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JACKKNIFING MAXIMUM LIKELIHOOD ESTIMATES!

By JaMmes A. REEDS
University of California, Berkeley

This paper proves the apparently outstanding conjecture that the
maximum likelihood estimate (m.l.e.) ‘‘behaves properly” when jack-
knifed. In particular, under the usual Cramér conditions (1) the jackknifed
version of the consistent root of the m.1. equation has the same asymptotic
distribution as the consistent root itself, and (2) the jackknife estimate of
the variance of the asymptotic distribution of the consistent root is itself
consistent. Further, if the hypotheses of Wald’s consistency theorem for
the m.l.e. are satisfied, then the above claims hold for the m.l.e. (as well
as for the consistent root).

1. Introduction. Consider a statistical estimation procedure which, given the
sample data X}, X,, - - -, X,,, yields as the estimate of some parameter that value
of 6 which maximizes 4,(0) = 1/n 37 h(X;, 6), where & is a given fixed function.
This framework certainly includes maximum likelihood estimation for a given
parametric family of probability distributions, even if the true distribution of
the X; does not lie in the given family. Let us denote the maximizing value of
f—neglecting for the moment questions of existence and uniqueness—by
6,m2% = 6,m%(X,, - - -, X,) and let us denote a root of the critical point equation
(8/26) h,(0) = 0 by 8, = 6,7°(X,, -- -, X,). (We will specify which root later
on.) Given such an estimate we may “jackknife” it, that is, use 6, to define a
new estimate JK 4, (where 6, is either of 6,™** or §,7°") defined by

JK O,(X,, -+, X,)

— 1
= 0n - " n Z;%=1 (0n—l(X1’ ] Xj—l’ Xj+1s Tt X'n) - 0n(X1? ) Xn))

n—1

=40, — P (0n,—j —0,)

— 9 _n—l

n Z;E=1 Rn; .

We may also calculate a “jackknife estimate of variance”
TKV 0,(X,, -, X,) = (1 — 1) S5y (Ryy — R)(Ryy — RY

where R, = (1/n) >1*_, R,; and ' denotes transpose.
Under suitable regularity conditions on the function 4 and on the distribution
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of the X; we can expect that lim,_., P(§,7* = §,™*) = 1and thatn¥(4, — 6*) —
N(O, Z) for some value of #* and some matrix X, where 4, is either of 4,7t or
6,m**. By analogy with known jackknife results we should also expect such
convergences as

a.1) n(JK 6, — 0,) —,.. 0
(1.2) JKV 0, —, =

(1.3) JKV 6, —,, =

(1.4) nt(JK 6, — 6*) — _ N(0, %)

a.5) n(JK 6, — 6*)Y(JKV 6,)"'(JK 6, — 0%) —_ *.

This paper proves (J.1) and (J.2) under conditions on the function 4 that (in
the maximum likelihood case) are slightly weaker than Cramér’s conditions for
the asymptotic normality of the consistent root of the likelihood equation
(Cramér, (1946), page 500). We are unable to prove (J.3) without a strong mo-
ment condition. (J.4) follows from (J.1) and the known asymptotic properties
of 4,; (J.5) follows from (J.2) and (J.4). Our proof of (J.1) and (J.2) seems to
be new (Miller, (1974), page 5).

Such convergences are of practical use: a confidence interval based on (J.2)
or a test based on (J.5), for instance, has a degree of robustness under model-
violations not shared by intervals and tests based on, say, the estimated Fisher
information. This—and other features ot the jackknife—are surveyed in Miller
(1974). '

The present results should not be confused with those of Brillinger (1964),
which concern a different kind of jackknife. Brillinger defines his jackknife by
dividing the observations into a fixed number of groups, and successively omit-
ting the groups from the formula for the estimate. As the sample size increases
without bound, the number of groups remains fixed, but the number of obser-
vations in each group tends to infinity. This is contrasted with our jackknife,
in which the number of groups tends to infinity and the number of observations
per group remains fixed (namely, one per group).

A later paper of Brillinger does concern the present version of the jackknife
(Brillinger, (1977)). Its results are very close to ours; Brillinger uses an asymp-
totic expansion of Chibisov (1973) to prove convergences (J.1) and (J.2). But
the appeal to Chibisov’s expansion requires much stronger moment and smooth-
ness conditions than the usual Cramér conditions: in the maximum likelihood
case, Brillinger requires, inter alia, the existence of eighth moments of the fourth
derivative of the log likelihood function at the true parameter point. We are able
to prove (J.1) and (J.2) under our much weaker hypotheses because we use a
reversion-of-series result (Lemma 2) specially fitted to the jackknife application
instead of a general purpose result like Chibisov’s.

Like all known jackknife results, ours relies heavily on Taylor expansions
and on a “delta method” argument—but with a difference. Where previous
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jackknife authors use Taylor approximations of functions of several real vari-
ables and apply these to sample means of real random variables or of finite
dimensional random vectors, we apply a Taylor approximation of a function of
a Banach space vector to a sample average of a random function. In other
words, we carry out our delta method argument in an infinite dimensional set-
ting. The idea is that 6, depends differentiably upon the entire sample function
h,(6), which is viewed as a random element in a certain Banach space.

2. Notations, assumptions, results. Let X,, X, - - - bei.i.d. random elements
in some measurable space (2, ). Let ® < R? be a set. Suppose the function
h: 2 x ® — R is measurable in x for each §. Suppose () = Eh(X,, 6) < oo
for each 6 € © (the case 7(d) = —oo not excluded) and suppose there exists a
0* € © with (*) # — oo such that if § € © is unequal to 6*, n(d) < n(d*). Let
h,: © — R be defined by h,(0) = (1/n)(h(X,, ) + - - - + A(X,, 0)).

(We interpret © as a parameter space and §* as the “true value of #” which is
unknown to the statistician. Whatever its value, however, it is known that 7(6)
is maximized at §*; since 4,(6) is in some sense an estimate of 7(6), we propose
to estimate 6* by maximizing 4,(6). In maximum likelihood estimation with a
parametric family of probability distributions P, with dP, = f(x, 0) du(x) indexed
by 6 € ©, where the data X, X, ---. has distribution P,., the function h(x, 8)
can be taken to be In f(x, 6)/f(x, 6*). Then, maximizing the likelihood is equiva-
lent to maximizing 4,; the requirement 5(6) < 7(6*) is true by Jensen’s inequality;
and the requirement 7(f) = 7(6*) for § = ¢* is implied by the requirement that
the family of measures P, is not over-parameterized—i.e., that the parameter 6
is “identifiable.”)

In addition to these notations and innocuous assumptions, we impose a set of
stronger restrictions on the distribution of the X; and on the behavior of the
function % in the vicinity of §*. We refer to these extra assumptions as “L”
because of their local nature.

AssUMPTIONS L. There exists a compact neighborhood K—which can, without
loss of generality, be taken to be cubical —K < 0, such that: )
(L.1) with probability 1, A(X,, f) is twice continuously differentiable (as a

function in 6) on K;
(L.2) E|(0/06,) h(X,, 0*)]* < o0, i=1,---,7q;
(L.3) E|(0%/00,00;) h(X,, 6*)]| < o0, i,j=1,---,¢;
(L.4) A4 = (a,,){,-, is nonsingular, where a,; = E(0%/d0, 36,) h(X,, 6*); and
(L.5) there exists a function M(x) and a constant 2 > Osuch that EM(X,) < oo
and, with probability 1, for all s and ¢ ¢ K,
s M 9) = =0
00, 00, 00, 00 ;
When “L” is assumed we will, with further comment, adopt the notations
9(x, 0) = (94(x, 0))i_,, where g,(x, 0) =(3/36,)h(x, ), and §,(0) = (1/n) }3%_, 9(X;, 0),
and S = (s;;)¢ ;-, where s,; = Eg,(X,, 0%)g,(X,, 0*).

h(X,, )| < M(X)|s — ¢*.
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Note that condition (L.5) allows us to interchange differentiation and expec-
tation, as in Eg,(X,, 0) = (9/00,) (), a,; = (0*/00, 06,) n(6*), and Eg,(X,, 0*) =
0, etc.

PROPOSITION 1. Assume “L. Then there exists a sequence of measurable func-
tions 0,7 27 x .. x 22— K, and a compact neighborhood N C K of 0* such
that: '

(i) with probability tending to 1 as n — oo, 0,7°4(X,, - - -, X,) is the point where
h,(0) attains its unique maximum in K, as well as the unique root of §,(6) = 0 in N;
(i) n¥(8,4X,, ---, X,) — %) —_ N0, Z) as n — oo, where L = A~'SA™".

This result is of course classical, and is essentially contained in Cramér ((1946),
pages 500 ff.). Our main result is:

THEOREM. Assume “L”; let 6,7° be as in Proposition 1. Then 6, obeys the
Jackknife property (J.2). If the constant 2 in (L.5) can be taken to be greater than
%, then 0,7 also obeys (J.1).

Our theorem addresses the jackknife behavior of the “consistent root” of
7.(6) = 0; it would be desirable to have a corresponding result for the behavior
of the location of the global maximum of A,(f). The following simple results
go part way to satisfying this want.

COROLLARY 1. Assume “L”; let 0, be as in Proposition 1. Assume that
0,: Zx -+ x Z— 0 is a sequence of statistics such that the following occurs
with probability 1:

For all n sufficiently large,

0n(X1a R Xn) - 0nr0°t(X1a tt Xn)
and
0n—1(Xv Tt Xj—p Xj-H’ T Xn) = 0;,03}(X1, ] Xj—l’ Xj+1’ ] Xn)
forall j=1, ...,n. Then the conclusions of the theorem apply to the sequence 0,
as well as to 6,7,

COROLLARY 2. Assume “L”. Define 0,™: 27 x - x 27— 0 by h,(6,™) =
supg h,(6). If, for each neighborhood .~ O of 6%, with probability 1 for all suf-

ficiently large n,
0%max(X1, R Xn) € e

and
0;{1_615(,\/1, cee Xj—l’ X,~+1, ceey Xn)et/f/‘, Jj= 1, ..., n,
then the conclusions of the theorem apply to the sequence 6,™°*.

COROLLARY 3. Assume “L”; let 6, be defined by h,(0,) = supg h,(0). If
the convergence 6,™*(X,, - - -, X,) —, ;. 0* follows from any of the usual versions of
Wald’s consistency theorem for the maximum likelihood estimate—or, more generally,
for minimum contrast estimates (Wald, (1949); Bahadur, (1967), page 320; Pfanzagl,
(1969))—then the conclusions of our theorem apply to 6,™*.
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Corollary 1 should be obvious; Corollary 2 follows from Corollary 1 and from
Proposition 1. Corollary 3 may be proven by noticing that the usual proof is
based (ultimately) on an appeal to the strong law of large numbers, which may
be replaced by an appeal to a “jackknife strong law””:

PrOPOSITION 2. Let W), W,, - .. be i.i.d. random vectors in a separable Banach
space, with E||W || < co. For each neighborhood 77 of EW,, the following occurs
with probability one: for all n sufficiently large, W, = (1/n) X1, W, e 77 and for
eachj=1, ---,n, W, = 1)(n — 1)) Tt.,, Wi 7"

SKETCH OF PROOF. E||W,||< co implies both T, = max {||W ], - -, ||W,|[}/n—, .0
and W, —, . EW,. The estimate |W,, — W,|| < (2n/(n — 1))T, completes the
proof.

There are consistency theorems for the maximum likelihood estimate (m.l.e.)
(and other minimum contrast estimates) which do not use the strong law of large
numbers; Perlman (1972) presents several which rely instead on the martingale
convergence theorem. We have not attempted to see if those theorems can be
modified as we modify Wald’s theorem in Corollary 3.

3. Spaces. Let W, and W, be Banach spaces. If & C W, wesay ¢: & — W,
is uniformly 2-Holder continuous if there exists a constant M such that x, y e &
imply |4(x) — ¢(y)] < M|x — y|*. If &< W, is open, we say ¢: & — W, is
continuously differentiable if there is a continuous function D¢ : & — L(W,, W)
(where L(W,, W,) is the Banach space of continuous linear maps from W, to W,
normed with the operator norm) such that (d/dr)|, ¢(x + ty) = D¢(x)y for all
xe, ye W,. It can be shown that such ¢ are Fréchet differentiable at each
x € @, with Fréchet derivative D¢(x). Let ¥ = R in the special case W, =
W,=V, LW, W,) = V® V* is the space of ¢ by g real matrices, and then D¢(x)
is the matrix with ij entry 6¢,/0x; where ¢, is the ith coordinate function of ¢.

It K < V is compact, we say ¢: K — V is continuously differentiable if there
is an open set ¢ 2 K and an extension ¢, of ¢ to & such that ¢_: & — V is
continuously differentiable.

If ¢: K — V is continuously differentiable, let

141l = sup {|¢(1)] + [Dg(1)]: 1 € K}
+ sup {|D¢(s) — DP()| - |s — t|*: s, teK, s + 1} .
Let
B = {¢: K — V continuously differentiable with ||¢|| < oo} ;
let
B, = {¢ € B with ¢(6*) =0 and D¢(6*) = 0} .

B = (B, || ||) is a Banach space; (B,, || ||) is a sub-Banach space of B.
Let U= V@ (V® V*)D B,; we claim that this Banach(able) space is isomor-
phic to B. We check this by exhibiting two continuous linear maps a: B — U
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and 8: U — B which are inverse to each other. For u = (y, z, ¢) e U, let f(u)
be the function of ¢ defined by

Bu)(0) = y + 2(6 — 6*) + ¢(6)

(here—and hereafter—z(6 — 6*) is matrix multiplication and ¢(¢) is argument-
of-a-function). For ¢ € B let a(¢) = (ay(¢), ay(¢), ay(¢)) € U where

ay(¢) = ¢(0%)
ay(¢) = DP(6*)

a()0) = ¢(0) — a($) — ax(¢)(0 — 0%) .

The assumptions “L” imply that the random functions g(.X;, #) are i.i.d. Borel
measurable random elements g(X;) of the Banach space B, and that E||g(.X;)|| < oo.
Hence the expectation of g(X;) exists; let it be denoted by y. The continuity of
a implies that U; = a(9(X;) — r) isarandom element of U, that Y, = «a,(g(X,) — 1)
is a random element of V, that Z;, = a,(g(X;) — r)isarandom elementof V' ® V*,
and that ¢, = a,(gX;) — r) is a random element of B,. (Of course, the claims
about Y; and Z;, were already known.) We define U, = (U, + --- + U,)/n,
Y, = i+ -+ Yn)/n’zn =(Z,+ -+ Z,)[n, andq;n = (¢ + - + )0
so U, = (Y,,Z,, ,). Y., Z,and §, are sample averages of the mean centered
i.i.d. random vectors Y,, Z; and ¢,, respectively.

The assumptions “L” ensure that E|Y,|* < oo, E|Z;| < oo and E|¢,|| < co.
Cumbersome though it seems, it will be most convenient for us to rewrite the

and

equation
9.(0) =0

70+ Y, + 2,0 — 6%+ ¢,0)=0.
4. The function f(y, z, ¢). For small enough vectors u = (y, z, ¢) € U, the
equation
(4.1) 70 +y+ 20 —0%) + ¢(6) =0
has a solution in ¢, which we denote by & = f(y, z, #). This solution is described
in a pair of lemmas.

LEMMA 1. There is a neighborhood 7/ of 0 in U and a neighborhood 4" of 0* in
K and a continuously differentiable function f: Z/ — ¥ whose derivative is uniformly
A-Holder continuous, such that

(i) f(0) = 6*.
(ii) For all u = (y, z, §) € Z, 0 = f(u) solves (4.1).
(iii) If (u, 0) € ZZ x A satisfies (4.1), then 6 = f(u).

as

Proor. This follows from a slight extension of the usual Banach space implicit
function theorem stated, for example, in Dieudonné (1960) or Lang (1962).
While the usual theorem states that a C? equation has a C” solution (where C?
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denotes p times continuously differentiable) it is also true that a C»* equation
has a C?* solution, where C?* denotes C? with the pth derivative uniformly
A-Hoélder continuous. The proof of this sharpening is a trivial modification of
the usual proof and hence is omitted.
Consider the map
m: (u,0) = (y,2,9,0)—r(0) + y + 2(0 — 6%) + ¢(0) .

m is continuously differentiable; its first derivative is uniformly A-Holder con-
tinuous on bounded sets, m(0, 6*) = 0, and the partial derivative of m with
respect to ¢, evaluated at (0, 6*), is nonsingular. Hence the implicit function
theorem applies, and there are neighborhoods 77 and .#" and a function f as
stated. []

Let the partial derivatives of f{y, z, ¢) with respect to y and z be denoted by
f, and f,, respectively. It is easy to check that f(0) = — A4~* and f,(0) = 0.

LeEMMA 2. The neighborhood 7/ in Lemma 1 can be chosen so that uniformly in
(22, 8), (¥ + 0y, 2, 8), (3 2 + 02, §) and (y, 2, ¢ + 0¢) € %"

(i) Sy 2, ¢ + 36) = f(1, 2, $) + T(PgllI Y1)
(ii) [y, 2, 8) = T
(iii) f(y + 0y, 2, 8) = [y, 2, 8) + [ (9> 2, $) Oy + Z(19yI"*);
(iv) f(ys 2 + 0z, ¢) = f(y, 2, §) + [y, 2, $) 6z + (|9z])* | y]); and
V) £y + 0y, 2, 9) = [y, 2, 9) + T(10y |y + |9y]) -

Proof. For any ¢ € B, and any @, the definition of ||§|| implies that
(4.2) 16(0)] < ligll|g — o*[*** .
The nonsingularity of Dy(6*) = A implies the existence of a neighborhood 7~
of 6* and a constant ¢ > 0 such that s, r ¢ 27" implies
s — 1t = elr(s) — r()] -
By continuity of f at 0 choose Z/ so small that f(Z7) £ 7". Then
[f(w) = fw)] = elr(f(w) — r(fw)]

uniformly in u, € Z.
Further, choose 7/ so small that u = (y, z, ¢) € ZZ implies c|z| < }, c||¢|| = 4,
and |f(u) — 6*] < 1. Then

|f(u) — 0% < clr(f(w)) — 7(6*)]
= c|r(f(w))l
= ¢y + 2(f(u) — %) + $(f(w))|
< eyl + clzl1f(w) — 6*] + clg(f(w))
< eyl + clz||f(u) — 6%] + cligll|f(u) — 6*'**
by (4.2).
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But c|g] < § and |f(x) — 0| < 1, so cg]|f(v) — 6*[** < §|f(w) — 6%| and
hence
[flu) — 0% < clyl + clz||f(u) — 0%| + 3f(u) — 6%
< cly| + 3Ifw) — 0%,

because c|z| < 4. This in turn implies

(4.3) [f(u) — 0*| < 3elyl = (1) -
Let u, = (y, 2z, ¢) and u, = (y, z, ¢ + 09); let 6, = f(u;). Then
7(6,) + y + 2(6, — 6%) + $(6,)) = 0
7(6:) + y + 2(0: — %) + $(6,) + 9¢(6,) = 0

so usingfformulas (4.2) and (4.3) in turn, we see
16, — 0| < c|2(6, — 0) + $(6,) — $(6:)] + ¢|04(0,)|
< ¢2]16, — 63 + cligll|6: — bs] + c[log]||6, — %"
< 810, — O] + cilogfl |yl -
Hence, |0, — 0,] < 3c¢,/ldd|||y|***, where ¢, is some positive constant. This proves
(D).
The remaining claims of the lemma follow from the formula for f,(u) obtained

by implicit differentiation:

Dr(0)f, + (0 — 6*) + zf, + Dg(0)f, = 0,

and

or
(4.4) fiu) = G(u)G — 6%),
where 0 = f(u) = f(y, z, §) and G(u) = —(Dy(0) + z + Dg(#))™".
In the sequel we will use the following simple consequence of (4.4):
(4.5) f() — f.() = G(u,)(0, — 6*) — G(u,)(0, — 6*)
= (G(u) — G(u))(0, — 6*) + G(u,)(6, — 0,),
where 0, = f(u,).

If Z7 is chosen small enough, G(x) is uniformly bounded and uniformly
A-Holder continuous on Z/.

Then (4.4) together with (4.3) implies |f,(z)| = Z7(|y|), which proves (ii).
This in turn implies
(4.6) f> 21 8) = 19> 2, 8) = Dl — ) »
uniformly in (y, z,, ¢) in Z.
To prove (iii) and (iv) we use the Lagrange form of the Taylor remainder
formula:

(4.7) f(u + k) = f(u) + Df(w)h + §5(Df(u + th) — Df(u))hdr .
To prove (iii) we choose # = (dy, 0, 0). Then the integrand in (4.7) is

(Df(u + th) — Df(u)h = (f,(y + th, 2, $) — f,(1, 2, $)) Oy,
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which is bounded in norm by |f,(y + tdy, z, ) — f,(y, 2, ¢)||0y|. This is in
turn bounded by a constant multiple of |dy['+*, because f, is uniformly 2-Ho6lder
continuous (by Lemma 1). Thus, on integration,

fO 40y, 2, 9) = f(», 2, 8) + /(1> 2, $) 9y + (1o)™Y,
which is (iii).
To prove (iv) we use (4.7) with 2 = (0, 0z, 0). Then the integrand (Df(u + th) —
Df(u))h is
(f:lys 2 + 102, 9) = [y 2, 9)) 02 = (fu() — [fu(m)) 0z,

where u, = (y, z 4 tdz, ¢) and u, = (y, z, ¢). Let 6, = f(u,); then (4.5) and the
uniform A-Holder continuity of G imply that

() — fuw)l = F(|u, — wl!|6, — 6%]) + (|G (w,)] |6, — 6,])

= (j0z1"1y1) + (0, — 6,)

= (16z"|y]) + O(1dz|[yl)  (by (4.6))

= |oz)*y]) -
Thus the integrand in (4.7) is £7(|dz[**%| y|),.and on integration we get (iv).

Finally, claim (v) follows directly from (4.5), with u, = (y + dy, z, ¢) and

u, = (y, 2, ¢). The first term in (4.5) is &(|u, — u,|*|y|) = £7(|0z|*|y|) and the
second is—by (4.3)—7(|oy|). O

5. Proofs.

SKETCH OF PROOF OF PROPOSITION 1. Let % beasin Lemma 2. Let §, be some
fixed, arbitrarily chosen point in ©. If U,e %/, let §,%X,, ---, X,) = f(U,);
ifU,¢Z,let0, (X, ---, X,) = 6,. Bythe Banach space law of large numbers

P(U,ne'?/)—)I as n-—oo.

Further application of the Banach space law of large numbers verifies the rest
of (i).

Let ~ ~

R, = n¥(f(U,) — f(0) — DA(0)U,)
= n¥(0,7" — 6* + A7)

if U,eZ. If we can show that R, —, 0 as n — oo, (ii) is established. But
A0, =f¥,, Z,, ¢,) differs from f(¥,, Z,, 0) by (|,|||Y,|***); and /(¥,, Z,, 0)
differs from f(¥,, 0, 0) by <(|Y,||Z,|), by Lemma 2, provided U, e 7.

Since |ntY,| is tight, and |Z,| —, 0, it suffices to show that

R, = n}(f(Y,, 0,0) — f(0) — Df(0)¥,, 0, 0)) —»,0.

By Lemma 2(iii), R,’ = &7(n}|Y,|**?), which converges to zero in probability. []

PROOF OF THE THEOREM. Let U, = (nU, — U,)/(n — 1), and similarly for
Y,;, Z,;and §,;. With probability 1, for all n sufficiently large, all U, € %/ and

ng
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UM. e#,j=1, ---,n. Hence, in proving (J.1) and (J.2) we may as well assume
that U, € 7/ and all the U,; € ZZ. Then the jackknifed version of 6,7 is

IK 0,22 = f(U) = "L 51, (A(0,,) — AT,)

n—1g,
ji=1 ng *

=f(0,) —

n

Making liberal use of Lemma 2, we expand R,,;:

R,; =f(Unj) - f(0,)
= f(Ynj’ Z'nj’ ¢n;) _f(}_,n’ z, ¢n)
= f(Vajs Zajs $ui) — [(Vuss Zujs $2) + [(F s Zojs $0) — f(Vaj» Zos $2)
+ (Y ajs Zoy 82) — (X Z,, 1)
= Au; + [ Vnjs Zas $a)Zay — Za) + By + [V s Zay )Yy — Y,) + Cy
= U)X,y — V) + fl(U)Za; — Z,) + Au; + By + Cuj + Do
where
Ap; = O|a; — Palll Vasl**7)
B,; = | Z,; — Z,[*Y.,0)
C,; = A(Y,; — T,['*%)
and
D,; = OF,; = V,[|Zy; — Z,|IT.)) + (T — V|20 — Z.))
The following lemma facilitates the task of checking when quantities like

nt Y |A,;| or n 337, |B, [}, etc. converge to 0 almost surely.

LEMMA 3. Let the sequence of pairs of vectors (V,, W), (Vy W,), - - - be inde-
pendently and identically distributed, with E|V,|* < co and E|W,| < co. Let V, =
Vi+ -+ V) nlet W, = (W, + --- + W,)n. Let

Tnzna n IVJ—V'nlWWj_Wn:T

i=1 P
!

n | n

where 8 and v are nonnegative. If 8 = 2aand 8 +y > a + 1, then T, —, ; 0.

Proor. It suffices to examine the behavior of T,/ = n* 31%_, |V, [n|*|W /[n|y,
where {V;/} and {W,} are two sequences of i.i.d. real random variables with
E|V/? < oo and E|W/| < oco. For T, is bounded by a weighted sum of four
such quantities T,’, based on the choices (V,/, W) = (1, 1), (L, [W,]), (|Vil> 1)
and (|V,|, |W,|), respectively, with weights which are monomial functions of the
almost surely convergent random variables |V,| and |¥,|.

Consider the random variable Z, = |V/|/|W/|"; let t = (8 4+ 7y —a)™. If
E|Z|' < co and r < 1 (i.e., § + y > a + 1), Marcinkiewicz’s law of large
numbers (Stout, (1974), page 126) implies T,’ = }; Z,/n"* —, , 0. Hence it
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suffices to check that § > 2a implies E|Z,|* < co. This follows from Holder’s
inequality:
ELZ = E(Vp/sro|wyprosme
é (El Vlllpﬁ/(ﬁ+r—a))l/p(E[W1'|qr/(ﬁ+r—a))l/q

for any choice of p,g =1 with 1/p 4+ 1/g < 1; in particular, with p =
2B +r—a)ffandg =B +7r—a)r. 0

The direct application of Lemma 3 results in the following (if 2 > 0):

nt i ugl e 05 n X5 AL >0 0,
nt 35 Bugl s 05 n T0 B =, 0,

n Z?=1 Cf»,‘ a.s. 0,
nt 35 |Dagl —as. 05 n B3, DY, 0.

Further, if 2 > &, nt 3 |C,,| —,., 0.

As an example we show nt 3 [4,,| —, 0. By Lemma 2 it suffices to prove
that 1t 33 [fa; — Gull[Fuy*? =y, 05 since ¥, = (¥, — Y,)/(n — 1) and ¢, =
(nd, — &;)/(n — 1) it suffices to prove that Q, and Q, converge to zero almost
surely, where '
Yj _ Y_',,L 142
n

i + b

n |

Q1=”*Z

and

Q2 — nt Z ¢j - 95% I}'fn|1+l .

Q, clearly converges to zero a.s. by Lemma 3 with « = 4, 8 =1 + 4, and
7y = 1. To see that Q, converges to zero, note that n}~¢|Y,| converges to zero
a.s., for any choice of ¢ > 0, in particular, for ¢ = 1/5. Then

Q2 = |n§—6Yn|1+1n(1+1)(5_5)+5 Z Ml
n
= |n%—eYn|1+zne(1+x)_x/z b3 M
n

is the product of a quantity converging to zero a.s. and a sum of the type
described by Lemma 3, with « = ¢(1 + 4) — 2/2, 8 = 0, and y = 1. The con-
ditions 8 = 2aand 8 + y > 1 4 a reduce to ¢(1 4+ 2) < /2, which is certainly
true if ¢ = 4/5 (since 0 < 2 < 1). Hence the sum, and thus also Q,, converges
to zero almost surely. The other convergences claimed above follow by exactly
the same type of reasoning.

Thus, if 2 >4, nt 3 R,, =nt 3 (A,; + B,; + C,; + D,;) —.,. 0, proving
(J.1).

The proof of (J.2) is slightly more intricate. The statement of (J.2) is that
(n—1) 2", (R,; — R,)R,; — R,) —pZ where R, = 1/n 3;_ R,;. Tt is clear
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that since E(A™'Y, Y,(4-1)) = X and since f,(U,) ... f,(0) = — A1,
B SO, = T, = BYf(O) = 5
Hence, it suffices to show that
= Dt Ry; — [T, = T =, 0

since ¥, — ¥, = (¥, — Y;)/n — 1, it suffices to show that

n 5 ((fUNZ0; — Z,)|P + A%, + BE, + C2, + D) —, 0.

All that remains to be checked is that

n=1n Z?=1 fz(U‘n)(Z_'ni - Z"t)l2 —p 0.

But by Lemma 2(ii), we know that

T, = On S5 | Va2, — ZoJY)
= O(WY,J $1o, |2, — ZaP) -

Finally, by Lemma 3 and by the central limit theorem, we know that T, —, 0. []

Note that if the moment condition in hypothesis (L.3) were strengthened so
that E|(0%/36, 66;) h(X,, 6*)[*** < oo, for some ¢ > 0, then the quantity T, in the
proof of (J.2) would actually converge to 0 almost surely, and instead of (J.2),
we could draw the stronger conclusion that

KV, —,, 5.

REFERENCES

BAHADUR, R.R. (1967). Rates of convergence of estimates and test statistics. Ann. Math. Statist.
38 303-324.

BRILLINGER, D. R. (1964). The asymptotic behavior of Tukey’s general method of setting
approximate confidence-limits (the jackknife) when applied to maximum likelihood
estimates. Rev. Inst. Internat. Statist. 32 202-206.

BRILLINGER, D. R. (1977). Approximate estimation of the standard errors of complex statistics
based on sample surveys. New Zealand Statistician 11 35-41.

CHiBisov, D. M. (1973). An asymptotic expansion for a class of estimators containing maximum
likelihood estimators. Theor. Probability Appl. 18 295-303.

CRAMER, H. (1949). Mathematical Methods of Statistics. Princeton Univ. Press.

DIEUDONNE, J. (1960). Foundations of Modern Analysis. Academic Press, New York.

LANG, S. (1962). Introduction to Differentiable Manifolds. Wiley, New York.

MILLER, R. G. (1974). The jackknife—a review. Biometrika 61 1-15.

PERLMAN, M. D. (1972). On the strong consistency of approximate maximum likelihood esti-
mators. Proc. Sixth Berkeley Symp. Math. Statist. Probability 1 263-281. Univ. of
California Press.

PFANZAGL, J. (1969). On the measurability and consistency of minimum contrast estimates.
Metrika 14 247-272.

Stour, W. F. (1974). Almost Sure Convergence. Academic Press, New York.



JACKKNIFING MLE’S 739

WALD, A. (1949). Note on the consistency of the maximum likelihood estimate. Ann. Math.
Statist. 20 595-601.
DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720



