, b]

) E,M(7) < [(log &)/r + D]/[¢'(0) — ¢(n)/r]
< [(log §)/a + D]/[¢'(a) — ¢(b)/b] -
From (¢ exp{yS, — n¢(y)} dG(y) = min (exp{aS, — n¢(a)}, exp{bS, — ng(b)}) it

follows that N(&; a; b; G) < max (M(a), M(b)) < M(a) + M(b). This and (5)
complete the proof of Lemma 1.
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LeMMA 2. Let y € (0, 1), let F, be the probability measure wholly concentrated at
{0}, let G be a probability on [a, b], 0 < a < b < oo, [a, b] C J, ¢'(a) > ¢(b)/b
and denote F = yF, + (1 — r)G. Consider the optimal stopping problem defined by
a prior distribution F on § when X,, X,, - - - arei.i.d.—P, and each observation costs
¢>0if0 0, zero if § = 0, with loss = 1 for stopping if § = 0. There exists a
constant 0 < M < oo independent of c, F such that a Bayes procedure (with prob-
ability one) continues sampling whenever the posterior risk of stopping is at least
Mc.

Proor. That a Bayes rule exists can be seen from considerations similar to
those of page 108 and Theorem 4.5’ (page 82) of Chow, Robbins and Siegmund
(1971).

Let oo > Q > Aje where A is defined in Lemma 1 and define T, to be the
first time n < oo that the posterior risk of stopping is at most Qc. It is sufficient
to prove for some Q < M < oo that the (integrated) risk of T, is less than y if
7y = Mc. Since the (integrated) risk of any generalized stopping time T is the
expected posterior risk of stopping plus ¢(1 — y) {! E,T dG(0) it is sufficient to
prove for some 0 < M < oo that (1 — y) (! E,T,, dG(0) < r/c — Q if y = Mc.

Choose M > Q such that (1 — A4/(Qe))M — (B + Afe) > Q where A, B are
the constants defined by Lemma 1. It is enough to look at ¢ for which Qc < 1.
Notice that

Toe = inf{n|Qc = rhy(x,) - - - ho(xa)/[rho(%,) - - - holx,)
(6) + (1= 7) W hy(x)) - - - ho(x,) dG(0)}

= inf {n[ §o exp{yS, — nd(y)} dG(y) = l—i—r

T

< inf {n| §oexp{yS, — nd(y)}dG(y) =z a—jr)a} '

Noticing that sup,.,., —y(log y) = 1/e, apply Lemma I to get thatif 1 > y = Mc

(1= 1) 2 E,Te,dG(0) < (1 = 1) | A (tog [+ log——) + |

A Qc 7 1
<7 4% 106 T L B+ A1 —7p)lo
=0, 80 (I =7)log—
<r A p A

(4 e e
gl_(l_i‘_>M+B+ﬁ
¢ Qe e
<L -0

4

This completes the proof of Lemma 2.

LEMMA 3. Let0< a, < a<b< b, < coandletG be a probability on[a,, b)) C J
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with derivative g(x) = dG(x)/dx which is positive and continuous on [(a, + a)/2,
(b, +6)/2]. Let T = inf{n|{1exp{yS, — ng(y)}dG(y) = ¢}. Then forall 6 ¢ [a, b]

(7) E,T = _2_1%0) [2log ¢ + log loge] + O,(1)
where lim sup, ., suUp,<,<; |0,(1)] < oo.

Proor. Notice that Theorem 1 of Pollak and Siegmund (1975) holds uni-
formly for § € [a, b] so that the right-hand side of (7) is a lower bound for E,T.
Similar manipulations show the right-hand side of (7) to be an upper bound for
E, T uniformly for 6 € [a, b]. See also Lai and Siegmund (1977).

THEOREM 1. Letf, < a< b < oo, [a,b]CJ, 0,¢eJ.
(8) inf(Tngo(T<°°)Sl/s) SUPa<yss 2H(0)E, T = 2 log e + logloge + O(1)
where lim sup, ., |O(1)] < oo, and equality is attained by a mixture stopping rule.

Proor. Without loss of generality assume §, = 0 and ¢'(a) > ¢(b)/b. That
the equality is attained by a mixture stopping rule is the content of Lemma 3.
To see that the right side of (8) is a lower bound of the left side of (8), con-
sider the Bayesian problem defined in Lemma 2 when y = { and dG(y)/dy =
I(y)/$t I(y) dy on [a, b]. Let M be the constant derived in Lemma 2 and let T,
be T, for Q = M where T, is defined in (6). T,, is 2 mixture stopping rule
defined by Gand e = (1 — Mc)/(Mc). By virtue of Lemma 2 there exists a Bayes
rule which continues sampling at least as long as 7,,. Hence the Bayes risk is
at least the sampling cost of T',,,, whence for any stopping rule T

P,(T < o0) + ¢ {2 E,T dG(6) 2 ¢ §& E, Ty, dG(0) .
Thus if P, (T < o) < 1/e = Mc/(1 — Mc)
9) {8 E,T dG(8) = §! E, T, dG(6) — M[(1 — Me).

There exist a,, b, such that 0 < a, < a < b < b, < co and ¢'(a;)) > ¢(b,)/b,.
Define A = inf{n| {5 exp{yS, — ng(y)}(y) dy/\: I(y)dy = ¢}. By definition,
T,. = A. A is a mixture stopping rule defined by dF(y)/dy = I(y)/\e! I(y) dy
on [a, b,] and ¢’ = ¢ {} I(y) dy/{i1 I(y) dy. Thus by Lemma 3

2_120.) [2log e + log loge] 4+ O,(1)
where lim sup,_,, SUp,<,<; |0,(1)] < oo. Combining (9) and (10) yields
{8 E,T dG(0) = §&[2 log s + loglog e + O(1)] d9/(2 §% I(y) dy)
whence by definition of G
{2 [2I(6)E, T — (2log ¢ + logloge)]df = O(1)

(10) E,T,. = E,A =

for all T satisfying P, (T < oo) < I/, thus completing the proof of (8).
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THEOREM 2. Let F be a probability on J with F{(0, o)} > 0, T(c) =
inf{n| S, exp{yS, — nd(y)} dF(y) = ¢} andlet 0 < y < 1. There exists an interval
[a,b] Cc Jwith0 < a < b < oo, ¢'(a) < ¢(b)/b such that T(¢) is a d-Bayes solution
of the optimal stopping problem described in Lemma 2 (with dG(y) = dF(y)/F{[a, b]}
for ye[a, b] and with c defined by ¢ = [r[(1 — 7)I[(1 — Mc)/(Mc)]/F{[a, b]} where
M is defined in Lemma 2) where the Bayes solution has a risk of order (log ¢)/e and
0 = O(1/e) as ¢ — oo.

Proor. There exist a, b satisfying 0 < a < b < oo, [a, b] C J, ¢'(a) < ¢(b)/b,
F{[a, b]} > 0. Let G, c be defined as above and consider the optimal stopping
problem described in Lemma 2. Let T,, be T, for Q = M as defined in (6).
Clearly Ty, = T(¢). Therefore and by virtue of Lemma 2 there exists a Bayes
solution which samples at least as many observations as T(c) and so the Bayes
risk of T(c) cannot exceed that of the Bayes solution by more than yPy(T(e) <
) < rfe. Since c is of the order 1/c and ET(e) is of the order log ¢, the order of
the risk of sampling of the Bayes solution is (log ¢)/e and the proof is complete.

3. Exact optimality. Let #,*" be the n-fold convolution of A, with itself with
respect to v; let H,*" be the measure whose derivative with respect to v is A,*",
and understand H,**(z) = H,*"{(—co, z]}. .Let 0 eJ. Denote: ¢ = (¢;, ¢, +++)
where —oo < ¢; < 00, j= 1,2, --.. Denote

x(A) = the indicator function of the event A4 ;

&, ={(c,a)|0 < a; <1 forall j,
D51 — (H(e;) — aHoo{e )] = 1)), e > 15
¥ = {G|G is a probability on {f|a < 6§ < b}};
A, = {p|p is a probability measure on {z| 3, (1 — z;) = 1/e}};
E = WIW = T la(S; < ¢%) — 1S, = ¢)), (¥, a%) e Z) 5
#. = {T|T is a stopping variable defined by (2), ¢ > 1 fixed};
F= U1 %, 5
&, = {T|T is a stopping variable for {S,},_,,... whose stopping bound-
ary is concave, Py(T < oo) = l/e (where randomization on the

boundary is permitted to let this equality hold)}.
Ay(j) is the stopping boundary defining T € &..

THEOREM 3. Let r(0) be any continuous nonnegative function of 6 in [a, b] C J,
0< a< b< oo, such that r is not identically zero in the interval. Then:
inf, . . SUP,<ps, 7(0)E, W is attained by a unique (up to probability one) L € &, de-

fined by coordinates c;* which are boundary values defining some T € %.
SKETCH OF PROOF. Suppose that the closure of the support of v is convex
(otherwise minor changes must be made in the following). Denote z,” =

Hy*i(c;) — a;H,*¥{{c;}}. Clearly, there is a 1: 1 correspondence between z,’
and (c, @), and z, is a continuous and increasing function of z,. Denote:
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9(0, z°) = Y;3.,z,. By the minimax theorem (cf. Fan (1952)) there exist g, €
., G, € & such that

inf, o ce, SUPasoss 7(0)9(0, 2°)
= inf , e, SUPse § 1(0)9(0, 2°) dG(0)
(11) = infy. ., supge, §§ 7(0)9(0, 2°) dG(0) dp(2°)
= maxg., min,._,, {§7(6)9(d, z°) dG(0) dp(z°)
= min,._, {§7(0)9(0, z°) dGy(0) dp(z°) .
Clearly, any u € _#, attaining this minimum must give all of its mass to points
z° for which § r(6)g(0, z°) dG,(9) reaches its minimum. Since

§ r(0)9(0, z°) dG(0) = § r(0) X5-, 2, dG(0)
and )

dz.? .
s = exploe — J0)

where ¢, is that corresponding to z,°, one can minimize § r(4)g(, z°) dG,(#) sub-
ject to the constraint Y22, (1 — z) = /e by the method of Lagrange multipliers
(cf. Luenberger (1969) page 186). By differentiating [§ r(8)g(0, z°) dG,(0) +
AXe, (1 — 2% — 1/e)] with respect to z,°, one gets that extremum points z°
must satisfy

(12) § explc, — j¢(O)}r(0) dG(6) = 7

for the corresponding c. Here c; increases if 4 is increased. So, because of the
constraint, corresponding to 2 there exists a unique solution ¢* to (12). Because
of the constraint, there can be only one 2 for which a solution to (12) exists.
Thus there is a unique 4 and a unique c* satisfying (12), and so z°* correspond-
ing to ¢* must be the unique point of minimum. Therefore there is equality in
(11) and the proof is complete.

4. Remarks. (a) Lemmas 1 and 2 and Theorem 2 are modeled after Lemmas
2.1 and 2.2 and Theorem 2.1 of Lorden (1967). Obviously, the condition
¢'(a) < ¢(b)/b appearing in Lemma 1 (and in the sequel) can be dispensed with.
Theorem 2 can be reformulated to be an analog of Theorem 2.1 of Lorden (1967).

(b) Under certain conditions one can show that 2 of (12) is of the order of
magnitude of ¢ as ¢ — co.

(c) Theorems and lemmas similar to these presented in this article can be
formulated for Brownian motion; denote standard Brownian motion by (r)
and set X(¢f) = 0t + o(z), let I(0) = 6*/2, let

To = inf {1]52 exp{yS, — 19(y)} dG()) = = : Ecgc}

replace T, of (6) and let ¢ be the cost of sampling per unit time if § € [a, b].
An invariance argument leads to an analog of Theorem 3.
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