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ESTIMATION OF A MULTIVARIATE MODE

By THOMAS W. SAGER
Stanford University

Consider a random sample from an absolutely continuous multivariate
distribution. Let .5 be a class of sets which are not too long and thin. A
point 8, chosen from a minimum volume set S, € & containing at least
r = r(n) of the data may be used as an estimate of the mode of the distribu-
tion. In this paper, it is shown that #, converges almost surely to the true
mode under very minor conditions on {r(n)} and the distribution. Conver-
gence rates are also obtained. Extensions to estimation of local and/or
multiple modes are noted. Finally, computational simplifications result-
ing from choosing S from spheres or cubes centered at observations are
discussed. .

1. Introduction. Consider an absolutely continuous distribution function F(+)
on Euclidean k-space E*. Without being too precise at this point, we say that
the probability distribution F has a mode at the point @ if the greatest concen-
tration of probability occurs around #. Since sample characteristics tend to
reflect characteristics of the parent population, we may expect that the plotted
data points in a random sample of sufficiently large size will also tend to be
most concentrated around #. This simple observation suggests an estimate of
0 based on a set where the data are “most concentrated.” The estimators of
Venter [17] and Chernoff [2] for the case of univariate F(k = 1) are both based
on this idea: respectively, the shortest interval containing a given number of
observations and the interval of given length containing the most observations.
For multivariate F(k > 1), the shape of the set used for the modal estimate be-
comes a more important consideration than in the univariate case. Possibilities
include hyper-rectangles and hyper-spheres. In Sager [13] the set of greatest
concentration of data was taken to be a convex set. At this time, the lack of
a reasonable algorithm for locating the smallest-volume convex set containing
a given number of observations lessens the utility of that method for higher
dimensions. In this paper, we propose to define the set of greatest data concen-
tration by means of a class of simple geometrical shapes, which will include
rectangles or spheres. The greater tractability of these shapes increases the
practical utility of our estimates.

Conceptually, estimators for the mode of a distribution may be classified as
direct or indirect according to their paternity. When the estimator is generated
as a by-product from estimating some other quantity—usually the density
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function—we call it indirect. All of the standard density estimators (e.g., kernel
[9], orthogonal series [6], nearest neighbor [7], spline [1], penalized likelihood
[4], isotonic [10]) yield indirect modal estimates by the simple device of selecting
the point at which the density estimate is maximized. On the other hand, when
the estimator is specially designed for the sole purpose of estimating the mode
as a statistical parameter in its own right, we call it direct. In this class are the
estimators of Venter [17], Chernoff [2], Grenander [5]. These authors treat the
univariate case only. Nonparametric multivariate modal estimation has not
been extensively discussed in the statistical literature, except as occasional corol-
laries to multivariate generalizations of the above methods for density estimation.

Although the conceptual difference between direct and indirect estimators is
pronounced, the theoretical and computational difference is often small. For
example, in one dimension the mode of the density estimate with uniform kernel
is just the Chernoff modal estimate and the mode of the nearest neighbor density
estimate is the Venter estimate. Similarly, the multivariate estimates of this
paper include as special cases the modes of spherical and cubical nearest neighbor
density estimates (Loftsgaarden and Quesenberry [7] and Elkins [kernel method,
3]). It would seem, therefore, that many of the properties of modal estimates
could be deduced from properties of density estimators. For example, an
elementary and standard argument derives consistency of modal estimators
from uniform consistency of the corresponding density estimators (e.g., [9]).
Moreover, an interesting recent “duality” result (Moore and Yackel [8]) allows
consistency results on nearest neighbor density estimators to be immediately
converted into corresponding results for kernel estimators, and vice versa.
Hence, one approach to consistency results for some of the multivariate nearest
neighbor modal estimators of this paper lies in translating uniform consistency
of uniform kernel density estimators (Theorems 2.1 and 2.2 of [8]) into uni-
form consistency of nearest neighbor density estimators. However, the baggage
of attendant restrictions necessary to obtain uniform consistency must also be
retained. More general results may be obtained by a direct proof from first
principles. As noted by Schuster [14], uniform consistency of a density estimate
is equivalent to uniform continuity of the density. In our proof, the density
need not even be continuous; it may be nondifferentiable on a set of measure
zero. Moreover, the number of nearest neighbors used in the estimate is freed
somewhat from the restrictions of Van Ryzin [16, Theorem 2] and Moore and
Yackel [8, Theorem 2.2]. To accomplish these gains we conceptualize our
estimates as direct.

Consider a random sample of size n from the distribution F. Let r = r(n) be
a positive integer satisfying certain conditions to be specified later. From a class
of specified k-dimensional sets .&” (see Definition 2.3) we choose a set S, of
smallest volume containing at least r(n) of the data. A point #, selected from
S, may be used as an estimate of the true mode #. Possibilities for 8, include
the centroid of S, the mean vector of the observations in §,, etc. For the class
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of candidate sets ..”” we are principally interested in spheres and rectangles. But
the theorems may be proved as easily for a much broader class of sets. Essentially,
this class comprises unions and intersections of regions bounded by polynomial
curves. In Section 2, we consider the almost sure convergence of 8, to 0.
Certain assumptions will be necessary about the sequence {r(n)} and the distribu-
tion F to obtain convergence. Stronger assumptions are necessary to obtain
convergence rates in Section 3; these assumptions involve choice of an “optimal”
sequence {r(n)} for a given degree of “‘peakedness” of the density near 8 and are
similar in spirit to those of [12] and [13]. Following the general results, we com-
ment on some special cases and give suggestions for computational simplification.

One interesting application of these methods concerns geographically distrib-
uted variables. We may think of the distribution of illnesses attributed to or
exacerbated by air pollution as a density function over an affected area. Identify-
ing the mode of this distribution (perhaps after adjusting for population density)
tells us where the effects of pollution are most severe and may suggest plan-
ning strategies for dealing with it. Local modes within subregions may also be
identified. Data to estimate these modes could be collected from hospital records
as occurrences of illness with the region and could be dated to correspond with
time periods known to have experienced severe pollution. On the “causative”
side of the dose-response relationship, the geographic mode(s) of the distribution
of air pollutants is harder to ascertain partly because of the nonmobility and
small number of air monitoring stations in most metropolitan areas. For this
problem one might plausibly try to estimate the mode of a surrogate distribution.
One thinks, for example, of substituting the geographic distribution of automo-
biles for that of carbon monoxide, which is known to be almost entirely attrib-
utable to mobile sources.

2. Almost sure convergence of #,. We begin by establishing some notationand
definitions. Points in k-space will be denoted by boldface x = (x;, X, - - -, X).
Let A denote Lebesgue measure on the Borel sets in E* with Euclidean metric
d(x,y) = |x — y|. An open ball centered at x with radius ¢ is the set B(x, ¢) =
{v; d(x,y) < ¢}. The diameter of a set A is diam 4 = sup {d(x, ¥); X, y € 4}.

In the sequel we shall utilize the notion of differentiation of measures. The
next two definitions and lemma contain the relevant ideas. A reference for this
material is Rudin [11, Chapter 8].

DEFINITION 2.1. A collection & = «7(§) of open sets in E* will be called a
substantial family if both of the following hold:

(a) There is a finite constant 8 such that for each 4 € < there is an open ball
B (depending on A) containing A and satisfying 4(B) < 8 - 4(4).

(b) For each x € E* and for each > 0, there is an 4 € & satisfying diam 4 < d
and x € 4.

DEFINITION 2.2. If &€ is a substantial family in E* and p is a positive Borel
measure on E*, we define the upper derivative of x with respect to <”at x by
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(@) (Dp)(x) = lim, ,sup{y(A)JA(A); xe A, Ae < ,diam A < d}and the lower
derivative of p with respect to <’ at x by
(b) (Dp)(x) = lim,_, inf {z(A)/2(A); x e A, Ae </, diam 4 < d}.

We say p is differentiable with respect to <" at x if the upper and lower deriva-
tives of x with respect to <”’at x are equal and finite. In that case we write

(Dp)(x) = (Dp)(x) = (Dpz)(%)-
LEmMMA 2.1. Let &’ be a substantial family in E*. Let p1 be a probability measure
on E*. If p is absolutely continuous with respect to 2, then

(a) p is differentiable almost everywhere [ 1] with respect to <, and
(b) Dy, Dy, Dy are all versions of the Radon-Nikodym derivative of p with
respect to A.

Proof. See Rudin [11, Theorem 8.6].

Condition (a) of Definition 2.1 makes precise the idea that the sets in £ may
not be too long and thin; condition (b) ensures that & will be rich enough for the
limits in Definition 2.2 to make sense for every x. Two examples of substantial
families are the collection of all open balls and the collection of all open hyper-
rectangles, each of whose longest edge is at most 8 times the length of its shortest
edge. In view of Lemma 2.1, the computation of Dy is independent (a.e.) of
the underlying substantial family.

At this point it may be helpful if we comment on the role of Dy and & in
the sequel. By defining the density and mode of F in terms of the limiting
process of Definition 2.2, we obtain a constructive representation of the density
which will be more convenient for us than the version which springs (as if by
magic!) from the Radon-Nikodym theorem. Since the interior of the set S,
from which @, is selected will be a member of a substantial family, the sequence
{S,} may be used in the limiting process, suggested by Definition 2.2, which
defines f(@). (The consistency argument does require a little more subtlety than
this, since we do not know that @ € S, for sufficiently large n; but {S,} will be
compared with an auxiliary sequence {M,} which does contain @ and may be
used in the limiting process.)

For our substantial family .."we shall use polynomial regions. With fixed a,
let P, , denote the class of all polynomials in k variables which have degree not
greater than a. If ge P, , then 4, = {x; g(x) > 0} is called a polynomial region
of degree m. For example, g(x,, - -+, X,) = —(x* + -+ + x°) + r* > 0 deter-
mines a polynomial region which is the interior of a sphere of radius r and
centered at the origin. All polynomial regions are open sets. This facilitates
the use of Definition 2.1, but it makes no real difference in the sequel if we close
these sets, for their boundaries have zero probability content.

DEFINITION 2.3. Let b be a fixed positive integer. Define ./ to be the class
of all sets which are polynomial regions, or a union or intersection of no more
than b polynomial regions, and satisfying Definition 2.1(a).
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& then constitutes a legitimate substantial family. Moreover, allowing the
membership of & to include sets formed by a finite number of set operations on
polynomial regions greatly enriches &#. For example, the rectangle (c,, d,) X - - -
X (¢ d,) is the intersection of 2k polynomial regions of the form ¢; < x, or
x, < d;.

DEFINITION 2.4. Let F be an absolutely continuous distribution function
(probability measure) on E*. The probability density function f(x) is defined
by f(x) = (DF)(x) for each x, with respect to the substantial family .

We note that f(.) is a version of the Radon-Nikodym derivative dF/di. The
above version of f is adopted for the sake of definiteness on the exceptional set
of measure zero where the Radon-Nikodym derivative fails to be uniquely
defined.

DEFINITION 2.5. A point @ is said to be the maode of F if for each ¢ > 0,
there exists 0 > 0 such that d(x, 8) > ¢ implies f(x) + 0 < f(@).

This definition marks a departure from the usual definition of mode: cus-
tomarily, @ is the mode if f(x) < f(@) for all x = @. Our definition is intended
to eliminate the pathological case of a sequence {x,} bounded away from @ but
with f(x,) 1 f(0).

DEFINITION 2.6. Let x,, - - -, X,, be a random sample of size n from F. Let
r(n) be a positive integer. We define S, = S,(r(n)) to be a minimum-volume set
among the class of closures of & which contain at least r(n) observations.

Since each g function is a polynomial of degree at most @ and no more than
b such functions are used in determining §,, then there are at most a fixed finite
number of observations which can lie on the surface of any polynomial region.
If r(n) is chosen larger than this number but less than n, then a minimum
(positive) volume S, exists with probability one. Note that S, need not be
unique because of the necessity of satisfying Definition 2.1(a), but we suppose
that a systematic procedure has been defined to select one of the possible sets
if there are several of minimum volume. For the same reason S, need not
contain precisely r(n) data.

We shall use the next lemma as a guide in our choice of r(n).

LEMMA 2.2. Let F, be the empirical distribution function corresponding to F.
Then

P[sup,. . |F(A) — F,(A)| > c(n~'log n)t infinitely often] = 0
where c is a constant which does not depend on n.

ProOF. An immediate consequence of Steele [15, page 20, corollary to
Theorem 2.1].

THEOREM 2.1. Let F be an absolutely continuous distribution on E* with density
[ as given in Definition 2.3 and mode @ as given in Definition 2.5. Let {r(n)} be a
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sequence of integers such that r(n)[n = o(l), nt[r(n) - (logn)t = o(1). Let S, =
S,(r(n)) be a smallest-volume set among the closures of .’ which contain at least r(n)
observations, and suppose (DF)(0) exists. If@,¢c S, for eachn, then 6, — @ almost
surely.

Proor. The proof proceeds in a series of small steps. First we define an
ancillary sequence {M,} which will be convenient for comparison with {S,}.
M, is to be a minimum volume set among the closures of SZsets which contain
at least r(n) observations and for which the true mode @ is an interior point.

We claim that F(M,)/A(M,) — f(0) almost surely. Since F is differentiable at
0, this will follow from Definition 2.2 provided diam M, — 0 almost surely.
But because M, cannot become too “thin” (Definition 2.1(a)) its diameter goes
to zero if and only if its volume does. Suppose A(M,)) > ¢ for infinitely many n.
It follows from Definition 2.1 that we can find 4 € & with 6 € 4 and A(4) < ¢,
F(A) > 0. Since r(n)/n = o(1), Lemma 2.2 shows that 4 becomes a smaller-
volume set containing & and at least r(n) observations than M,. This contradic-
tion establishes the claim.

Next we observe that |nF (S,) — r(n)| < dand |nF (M,) — r(n)] < d both hold
almost surely for some integer d, free of n. Let d be the maximum number of
observations in the boundary of a set in &% Then the interiors of S,, M, must
contain fewer than r(n) observations or else smaller-volume sets (interior to S,,,
M,) could have been used for S, and M,.

Then we claim that F(S,)/A(S,) — f(@) almost surely. Now by the definitions
of S, and the mode, we have 4(S,) < 4(M,,) and F(S,) < f(0) - A(S,). By these
facts, and the above observations and Lemma 2.2, the claim is proved in the
following string of inequalities:

f(6) = liminf, F(M,)/A(M,) < lim inf, F(S,)/(S,) - lim sup, A(S,)/A(M,,) .
lim sup, F(M,)n(r(n))~" - [lim inf F(S,)n(r(n))~]™*
< lim inf, F(S,)/A(S,) - 1 - limsup, [F,(M,) + O(n~*(log n)})]n(r(n))=*.

{lim inf, [F,(S,) + O(n~%(log n)})]n(r(n))~*}*
= lim inf, F(S,)/A(S,) < lim sup, F(S,)/(S,)-
< f(0) almost surely.

We now may collect the various pieces to complete the proof of Theorem 2.1.
Lete > 0. Suppose {4,} is a sequence of measurable sets such that d(@, 4,) > ¢
infinitely often. Then by Definition 2.5, there is a 6 > 0 such that F(4,) +
- A(A4,) < f(0) - A(A4,) infinitely often. Hence, lim inf, F(4,)/4(4,) + 0 < f(6).
Therefore, we must have d(8, S,) < ¢ for all but finitely many n, with probability
one. Since diam S, — 0, we have S, C B(@, 2¢) for all but finitely many n, with
probability one. Hence, 6, — @ almost surely.

We note some extensions. Suppose we are interested in estimating the mode
of f locally to some known set 4 having nonempty interior in E*. Suppose
further that the collection of local modes of fon A is not necessarily a singleton.



808 THOMAS W. SAGER

If we choose S, as before, except that we suitably restrict it to 4, will the esti-
mator @, converge to the collection of local modes of f on 4? The answer,
which we present now, is affirmative.

DEFINITION 2.7. Let A4 be a subset of E* with nonempty interior. A nonempty
set M is said to be the collection of 4-modes of F if M C A, f(M) is a positive
singleton, for each ¢ > 0 there isa d > 0 such that x € 4 and d(x, M) > ¢ imply
f(x) + 0 < f(M).

DEeFINITION 2.8. Let A be a fixed set with nonempty interior. Let r(n) be a
positive integer. We define S,(A4) = S,(4, r(n)) to be a minimum-volume closure
of sets in & which contain at least r(n) of the observations and which are con-
tained in the interior of A.

THEOREM 2.2. Let F be an absolutely continuous distribution in E* with density
[ as defined in Definition 2.4 and collection M, of A-modes of F. Let {r(n)} be a
sequence of integers such that r(n)[n = o(1), nt[r(n) - (log n)} = o(1). Suppose there
isa@ e M, suchthat 0 lies in the interior of A and (DF)(0) exists. Then if 8, € S,(A)
for each n, we have d(@,, M ,) — 0 almost surely.

Proor. The proof of Theorem 2.1 may be modified in appropriate places to
prove Theorem 2.2. '

3. Convergence rates for §,. To obtain convergence rates for 8, further dis-
tributional assumptions will be necessary. In general, the speed of convergence
depends upon the steepness of ascent of the density near @. The steeper the
ascent, the faster the rate of convergence. The measure of steepness used here
is given in the next definition.

DEerINITION 3.1. Let f(+) be the density of F as given in Definition 2.4. Let
6 be the unique mode of the distribution and let D > 1 be fixed. For eachd > 0,
define a(d, D) = inf {f(x); d(@, x) < 0}/sup { f(x); d(0, x) = Do}.

As an example, consider the k-variate normal distribution with independent
components X; ~ N(0;,0,%), i =1, ---, k. With D = 2, we compute a(d, 2) and
expand the exponential in a Taylor’s series to obtain a(d, 2) = 1 + 36%(1/s® +
1/o? + -+ + 1/a,}) + O(6*) > 1 4 cons. ¢* for all ¢ sufficiently small.

THEOREM 3.1. With the same assumptions as in Theorem 2.1 but also that
a(d, D) = 1 + po™ for some D > 1, p > 0, m > 0, for all 6 sufficiently small and
r(n) of the form Qn'*m+1/@n+3%) for some Q > 0, then d(@,, ) = O(3,) almost surely,
where 0, = n~V*"+¥(log n)'/*™,

ProoF. The first step in the proof is to establish that the ancillary set M,
(see proof of Theorem 2.1) is sufficiently close to 6.
Lemma 3.1. M, C B(@, d,) for all n sufficiently large, with probability one.

Proor. Since a(d, D) > 1, there exist positive d, and 4 such that f(x) > & for
all x e B(0, 0,). Thus a(BI,)F < F(M,) for all n, for some 8 < 1, where /, =
sup {d(x, 8); x € M,}. It suffices to show /, < 9, for all large n, with probability
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one. From Lemma 2.2 we know that F(M,) = r(n)/n + O((n* log n)?) almost
surely. Hence [, < B~'h~VEQVEp~VCm+2  O((n~* log n)*) < d, almost surely.

Let Q, be the event of probability one for which the conclusion of Lemma
2.2 holds. Let Q, be the event of probability one for which the containment
relations of Lemma 3.1 hold. Let Q, be the event of probability one for which
F(S,) > 0 for all but finitely many n. We show that if Q, n Q, n Q, occurs,
then d(@,, 6) = 0(d,).

Suppose Q, N Q, n Q, occurs. Since A(S,) < A(M,), the diameter of S, is of
no higher order than that of M,, which is O(d,). Since d(4,, 8) < d(@, S,) +
diam S, it suffices to show that S, is contained in B(@, D € d,) for some ¢ > 0
for all n sufficiently large. Suppose, on the contrary, that for each e > 0 there
is a subsequence of {S,}, each member of which is entirely contained in the
complement of the corresponding B(@, D € 4,) (convergence at the proper rate
automatically follows when S, has nonempty intersection with B(@, D € 4,) since
diam §, = 0(9,)). For these n, we have

1 + pemn~m/@m+20(log n)t < a(ed,, D) - AM,)[A(S,) < F(M,)/F(S,)
= [r(m)/n + O((n~* log n)1)]/[r(n)/n + O((n™* log n)*)]
= 1 4 O(n~™"+¥)(log n)t) almost surely.

But for ¢ sufficiently large, the left-hand side of this inequality is larger than the
right-hand side for all but finitely many n. (Note that the order on the right
does not depend on ¢, by virtue of Lemma 2.2.) This contradiction completes
the proof of the theorem.

Theorem 3.1 may be extended to provide a convergence rate for estimation
of multiple local modes in the same sense that Theorem 2.2 extends Theorem 2.1.

THEOREM 3.2. Suppose the conditions of Theorem 2.2 hold. Suppose also that
for some 6@ € M, we have a,(3, D) = 1 + po™ for someD > 1,0 > 0, m > 0, for
all 9 sufficiently small, where a,(0, D) = inf { f(x); d(0, x) < 6}/sup { f(x); d(€, x) =
Dé, x € A}, and let r(n) be of the form Qn*m+#/@m+2) for some Q > 0. If @, € S,(A)
for each n, then d(6,, M,) = O(9,) almost surely, where 9, = n~V*"+*¥)(log n)"/*".

Proor. The extension to a local mode follows easily by observing that the
proof of Theorem 3.1 depends only on properties of f near §. A closer inspec-
tion of the proof of Theorem 3.1 shows that it may be extended to multiple
modes, provided at least one of the modes satisfies the a(d, D) condition. We
cannot conclude that , will be within O(d,) of that particular mode satisfying
the a(d, D) condition, only that it will be within O(d,) of some mode satisfying
the condition.

REMARKS. For the multivariate normal distribution discussed at the beginn-
ing of this section, we have a convergence rate of O(n~"“**)(log n)t) for the
error term. For k = 1, the estimate based on an interval S, is identical to that
of Sager [12], in which it was shown that §, = 6 + o(n*(log n)?) almost surely
for estimating the mode of a univariate normal. Of course, if we really knew
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that the distribution were normal, multivariate or univariate, we would not
use the estimators proposed here or in [13]. Our observation is that the con-
vergence rates given here probably are not optimal. In [12] convergence rates
were obtained through calculations based on special properties of order statistics
on the line. That technique may not be extended to distributions in E*, k > 2.
Nevertheless, we feel that sharper rates are possible for the multivariate case.
However, it is evident that negligible gain in this direction may be realized from
sharpening the rate in Lemma 2.2, which is already within an order of logn of
the best possible. As was the case in [12], simple consistency of @, should hold
for r(n) of the form Qn*, 0 < v < 1, and convergence rates may approach O(1/n)
for m sufficiently small.

Finally, we remark that the convergence rates of Theorem 3.1 are not vacuous.
For each m > 0, there exists a k-variate density to ‘which the given error rate
applies. To see this, let X be the k-variate distribution with independent com-
ponents X, each having marginal density proportional to exp|x; — 6™ for j =
1, ..., k, respectively. A calculation of «(d,2) and expansion in a Taylor’s
series shows that a(d, 2) > 1 + cons ¢™ for all small 4.

4. Some special classes . The results of Sections 2 and 3 covered a broader
class of sets .>“than it may be feasible to search in practice. If we replace &
with appropriate subclasses, the theorems remain true provided the subclasses
meet the requirements of substantial families. Two such subclasses are the
family of all open balls and the family of all open hypercubes with sides parallel
to the coordinate axes. Yet another is the class of open k-cells (sets of the form
(@5 b)) X - - - X(ay, b)), each of whose longest edge is no more than 8 times the
length of its shortest edge. It is easy to see that there is a unique minimum-
volume closed ball containing at least r(n) observations, for its surface will contain
k + 1 data points and the probability is zero that the volumes of the spheres de-
termined by any two distinct sets of k + 1 observations are the same. However,
it is also easy to see that a volume-minimizing hypercube or closed k-cell is not
unique, in general. For estimating a density at a fixed point, Elkins [3] found
some differences between cubical and spherical kernels, but in terms of consist-
ency there is nothing to choose between them. Intuitively, the more flexible
the class &, the better modal estimate one should obtain, but the more difficult
the computations to find it. The volume-minimizing closed ball is easiest to
find: by searching the (,%,) spheres determined by each k 4 1 of the data. The
volume-minimizing hypercube is more difficult to calculate, and the situation
in the case of general k-cells seems very complex indeed.

The practical difficulties in finding the appropriate volume-minimizing set
suggest a number of shortcuts. If the balls and cubes were required to be cen-
tered at observations, then only n searches need be performed. For k-cells, we
could restrict attention to the family of k-cell covers of all pairs of data points
having ratio of longest edge to shortest at most § (the k-cell cover of a set A is
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the intersection of all closed k-cells containing 4; in the case of a two-point set
A, the k-cell cover is particularly easy to write down explicitly). Although these
simplifications may rather strongly restrict the class of potential sets for our
modal estimates, we expect that their consistency properties would not suffer.
Indeed, a careful examination shows that the proofs of Theorems 2.1 and 3.1
hinge on being able to find the set M, € .~ containing @ as an interior point.
This guarantees that A(S,) < A(M,) and makes the proofs work. We therefore
have the following result.

THEOREM 4.1. Suppose &' is a (possibly finite, possibly data dependent) subclass
of the substantial family & of Definition 2.3. Suppose, with probability one for all
n sufficiently large, .S’ has an element M,’ containing at least r(n) observations and
containing 0 as an interior point. If S, is a minimum-volume set among the closures
of & which contain at least r(n) observations and @, ¢'S,’, then 6, — @ almost

surely. In addition, if the assumptions of Theorem 3.1 are met, then 8, has the
asymptotic convergence rates given there.

To see how this theorem might apply to the possible simplifications mentioned
above, let #(S) = x ¢ S assign a single point x to each S ¢ & such that x lies no
less than ¢ - diam (S) from the boundary of S for some 0 < ¢ < 1. Let &’ be
the subclass of & whose A(.)-points are observations. If we can show the ex-
istence of an M,’ satisfying Theorem 4.1, then we immediately have consistency
and convergence rates for estimators @, based on spheres and cubes centered at
observations. To see the existence of M,’, let x,,, denote the closest observation
to 6 and let M,’ be a minimum-volume set from among the closures of .&”
whose k-point is x;,,. Now the ball B = B(@, c - diam M,’) contains roughly
f(0) - A(B) probability, which is at least a fixed positive fraction of the probability
content of M,’. Thus by applying Lemma 2.2, we see that B ultimately contains
a fraction of the observations in M,’ and therefore contains x;,,. Hence 0 ¢
B(x;,y, ¢ -diam M,)y c M, /.

To handle k-cells, let & be the class of k-cell covers (see above) of all pairs
of data-points having ratio of longest edge to shortest at most 8 and containing
at least r(n) data-points. As noted, & is simple to construct. To obtain the
existence of the required M,’, it is necessary and sufficient that at least one of
the 2+~ pairs of sets ({X; x, < 0, x, > 0,, - -+, x, > 0,}, {x;x, > 0, x, > 60,, - - -,
X, > 0,}), - - - have both pair-sets receiving positive probability, where the pairs
are formed by changing the direction of the inequalities and coupling those
whose inequalities differ for only one index. This is an assumption about the
distribution F as it cannot be proved from our assumptions. But most distribu-
tions in practice will satisfy it.

It is evident that Theorem 4.1 admits consistency for a variety of ingenious
shortcut methods.



812

3!

—_—

[2]
[3]

[4]

[5]
[6]

7
[8]
9
[10]

[11]
[12]

[13]
[14]
[15]
[16]

[17]

THOMAS W. SAGER

REFERENCES

BoNEvVA, L., KENDALL, D. and STEFANOV, 1. (1971). Spline transformations: three new
diagnostic aids for the statistical data analyst. J. Roy. Statist. Soc. Ser. B 33 1-70.

CHERNOFF, H. (1964). Estimation of the mode. Ann. Inst. Statist. Math. 16 (Part 1) 31-41.

ELkINs, T. (1968). Cubical and spherical estimation of multivariate probability density.
J. Amer. Statist. Assoc. 63 1495-1513.

Goop, I. J. and Gaskins, R. A. (1971). Nonparametric roughness penalties for probability
densities. Biometrika 58 255-277.

GRENANDER, U. (1965). Some direct estimates of the mode. Ann. Math. Statist. 36 131-138.

KRONMAL, R. and TARTAR, M. (1968). The estimation of probability densities and cumu-
latives by Fourier series methods. J. Amer. Statist. Assoc. 63 925-952.

LorTsGAARDEN, D. O. and QUESENBERRY, C. P. (1965). A nonparametric estimate of a
multivariate density function. Ann. Math. Statist. 36 1049-1051.

Moorg, D. S. and YACKEL, J. W. (1977). Consistency properties of nearest neighbor density
function estimates. Ann. Statist. 5 143-154.

PARZEN, E. (1962). On estimation of a probability density function and mode. Ann. Math.
Statist. 33 1065-1076.

ROBERTSON, T. (1967). On estimating a density which is measurable with respect to a o-
lattice. Ann. Math. Statist. 38 482-493.

RuUDIN, W. (1966). Real and Complex Analysis. McGraw-Hill, New York.

SAGER, T. W. (1975). Consistency in nonparametric estimation of the mode. Ann. Statist.
3 698-706.

SAGER, T. W. (1975). An iterative method for estimating a multivariate mode and isopleth.
J. Amer. Statist. Assoc. To appear.

SCHUSTER, E. F. (1970). Note on the uniform convergence of density estimates. Ann. Math.
Statist. 41 1347-1348.

STEELE, J. M. (1975). Combinatorial entropy and uniform limit laws. Ph.D. Dissertation,
Department of Mathematics, Stanford Univ.

VAN RyzIN, J. (1969). On strong consistency of density estimates. Ann. Math. Statist. 40
1765-1772.

VENTER, J. H. (1967). On estimation of the mode. Ann. Math. Statist. 37 1446-1455.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305



