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STRONG APPROXIMATIONS OF THE QUANTILE PROCESS

By MikLOs CsORGO! and PAL REvESZ
Carleton University, Ottawa and Mathematical Institute, Budapest

Let gn(»), 0 < y < 1, bea quantile process based on a sequence of i.i.d. rv
with distribution function F and density function f. Given some regularity
conditions on F the distance of g.(y) and the uniform quantile process ua(y),
respectively defined in terms of the order statistics Xj.n and Ug:n = F(Xj:n),
is computed with rates. Asa consequence we have an extension of Kiefer’s
result on the distance between the empirical and quantile processes, a law
of iterated logarithm for ¢.(y) and, using similar results for the uniform
quantile process ua(y), it is also shown that g.(y) can be approximated by
a sequence of Brownian bridges as well as by a Kiefer process.
1. Introduction. Let X, X,, ... be a sequence of i.i.d. rv with a continuous
distribution function F(.) and let X;,, < --. < X,,., denote the order statistics of

the random sample X, - - -, X,. Define the empirical distribution function F,(x)
and the quantile function Q,(y) as follows:

F(x)=0 if X, >x
:—If- if Xk:n§x<Xk+1:n’ k=1:2,"',n—1.
n
=1 if Xﬂ:%é’x’
Qn(y)sz:n if {("%—l‘<y§%, k:l,Z,o..,n'

Define also the empirical process 8,(x) and the quantile process g,(y) the follow-
ing way:
B.u(x) = n¥(F,(x) — F(x)), —0 < x < +oo
7(y) = nH(Q.(y) = F7(»)) » 0<y<lt.

It is of interest to investigate how well these processes can be approximated
by appropriate Gaussian processes.

In case of rv uniformly distributed over [0, 1], this problem can be handled
in a somewhat easier way. In order to make a distinction between this and
the general case, the following notations will be used in the uniform setup:

U,

; instead of X, i=1,2,...,
Uk:

instead of X, , k=1,2,.--.,n,

n
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E,(y) instead of F,(x), 0<y=sl, —0o<x< +00,

U,y) instead of Q,(»), 0<y<1,
a,(y) instead of B,(x), 0<y<sl, —c0<x< 400,
u,(y) instead of gq,(y), O<y<l1.

Two Gaussian processes play an important role in our approximations:
Brownian bridges and the Kiefer process, respectively defined as follows.

A Brownian bridge {B(y); 0 < y < 1} is a separable Gaussian process with
EB(y) = 0, and covariance function EB(y,)B(y,) = )1 N Yy — J1)s -

A Kiefer process {K(y, #); 0 < y <1, 0 < ¢} is a separable Gaussian process
with EK(y, ) = 0, and covariance function EK(y,, t,)K(y,, t;) = (t; A t;)(y1 A Yy —
V1Y)

Both these processes can be represented in terms of standard Wiener processes
as follows:

B(y) = W(y) — yW(1), 0o<y<t,
K(y, 1) = W(y, 1) — yW(1, 1), 0=y=1,1=0,

where {W(y);0 < y}isastandard Wiener process with EW(y) = 0 EW(y,)W(y,) =
Y1 A yyand {W(y, £); 0 < y, 0 < ¢} a standard, two dimensional Wiener process
with EW(y, t) = 0 and

EW(y1, )W (yar 1) = (31 A y)(t1 A 1)

When talking about approximation of the empirical and quantile processes by
appropriate Gausian processes, we think of constructing the latter on the prob-
ability space of the former so that they should be near to each other with prob-
ability one. This can be done if this probability space is rich enough in the
sense that an infinite independent sequence of Wiener processes can be defined
on it, which is also independent of the originally given i.i.d. sequence.

In the sequel it will be always assumed that the underlying probability space
is rich enough in the above sense.

As to the uniform empirical process the following is known:

THEOREM A (Komlds, Major and Tusnady (1975)). One can define a Brownian
bridge {B,(y); 0 < y < 1} for each n and a Kiefer process {K(y, t); 0 <y < 1,01}
such that

(1.1) P($UPozyes |2(y) — Bu(y)| > n~HClogn + 2)} < Le-
for all z, where C, L and  are positive absolute constants;
(1.2) P{sup,g,<, SUPyg, <1 [Kau(y) — K(y, k)| > (Clogn + z)logn} < Le~**

for all z and n, where C, L and 2 are positive absolute constants. These inequalities,
in turn, imply

(1.3) SUPy<y<t [Xa(Y) — Bu(Y)| =as. O(nt logn)
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and
(1.4) SUPosyst [, (y) — K(y, n)] =.... O(log?n) .
REMARK 1. It is clear from (1.1) that (1.3) can be written as
. 4
(1.3%) lim sup,,_,, long p SUPy<,<1 |2.(Y) — B(Y)| £ C, aus.,

where C, is an absolute constant. Obviously (1.4) can be also rewritten this way
and we note here that, throughout this exposition, the notation =, O(+) will
always have a similar meaning with an appropriate absolute constant.

THEOREM B (Csdrgo and Révész (1975)). Concerning the uniform quantile pro-
cess we have: one can define a Brownian bridge {B,(y); 0 < y < 1} for each n and
a Kiefer process {K(y, t); 0 < y < 1,0 < t} such that

(1.5) SUPo<ysi [Un(Y) — Bu(Y)| =as. O(n~tlog n)
and
(1.6) SUPy<y <1 [Mtu,(y) — K(y, m)| =..5. O((n log log n)(log n)?) .

REMARK 2. The rate of (1.3) and (1.5) is the best possible and that of (1.4)
cannot be improved beyond logn. As to the rate of (1.6), it seems to be far
from the best possible one.

A disadvantage of the statements of (1.3) and (1.5) is that we do not know
anything about the joint distribution in n of the corresponding sequences of
Brownian bridges. Consequently, only “in probability’” and “in distribution”
limit laws can be proved for a,(+) and u,(.) from these statements. Thus, in
spite of the weaker rates of convergence in (1.4) and (1.6), an advantage of these
latter ones is the possibility of producing strong laws for a,(-) and u,(.) via
establishing the same for K(y, n) as n — oco. For example, knowing the law of
iterated logarithm

. Kpoml
lim sup,, ., SUPy<,<; @Flog iog nA){ as. 3
for the Kiefer process, one can immediately write down the same for niu,(y).

One of the aims of the present exposition is to extend the results of Theorem
B to the nonuniform quantile process g,(y).

Letting U; = F(X,), i = 1, 2, - - -, we get that the U, are independent uniform
—(0, 1) rv, provided F(-) is continuous. Also, for every w € Q, a,(F(x)) = B,(x)
and, consequently, Theorem A can be immediately generalized to the case of
the empirical process §,(x) with an arbitrary continuous distribution function
F(x) by simply replacing y by F(x) in the statements (1.1), (1.2), (1.3) and (1.4).
As to the similar problem of strong approximations of the quantile process g,( ),
however, there is no such immediate handle; that is, by simply replacing y by
F(x) in Theorem B we do not get the corresponding desired results for g,(y).
However, the distance between ¢,(y) and u,(y), respectively defined in terms of
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X,., and Uy, = F(X,.,), can be computed accurately enough (cf. Section 3), so
that Theorem B can actually be used to obtain strong approximations also for
the general quantile process ¢,(y) (cf. Section §). Our investigations in Section
3, when combined with a theorem of Kiefer (1970) concerning the deviations
between the empirical and quantile processes, also give an extension of the
latter result and a law of iterated logarithm for ¢,(y) (cf. Section 4). In order
to sharpen our earlier result (1.5), Section 2 is devoted to the problem of strong
approximations of the uniform quantile process u,(y). These latter results, in
turn, are used to approximate the general quantile process ¢,(y) similarly. The
results of this section are based on the following:

TueoreM C (Komldés, Major and Tusnady (1975)). Let Y., Y,, --- be inde-
pendent tv with standard exponential distribution. Then there exists a standard Wiener
process {W(t); 0 < t} such that for all real z

P{sup,cu<, [(Sy — k) — W(k)| = Alogn + z} < Be™%
where S, = Y, + ... + Y, and A, B, C are positive absolute constants.

REMARK 3. Theorem C is only a special case of a more general result of
Komlés, Major and Tusnady (1975).

2. Approximation of the uniform quantile process by Brownian bridges. First

we prove

THEOREM 1. If the uniform —(0, 1) rv U, U,, - - - are defined on a rich enough
probability space, then one can define, for each n, a Brownian bridge {B,(y); 0 <
y < 1} on the same probability space such that, for all z, we have

P{supogys: [4,(y) — Bu(y)| > n¥(Alogn + 2)} < Be™**,
where A, B, C are positive absolute constants. Whence we also have (1.5).

Proor. Put Ykzlog(l/Uk), k=1,2, --~,S0:0, Sk= ’;.=1 Yj k=1,

2, ..., and

(2.1) U,0) = SSe, i “=ley<® k=120,
n n

(2:2) @,(y) = n(U(y) — »), . 0<y=s1.

Then the Yk are independent exponential rv with mean value one and, for each n,

(2.3) (U 0=y =, {U () 0=y < 1}

hence

(2.4) @O0y} =, {u(y; 0=y 1}.

A simple calculation yields

2.5 a, <_’;_> _ (:Fk_ - i) =t [(S? k) — %(s,,+1 -~ n)] :

St n n+l
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Let W(k) be as in Theorem C. Define B,(y) = n"¥(W(ny) — yW(n)),0 =y < 1,
and put 1 + ¢, = n/S,,,. Now consider

@6 a (L) =8, (5) = mi[(s - 0 — W) = (S = m — W)

k k
- -’7 n+1 + en((Si - k) - _n—(S'IH'l - n)):l :

We have for all z

P {suplg,@, (S, — k) — W(K)| = (‘il_"ﬁ.s’“L_z> n‘*} < Be—0:
P {n‘ﬂ(Sn — ) — W(n)| = (%) n‘*} < Be-or
Yoz (A8 42) ) < e,

P {Suplgks'n n—ilsk — kl = (_Al(%.’:__i__z.)} < Be—C%

P {Ienl > (4 “’giz—)} < Becx,
- Sini -

on choosing 4, B, C appropriately. Consequently, (2.6) and the above inequa-
lities imply

(5) = (8) > ot s o) o

P {SuplékSn
which gives

(2.7) P{supyg,s: [#(Y) — Bu(y)| > n~¥(Alogn + 2)} < 6Be™*.
Since (2.4) holds and the above defined B,(y) is a Brownian bridge for each n,
(2.7) also completes the proof of Theorem I.

3. A strong theorem for the uniform quantile process and the distance of the
latter from the general one. Csaki (1977) investigated the limit superior of the
sequence

SUP., <y51-r, (V(1 — y) log log n)~Hau ()| »
and succeeded in evaluating this lim sup for a wide class of sequences {e,}, €, ™\, 0.
Here we mention only one special case of his many results for later use.

TueorREM D (Csaki (1977)). With ¢, = dn~'loglogn and d = 0.236 - .. we

have
lim sup, .. SUp, < <i-., (J(1 — y) loglog n)~#ay(y)| =us 2

One of the aims of this section is to prove an analogue to Theorem D for the
uniform quantile process. The next result is weaker than the corresponding
result of Csaki. Applying his method, however, it does not seem to be too dif-
ficult to get complete analogues. The one presented herewith suffices for our
purposes in the sequel.
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THEOREM 2. With 6, = 25n='log log n we have
lim sup, ., sup; <,<;-5, (¥(1 — y)loglogn)~Hu,(y)| < 4 ~a.s.

Proor. Let
X = x(y) =y — 4y(1 — y)n~'loglogn)t,
Xy = %(y) =y + 4(y(1 — y)n~*log log n)* .
Then forn >3
(3.1) X< x<1 —¢,, provided 9, <y<1-9,,

where again ¢, = dn~*loglog n (d = 0.236...). In order to see (3.1) holds for
n = 3 we note that

X, — €&, = (215 — en) + (24yt — 4(ntloglog n)t)yt > 0,

and similarly, 1 — x, — ¢, = 0. Hence for x, as defined at the beginning of this
proof and n large, Theorem D gives

nF(x)) < nx, + 2(x,(1 — x,)nlog log n)*
(3.1%) = ny — 4(y(1 — y)nloglog n)t + 2(x,(1 — xl)n log log n)t
=nm,

where the last inequality follows from the inequality x,(1 — x,) < 4y(1 — y)
The latter, in turn, is true since x; < y and (I — x,)/(1 —y) =1 + 4(y/(1 —
y)n~tloglogn)t < 1 + (&)t < 4. Similarly we have nF,(x,) = ny; that is to
say we now have nF,(x,) < ny < nF,(x,). Hence, for n large, x;, < U,(y) < x,
whenever 6, <y < 1 — 4,, since F,(+) is monotone nondecreasing. This, in
turn, is the statement of Theorem 2. : '

In connection with the proof of Theorem 2 we note that when applying
Theorem D above, we have treated its “lim sup,_.” asif it were a “‘sup,,”
and this, of course, is incorrect. Indeed, in both lines of (3.1*) above the con-
stant 2 should be replaced by the random 2 4 o(1). In order to avoid writing
lots of o(1)’s later on, a similar convention will be used in the proof of Theorem
3 whenever using Theorem 2 there the way we have applied Theorem D above.

Now we are in the position to estimate the distance between ¢,(y) and u,(y)
when they are respectively defined in terms of X,., and U,., = F(X,.,). We have

THEOREM 3. Let X,, X,, - -+ bei.i.d. rv with a continuous distribution function
F which is also twice differentiable on (a, b), where —co < a = sup {x: F(x) = 0},
+oo 2 b =inf{x: F(x) = 1} and F' = f = 0 on (a, b). Let the quantile process
q.(y) resp. u,(y) be defined in terms of X,., resp. Uy, = F(X,.,). Assume that for
some v > 0,

(3.2) SUP, <, <s F(X)(1 — F(x)) ' f ZE"; l <.
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Then, with é, as in Theorem 2,

. %
(3.3)  limsup,.. 1Wup [fF0)0) — () < K as.,

where K = 407107,
If, in addition to (3.2), we also assume that f is

(3.4 nondecreasing (nonincreasing) on an interval to the right of a
(to the left of b),

then
SUPocy<t f(FTH)4u(y) — ua(¥)]

(3.5) =..s. O(n~tloglog n) if r<1

=,.s. O(n~¥(log log n)*) if r=1
=,.s. O(n~¥(log log n)7(log n)t+a)r=1) if r>1,
where ¢ > 0 is arbitrary. The respective constants of the =, O(+) of (3.5) may be
taken to be: (45 vV 25(27/(1 — r))2 + Kif y < 1,102if y = 1 and (45 vV (2/(y —
1)2512if y > 1.
The following lemma is going to be useful in the sequel.
LeMMA 1. Under condition (3.2) of Theorem 3 we have
(3.6) SE(y) < {)’1 Vi 1 —=(uAy) }T .
fEXD) ~ hidym 1= V)
for every pair y,, y, € (0, 1) and with y as in (3.2).

ProoF oF LEmma 1. (3.2) implies

5 B ATO] S 700 =) = Lo 2

Whence, if y, > y,, then

F=(y1) ) ) nil—y
log 20 < 10g 71— p1og Y2 jog i Lm0
[ () =T BT, e
and, if y, < y,, then
F~(y1) Y Yy Y, 1 —
1ogf(_1_§rlo 22 ylog N —ylog TN
[y =T BTy, TR, T T,

Hence (3.6) is proved.

ProoF oF THEOREM 3. For (k — 1)/n < y < k/n,
SEZONY) = nf(FEZD)EF(Usa) — FX(3))
(3.7) = nf(FTNENY + nhuy(y)) — F7(y))

= 1,(y) — $nA)AF() ;E}g? ,
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where ¢ is between y and U,,, = y + n~tu,(y), i.e., [§ — y| < n~}u,(y)|. Hence
3.8 F-1 W{)) — U, < intu? F-1 1EEN .
(3.8) LS (F=())9x() Ml =3 WDFE()) @)

Theorem 2 implies that, uniformly for 6, < y < 1. — 0,, the right-hand side of
the above inequality is majorized by

- _ iy S ETED]
(3.9)  8n-i(loglog n)y(1 — y)f(F~(y)) @)

— 8n- ol 2= _ ey WEEON N SEY)
= smiteglogn | i =3 || 20 - o i | f=y ]
with |§ — y| < 4(y(1 — y)n~'log log n)t.
First we estimate y(1 — y)/§(1 — &). Since § > y — 4(y(1 — y)n~'log log n)}
and y = 0,, we have )

Y <14 400 = ynloglogn)!
d y — 4(y(1 — y)n~ log log n)?

=1+ 4(y~(1 — y)n~tlog log n)} <14 4 _ 5
I —4(y~(1 — y)n"log log n)* [y

Now applying the inequality & < y 4+ 4(y(1 — y)n~"'log log n)}, wherey < 1 — 4,
a similar computation yields that (1 — y)/(1 — &) < 5. Hence the first bracketed
term of the right-hand side of (3.9) is bounded above by 5, while the second
bracketed term of that is assumed to be bounded by 7 (cf. (3.2)). Now we ob-
serve that Lemma 1 reduces the problem of estimating f(F~*(y))/f(F~%(£)) (the
third bracketed term of the right-hand side of (3.9)) to that of estimating (§(1 —
Ny — &) + y(1 — &)/§(1 — y); whence the former is majorized by 107. From
these statements and from (3.9) it follows then that the left-hand side of (3.8)
is bounded above by 8y5.107n-}(log log n) and (3.3), the first statement of
Theorem 3, follows.
In order to prove (3.5), it suffices to show that

SUPg<yss,, [f(F(p)ga(y) — u (¥)] and
SUp;_;, <y<1 [f(FT () 9a(p) — ua(¥)I

are =, O(-) as indicated on the right-hand side of (3.5). We demonstrate this
only for the first one of these sups since, for the second one, a similar argument
holds. First of all we note that

(3.10) SUPog,s<s, |4 (V)| = 45n7% log logn a.s.,
and the proof of (3.10) is as follows: for0 < y < 0o,
(3.11) 1, (y)] = P UL(y) — y| < nty < 25n~}loglog n,

whenever y > U,(y), and
1. (Y)] = n|Un(y) — ¥ = ntU(y) = ntU;,m
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whenever y < U,(y). In the latter case we consider

(3.12) nt(Ups .y — 0,) + ntd, < 4(d, log log n)t + 25n~tloglogn
= 45n~tloglogn a.s.,

where the above a.s. inequality follows from Theorem 2. Now (3.11) and (3.12)
combined imply (3.10).

Restricting attention then to the region 0 < y < d,, we assume that f(F~'(y))
is nondecreasing on an interval to the right of a (cf. (3.4)). Let (k — 1)/n <
y<kjn. XUy, 2y,

3.13 F — nt e JEZO) gy < (),

(3.13) |AFZ N ¥ ) v S ()

where the inequality on the right-hand side results from the assumption that
S(F*(y)) is nondecreasing on an interval to the right of a. If U, < y

-1 — nt (¢ Ma’
IAET NP = 0t §,., F )

<nmiy (l(l:_”))’ du, by (3.6)

- u(l — y)
(3.14) <2miy (_Y_>’ du
: U
< il nty if r<l1
=
< 2 _myuggr it >
S
< 2ntylog 7 if y=1.
< 2ntylog — if 7

kin

Hence (3.13) (with the help of (3.10)) and (3.14) (via 0 < y < J,,and in view of
lim inf U,,, - n(log n)**¢ = oo for every ¢ > 0) together imply (3.5). This also
completes the proof of Theorem 3.

REMARK 4. Using Theorems 2 and 3, a Theorem 2-type analogue of Theorem
D could be proved also for the general quantile process f(F~(y))¢,(y). It would
be more desirable, however, first to produce complete analogues for the uniform
quantile process u,(y) a la Csaki (1977) and then to use these exact analogues,
instead of our Theorem 2, in combination with Theorem 3 to prove the same
complete Csaki-type analogues for the general quantile process f(F~()))¢.()).
That is to say Theorem 3 may be viewed and can be used as a strong invariance
theorem for studying the problem of what kind of a.s., in-probability and in-
distribution properties of #,(y) should be inherited by f(F-'(y))q.(y). For ex-
ample, it follows from (1.5) and (3.5) that f(F-*(y))q.(y) —» B(y), given the
conditions (3.2) and (3.4). Some further examples are given in the next two
sections.
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Random notes re: the proof of Theorem 3. The Associate Editor has pointed out
that 7 in (3.5) (but not in the constants in (3.3) and (3.5)) can be replaced by,
for instance,

['(x)

)

for any a < a’, b’ < b. This is so because the second part of the proof (the
proof of 3.5)) involves only the tails (cf. (3.4)). An advantage of doing this is
that y’ may be clearly smaller than 7, and then the first and best O(.) rate of
(3.5) would prevail longer (typically, though, one would think that ;' = 7).
The same Associate Editor has noted that one can also replace y by

7’, = Supze(u,u’)u(b’,b) F(X)(l - F(X))

T// — max {limxw sup F(X)(l —F(X))

O i )
, lim, 4, sup F(x)(1—F(x)) ;
f) T )
noting that then, of course (3.5) is no longer correct for y” = 1if y”” < y’. That
is to say in the latter case the third O(.) rate of (3.5) would prevail.

4. An extension of Kiefer’s result on the distance between the empirical and
quantile processes and a law of iterated logarithm for the latter. Extending a
result of Bahadur (1966), Kiefer (1970) proved the following:

THeoREM E (Kiefer (1970)). Let X, X,, --- be i.i.d. rv with a twice dif-
ferentiable distribution function F on the unit interval. If inf ., f(x) > 0 and
SUPg<,<1 f/(x) < oo, then

H
(4.1)  limsup, ., n

(log n)}(log log n)*
X SUPygyst [(Fal(F7H(Y)) = 3) = (F7() = CaONF O] =as. 274

Given this theorem and Theorem 3 we immediately get the following exten-
sion of the former.

THEOREM 4. X, X,, --- be i.i.d. rv with a continuous distribution function F
which is also twice differentiable on (a, b), where a = sup {x: F(x) =0}, b =
inf{x: F(x) = 1} and F' = f =+ 0 on (a, b). Assume that F also satisfies conditions
(3.2) and (3.4) of Theorem 3. Then the statement of (4.1) is still true.

REMARK 5. We emphasized here that the conditions (3.2) and (3.4) of
Theorem 3 together are much weaker than those of Theorem E. Especially it
is not assumed here that a and b are necessarily finite.

Proo¥r. Let k, = ni(log n)~}(loglog n)=* and R, = sup,.,«; (F.(F7(»)) — ) —
(F'(y) — Q.)AFY())|- LetU,., = F(X,.,) and define U,(y) in terms of these
uniform order statistics. Consider

SUPyey<r [(Fu(FT'()) — 9) — (v — Un(D))lka
— SUPocy< [(V — Un(y)) — (F7H(0) — Qu(FT ().
< kuR, = sUPocy [(Fu(F7() — ) — (v — Uu(D))lka
+ sUPy<y il (¥ — Ua()) — (F7H(y) — QuWNFF(1)lkn -
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Let O(g,(n)), O(gy(n)) and O(g,(n)) stand for the respective O(+) terms on the
right-hand side of (3.5). Taking limsup as n — co on the above inequalities
we get
2-t — n~10(g,(n))k, < limsup,_.. k, R, < 2% + n=O(g,(n))k, ,
since Kiefer’s result (Theorem E) holds for sup,.,; [(F.(F7'(y)) —») — (y —
U.(»))|k,, and (3.5) of Theorem 3 holds. This, in turn, also completes the proof
of Theorem 4.
Consider now the sequence

MELF() = )
(2nlog log n)t

7.()) =

where F is a continuous distribution function. Let C = C(0, 1) be the space of
continuous real valued functions endowed with the supremum norm. LetK c C
be the set of absolutely continuous (with respect to Lebesgue measure) functions
for which f(0) = f(1) = 0 and {; (f'(y))*dy < 1. Finkelstein (1971) proved the
following Strassen-type theorem for the above defined sequence 7,(y):

TueoreM F (Finkelstein (1971)). The set of the limit points (with respect to the
sup norm) of the sequence 7,(y) is a.s. K.

We can now combine Theorem F with Theorem 4 and get immediately:

THEOREM 5. Let X,, X, - -+ be i.i.d. rv with a continuous distribution function

F which is also twice differentiable on (a, b), where a = sup {x: F(xy=0}, b=
inf{x: F(x) = 1} and F' = f + 0 on (a, b). Assume that F also satisfies conditions

(3.2) and (3.4) of Theorem 3. Let

tfFON@a(y) = F7HY)) |
(2nlog log n)t

£.(») =

Then the set of the limit points (with respect to the sup norm) of the sequence &,(y)
is a.s. K.

Let D, = SUP_pcpcio |Fu(X) — F(x)|, where F(+) is a continuous distribution
function. Recently Mogul’skii (1977) proved

(4.2) lim inf,_., D,(nloglogn)t =, ; 7(87%).
Earlier Kiefer (1970) proved that, under the conditions of Theorem E, we have
(4.3) lim, ., P{ni(logm)~*R, > 1} = 2 5., (—1)™+le=mip, >0,

with R, as in the proof of Theorem 4.

(4.3) states that, under the conditions of Theorem E, ni(log n)~#R, has the same
limiting distribution function as (n!D,)}. Indeed, Kiefer (1970) proved (4.3)
via the more fundamental '

THeOREM G (Kiefer (1970)). Under the conditions of Theorem E, as n — oo,

4.4) nR,[(n*D, log n)t —, 1.
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The latter theorem implies (4.3) at once. Kiefer (1970) also noted that (4.4)
was actually true with probability one.

A combination of (4.2), (4.4) and (3.5) of Theorem 3 now yields that (4.4),
and hence also (4.3), are also true under the conditions (3.2) and (3.4) of
Theorem 3, which together are weaker than those Theorem E. Namely we have

THEOREM 4*. Let X,, X,, - - -be i.i.d. rv with a continuous distribution function
F which is also twice differentiable on (a, b), where —oo < a = sup {x: F(x) = 0},
+oo = b=inf{x: F(x) =1} and F' = f+ 0 on (a,b). Assume that F also
satisfies conditions (3.2) and (3.4) of Theorem 3. Then the statement of (4.4), and
hence also that of (4.3), are still true.

5. Approximation of the general quantile process by Brownian bridges and
a Kiefer process. Our main result in this section is an analogue of Theorem
B for the general quantile process ¢,(y):

THEOREM 6. Let X,, X,, - - - be i.i.d. rv with a continuous distribution function
F which is also twice differentiable on (a, b), where a = sup {x: F(x) = 0}, b =
inf {x: F(x) = 1} and F' = f + 0 on (a, b). One can then define a Brownian bridge
{B.(»); 0 < y < 1} for each n and a Kiefer process {K(y, t); 0 <y < 1,0 < 1} such
that if condition (3.2) of Theorem 3 is assumed then

(5.1) SUp;, <ysia, [SIF(1)9a(y) — Bu(y)| =us. O(n~* log n)
and

(5:2)  sups <ysia, IMFIFT())q.(¥) — K(ps n)] =, O((n log log n)¥(log n)t) ,
where 0., is as in Theorem 2.
If, in addition to (3.2), condition (3.4) of Theorem 3 is also assumed, then

SUPg<y<1 If(F_l(}’))%(y) — B,,(y)l
(5.3) =, O(ntlog n) if r<2
=,.s. O(n*(log log n)7(log n)*+7=1) if r=2,

where 7 is as in (3.2) and ¢ > 0 is arbitrary; also

(54)  suPocyat [MIFH(3))gu(y) — K(9, )| =45, O((n log log n)i(log n)?) .

Proor. Let U,., = F(X,.,) and define u,(y) in terms of these uniform order
statistics. Let B, () and K(y, f) be as in Theorem B. Then Theorem B holds for
the thus defined u,(y) and combining it with Theorem 3 we get Theorem 6.
The =,, O(n~*logn) rate of (5.3) for y < 2 holds because of the first two
=, O(+) rates of (3.5), and by taking e < 1/(y — 1) — 1 (if 1 <y < 2) in
the =, ;. O(n—*(log log n)"(log n)*+7-Y) rate of (3.5).

REMARK 6. Theorem 5 could be also proved via first proving a similar state-
ment for a Kiefer process and then using (5.4). Doing things this way, Theorem
F would follow from Theorem 4 or from (1.4) of Theorem A.

ReMARK 7. The nonuniform quantile process was also studied by Shorack
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(1972a, 1972b). Under somewhat different conditions than ours he proves a
number of results and the sharpest one of them reads as follows (Corollary 1,
1972b):

LF(0)9:0) — Ba(Y)| _ o(1)
9(»)

supn_lgyél—n‘l

for certain functions g.
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