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AN ADAPTIVE SOLUTION TO RANKING AND
SELECTION PROBLEMS!

By Y. L. ToNG
University of Nebraska, Lincoln

An adaptive approach is considered as an alternative to the classical
indifference-zone formulation of the problems of ranking and selection.
With a fixed 7*, the proposed procedure calls for the termination of sam-
pling when the estimated probability of correct selection exceeds r* for.the
first time. Asymptotic properties of this procedure are proved as y* — 1,
and Monte Carlo results show that the procedure is well behaved even for
moderate y*. Since the stopping variables depend on the estimators of the
ordered parameters, distributions of the estimators as functions of the pa-
rameters are carefully studied via majorization.

1. Introduction. Let & = {F(x, 6): 6 ¢ O} be a family of distributions where
the parameter space © is a subset of the real line. Fori =1, ..., k let {X;;}3.,
be a sequence of i.i.d. random variables with distribution function F(x, 6,) € & .
Denoting @ = (0,, - - -, 6,) (a point in the product parameter space) and defining
the ordered parameters §;;; < - - - < 6, the problem is to select the population
associated with the largest parameter ;.

The indifference-zone formulation of the problem, as originally considered
in a pioneering paper of Bechhofer [1], may be briefly described as follows:
After taking the observations X;,’sfori = 1, ..., kandj = 1, - - -, n, one chooses
an appropriate statistic T, observes

(11) ti:ti(”)zT(Xil,'--,Xi”), i=1,.--,k;

then applies the decision rule “always select the population corresponding to the
maximum of (¢, - --, #,).” Now for a fixed 6% > 0, denote

(1.2) Q = Q(0%) = {0 | ¢(0py Op—r)) = 0%},

where ¢ is the distance function considered by Bechhofer-Kiefer-Sobel ([2],
page 37). Then the set of all @ not in Q is regarded as the indifference-zone and
the best population (with parameter 6;,;) is considered to be sufficiently distinct
from the rest if and only if 8 € Q. With a preassigned y* e (1/k, 1), the main
problem under the indifference-zone formulation is to determine the sample size
n* = n(k, r*, 0*) such that the probability of a correct selection (CS) satisfies

(1.3) nf,.q P,(CS) = r*
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This classical approach certainly has its mathematical elegance and has played
a predominant role in the area of ranking and selection problems. However, it
appears that the solution of the problem under this approach is rather “artificial”
because of the lack of connection between the value of 6* and the true param-
eter §. Since 6* is to be specified by the experimenter and the probability of
correct selection is guaranteed to be at least y* only when ¢(8,,, 0;,_,;) = 6%,
in reality the true distance is unknown and there is no knowledge regarding the
true probability of correct selection in a given real-life situation. In view of
this difficulty, it is natural to consider more realistic approaches to this problem
as alternatives.

Suppose that, for a fixed n, the distribution of ¢, defined in (1.1) is G,(y, ;).
If G, belongs to a location parameter family of continuous distributions, then
we can write G,(y, §;) = G,(y — 0,). Defining p =k — 1 and

(1.4) $(Ourys Opi—y) = Oy — Oy = A,

(1.5) 5i=0[k]—0[i], 1:1,,17
(with 6, = A), the probability of correct selection is, for every fixed n,

(1.6) Py(CS) = P[NI-1 {ty = 1w}

= V12 Gu(y + 0,) dG(y) = 1\, say,
where ¢, has a cdf G,(y — 6;7)) (| = 1, - - -, k). Note that P,(CS) depends on @
only through (d,, - -+, d,). (Unless specified otherwise, all integrals in this paper
are from —oo to o0.)

A natural approach to this problem is, for a fixed n, the estimation of the
probability of correct selection by estimating the parameters d,, - - -, 0,. This
was considered recently by Olkin-Sobel-Tong [8]. Another approach seems to
be the development of new adaptive procedures which will yield a probability
of approximately y* under the true configuration, hence (1.3) is “approximately”
satisfied when sampling terminates, at least for large y*. Along this line a class
of adaptive sequential procedures is considered in this paper. Those procedures
are stated in Section 2. Since they involve the estimators of the ordered pa-
rameters, the distributions of the estimators as functions of the true parameters
play an important role. This is studied in detail in Section 3, and new prob-
ability inequalities are obtained through majorization. The limiting behavior
of the class of procedures, as y* — 1 (which is the case of interest in most
applications), is studied in Section 4. Special results are given in Section 5 for
the normal family when the common variance is either known or unknown.
Section 6 contains some Monte Carlo results concerning the average sample
number and the observed probability of correct selection under different configu-
rations. It can be seen that the procedures are well behaved even for moderate
7* values.

Although this paper concerns only locations parameter families, similar re-
sults can be obtained through obvious modifications for scale parameter families.
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2. A class of adaptive sequential procedures. Our basic approach here is to
estimate the probability of correct selection sequentially by estimating the true
parameters involved, and stop for the first time when the estimated probability
is at least y*. Suppose that, after observing X,, ---, X, (X; = (X};, - -+, X};))
one computes #, (i = 1, - .., k) and estimates the d,’s by

(2.1) 6, =0 =t — 1), i=1,.-,p;

where () < ... < ) are the ordered ¢ values. Following the discussions given
in [8] for every n the probability of a correct selection may be estimated by

(22) 7% = § [1221 Gy + 6.) dG,(y) -

Then, for a predetermined 7*, one may keep taking observations until  is “large
enough.” This is defined in the following

PROCEDURE R,. (a) Observe the sequence {X,},~, one vector at a time. Stop
with N, = n where

(2.3) n = the smallest integer satisfying 7, > r*

(b) When sampling terminates, select the population corresponding to #}.

Under this procedure, the stopping rule is now directly affected by the true
configuration. Inaddition to R,, two auxiliary procedures are also defined below.
Our main reasons for introducing them are to give bounds on N, and to provide
comparisons. (For reasons to be seen in Section 6, they do not perform well
comparing to R;; hence, they are not actually recommended for adoption in
practical applications.) Suppose that, after observing the estimators 0;’s, one
obtains

2.4) A=4,=4m, 3=5=—ZH s
and evaluate

(2.5) 7am = § G2y + B)dG,(y),

(2.6) 7% = § G2y + 9) dG () -

In 7, and 7, the values of 6,’s in (2.2) are replaced by A and 5:, respectively.
They are, of course, appropriate estimators of

2.7) 1™ =G (y + 4)dG,(y)
(2.8) 1™ = § G2(y + 0)dG,(y) ,

respectively with 6 = (1/p) ;7 9,. Here r,™ is the lower bound of the true
probability of correct selection (for fixed n) under the “least favorable” con-
figuration, and 7, is an upper bound of the true probability for log concave
distributions (for proof, see Theorem 2.1). In the special case when the J; (9,
values are close, then certainly the 7, (#,*) values are also close (I = 1, 2, 3).
The evaluations of #,* and 7, involve joint probabilities of p exchangeable
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events. Inequalities on this type of probabilities are available [12] and, in special
cases, their exact values may be found from existing statistical tables. We now
define the Procedures R, and R; accordingly:

PROCEDURE R, (I = 2, 3). Same as Procedure R, with N; = n, except equation
(2.3) is replaced by
(2.9) n = the smallest integer satisfying 7, = r*.
Note that R,, R, and R, are identical for k = 2. For k > 2, it is obvious that
Procedure R, is conservative. However, it is not so intuitively clear that R, is
least conservative. This is shown in the following

THEOREM 2.1. If log G,(y) is a concave function of y for every n, then
(210) 7’,‘.2(70) é ?l(n) é 7’,‘.3(7») a.s.
holds for every @ and every n. Hence
(2.11) N, <N, N, as.
holds for every 6.

Proor. The first inequality in (2.10) is obvious (actually for this one alone

it does not need the log concavity of G,(y)). The second inequality in (2.10)
follows from a theorem in [8]. (2.11) follows from (2.10).

REMARK. It should be pointed out that, among many other distributions, a
normal distribution function is log concave. To see this, let ® and ¢ denote
the N(0, 1) cdf and pdf, respectively, then

g};_ In () = %%y)l [Y®(y) + $(»)] < 0

holds for all y.
3. Distribution functions of ﬁn and 5,, and their bounds. Because of the im-

portant roles A and § play in the procedures stated above and in many other
problems in multiple decision theory concerning ordered parameters, it becomes
desirable to study the properties of the distributions of A and 5. In this section
we consider their distribution functions for fixed n, obtain some bounds on the
distribution functions through majorization (for definition, see [5], page 45),
and find their limiting distributions as n — co. Some of the results obtained
will be used in Section 5.
For fixed n and every z > 0 consider-the event

[An >zl =Ubci Nig (i =t — 2}
and it follows that
P[A, <21 =1 — 35§ [is; Galy + 8; — 0, — 2) dG,(y)
(3.1 =1— (12 Gu(y + 0; — 2)dG,(y)
— 28V i Gu(y + Oy — Oy — 2) dGL(y) -
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Denoting 6 = (1/k) 36, and rewriting .., (0, — 0,) = k(8; — 0), Yx; (61,7 —
07) = k(0;;) — G), we observe
THEOREM 3.1. If In G,(y) is a concave function of y, then

PR, <21 21— D5, G2y + (k(6; — 6)[p) — 2) dG,(y)

(32) = 1= G2y + 0 — 2)dG(y)
— 23§ Gy + (kO — 0)[p) — 2) dG,(y)
(33) PR, <21 < 1= §G 2y + A — 2)dG,(y)

hold for all 8 and all z = 0.

Proor. For fixed j if In G,(y) is a concave function of y, then [[,.,G.(y +
(0, — 0;) — z)is a Schur-concave function of (¢; — 6,, -- -, 6, — 6,). Therefore
(from [6]) the first integral in (3.1) is a Schur-concave function for every j. (3.2)
follows from the fact that the vector (6, — 6,, - - -, 0, — 6,) (after the components
are properly reordered) majorizes the vector (k(6, — 8)/p, - - -, k(8; — 6)/p) for
all j. The proof of (3.3) is obvious.

REMARKS. (a) The distribution of A, has the location translation invariance
property and it depends on the 6,’s only through (6, — 6), or equivalently, the
9;’s. ‘

(b) The lower and upper bounds on the cdf of A, given above again involve
a joint probability of exchangeable events. In particular, it follows from (3.3)
and [12] that

(3.4) PR, <21 <1~ TTi § Gy + A — 2)dG,(y)

1= {6y + 48— 2dG,(y)y

holds for all nonnegative integers a,, - - -, a, satisfying ¥7a, =p. If G, is a
normal cdf, then the bounds given in (3.2), (3.3) and (3.4) can be computed
from [4], and the last integral in (3.4) depends only on a univariate normal
probability. '

(c) Itshould be noted that the bound in (3.2) is attainable when 6, = 6, (5, = 0)
for i, j. Also, when the J; values are not too small and they are approximately
the same, then from (3.1) we have

(3.5) PJA, <21 = 1= §Go(y + 6 — 2)dG ().

The distribution of én as a function of @ is more complicated. We shall not
attempt to give its explicit functional form. In the following we give an in-
equality instead and show how the distribution of 9, depends on 8. For fixed
n let g,(y — 0) denote the corresponding pdf with a cdf G,(y — ), and define

S={t=(t, -+, 14)|0 < z} (a subset in R,). Then clearly for every z > 0 we
have

(3-6) Pfon < 2] = § - S TThur 0u(ye — 00 dys -+ dy -

A IA
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THEOREM 3.2. If In g,(y) is a concave function of y, then P,[Bi, < z]isa Schur-
concave function of 6.

Proor. Using the identity pd, = k(ty,, — 7) with = (1/k) X% t,, it can be
shown that § is 2 convex set and the proof follows immediately from a theorem
in [7].

It might be tempting to claim that the distribution of A, given in (3.1) is also
a Schur function of @ for k > 2 (p > 1) under suitable conditions. The follow-
ing example shows that this is not the case.

ExampLE. For k = 3 let t,, t,, t, be independent normal variables with means
0; and a common variance 7. Consider three configurations #(1) = (¢, ¢ — ¢,
—2¢ + ¢), 0(2) = (¢/2,0, —c/2), 6(3) = (¢, 0, —¢) where ¢ > 4¢ > 0. Clearly
6(1) > 6(2) > 6(3) holds and for all j the probability P, [N, {|t: — 0:(j)| <
¢/2}] can be made sufficiently large for small 7. Hence when r is small enough
the inequalities

Pom)[A =71z Pa(z)[A =z, Pa(a)[3 =71z Pc)(z)[A = 7]

hold for small z.

The limiting distributions of A, and 6,, are given in the following theorem.
The proof of the theorem follows from Theorem 3 of [8] and the fact that linear
combinations of asymptotically normal variables are asymptotically normal
variables.

THEOREM 3.3. Assume that, asn—s oo, there exists a g > 0 such that n(r™ — 6)/o
converges to an N(0, 1) variable in distribution. Then, for every @ such that 0, + 0,
(i # j) both ni(4, — A)/2te and (n(k — 1))5(5,, — 0)/kta converge to a N(0, 1) vari-
able in distribution as n — co.

4. Asymptotic behavior of the procedures. In this section we obtain results
on consistency properties of the procedures for both the sample number and the
probability of correct selection as y* — 1.

Forn =1,2, ... consider the function

(4.1) ho(u) = § G.2(y + 1) dG(y)
for u > 0, and assume that G, (hence %,) possesses the following properties:

Al. For given 7, there exists a unique u, = u,(y) satisfying 4,(u,) = y such
that u,(y) 1 oo as y 1 1 for fixed n and u,(y) | 0 as n 1 oo for fixed 7.
A2. For given ¢ > 0, there exists an ¢’ > 0 and 7’ such that

(U (r) — 1) < &' implies |m/n — 1] < e forall > 7.

Note that Al is easily satisfied when 4,(x) is <1 for all u, continuous and
strictly increasing in u for every n and &,() 1 1 as n { oo for every fixed u > 0.
Now for given y* and @ let u, satisfy k,(u,) = r*, and let n,, n, satisfy

(4.2) n, = inf{n = 1|u, < A}, n, = inf{n = 1|u, < 9}.
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Clearly n, is the smallest integer satisfying 7, = y* (I =2, 3). Under the
procedures R,, R, and R, we now study the behavior of N,, N, and N,.

THEOREM 4.1. Assume that the conditions Al, A2 are satisfied and that t* is a
strongly consistent estimator of 6. Then, for all 8 with A > 0,

(a) P,[N, < o] = 1 holds for | = 1,2, 3 and for all y* < 1;

(b) N, — o a.s. holds for 1 = 1,2,3 as y* — 1;

(¢) Nyny,—1las. forl =2,3 asy* — 1.

Proor. For fixed y* < 1, let u, satisfy k,(u,) = 7*. Clearly we have A, —A
a.s. Hence for » not in a null set there exists an M,(w) such that A, > A/2 holds
for all n > M,. Also, there exists an M,(y*) such that u,(r*) < A/2 holds for
all n > M,. Let M = max (M,, M,). Then, by the monotonicity of 4,, N, =
Ny, 7*) < M holds and the proof of (a) follows from (2.11). Now for fixed
M > 0 let y(n) < 1 be large enough so that J,(w) < u, holds (n = 1, - .., M),
where u,, satisfies 4, (u,) = y(n). Lety, =max,, ., 7(n). Then N, = N(M, ) > M
holds for every y* > r, and the proof of (b) again follows from (2.11).

To prove (c), we first note that, from (4.2), (2.9) and the condition (A1), for
every r* < 1
(4.3) (ay/B) = 1 < (4y,o/D)

(uy,/By,) S 1< (Uyy/By,-)) as.
hold simultaneously. For arbitrary but fixed ¢ > 0 let ¢’ and 7’ satisfy condition
(A2). For w not in a null set let M(w, ¢) be such that |A/A, — 1] < ¢ holds
for all n, > M,, and let y” be given by
7" = inf {7 | Nyw, 7) > M} .
Then for every y* > 7, = max (y/, y”’), we have, from (4.3),

L= ¢ < (8By) < (e i(7%) 1w (7)) »
() tyy 7)) < (BB ) < 14 5
which implies, from condition (A2),

1 —¢< (n,— 1)/N,, nf(N; — 1) < 1+ ¢.

The proof of the a.s. convergence of N,/n, is similar.

For given @ and y* let n, be the smallest integer satisfying 7, > y* where
7, is defined in (1.6). To establish the a.s. convergence of N,/n, under the
procedure R,, a stronger condition on G, is needed; this is stated below.

A3. Foreveryn=1,2, ... and for e\}ery 0, G, satisfies

(4.4)  § 112 Guly + 0:) dG(y) = § TT2 H(y + u,0) dH(y) = h*(u,), say,

for some cdf H and some u, > 0; where (a) H is continuous, strictly increasing
and H(y) < 1 for all y, (b) u, tends to oo as n — oo, and (c) for fixed ¢ > 0,
there exists an ¢’ > 0 and an M(e, ¢') > 0 such that |u,/u, — 1| < ¢’ implies
|mfn — 1] < & for all m, n > M.
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THEOREM 4.2. Assume that condition A3 is satisfied and that t' is a strongly
consistent estimator of 8. Then, for all @ with A > 0, N,/n, — 1 a.s. as y* — 1.

PwooF. First note that, for fixed y* let u* satisfy A*(u*) = r*, then n, satisfies

(4.5) (o) < 1S (s, %) -

Since ™ — @ a.s., for w not in a null set there exists an M (w) such that
|64()/3; — 1] < ¢ holds for all i =1, .-+, p and all n > M,. Let 7, be large
enough so that Ny(w, 7,) > M, = max (M,, M), where M satisfies (c) in condi-
tion A3. Then for every y* > y, we have

§ T2 HOy + (1 — )y, 8) dH(y) < § TT2ey H(y + #y,6.7()) dH(y)
< M2 H(y + (1 + )uy,8:) dH(y) -

This along with

ST H(y + uNl—lgi(Nl_l)(w)) dH(y)

< r* = V12 H(y + 4y, 0:7(0)) dH(Y) »
(4.5) and condition A3 implies
(I —euy, <uw*=u,, Uy o < U* < (1 + &uy, -

The proof now follows from (c) in condition A3.

REMARK. We note that n, would be the sample size required to guarantee a
probability of correct selection y* under a fixed-sample procedure if the values
of ,, d,, - - -, 6, were known. Theorem 4.2 asserts that, under the Procedure R,,
one can do approximately equally well in terms of the random sample number
without information on the d,’s when 7* is fairly large.

In the following theorem we establish the relationship between y* and the
true probability of correct selection under the Procedures R;, R, and R;.

THEOREM 4.3. Assume that the conditions imposed in Theorem 4.1 are satisfied
and that @ satisfies A > 0. Then, for arbitrary but fixed ¢ > 0, there exists an
1o = 70V(e, k, @) such that
(4.6) [Po(CS) — 7*| < e
holds for all y* > 7,V under the Procedure R, (I = 1,2, 3). In particular, we have
4.7) P,(CS)— 1 as 1*—1
under R, (I = 1, 2, 3).

ProOF. Let ¢ > 0 be arbitrary but fixed. Since ™ — @ a.s., there exists an
M(e) such that P[|t™ — 6| > A/2] < ¢/3p holds for alln > M. Forl=1,2,3
let 7, be large enough so that P,[N, > M] = 1 — ¢/3. Without loss of generality
we may assume 0, = ;. Then for every y* > ¥ we have

P,(CS) Z P[N}oy {t™ = 67V} N, > M] - P[N, > M] — ¢/3
=(1—¢/3—¢/3>1—c¢.
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This establishes (4.7). Now for I =1,2,3 if 7 = 1 — ¢ is large enough so
that Py(CS) = 1 — ¢ holds for all y* = 7, under the Procedure R,, then (4.6)
holds. This completes the proof of the theorem.

REMARK. Theorem 4.3 implies that, under the Procedure R,,
(4.8) P(CS) = * — ¢

holds for all y* > r (I = 1, 2, 3). The value of 7,V certainly depends on the
probability distributions through & among other things. For fixed ¢ > 0 if (4.8)
holds for a ' which is not very close to 1, then even for moderate y* the
Procedure R, is on the safe side and it becomes practically useful provided the
average sample number is not too large. The Monte Carlo results for the normal
family given in Section 6 indicate that the Procedure R,, the main procedure
considered in this paper, performs remarkably well when y* is a small as 0.75.
Details will be given in Section 6.

5. Normal family. In this section we consider the special case when the
sequences of random variables {X,;}5_, specified in Section 1 are i.i.d. normal
variables with means 6, (i = 1, - . ., k) and a common known variance ¢*. For
every n let t; (as defined in (1.1)) be X,» = (1/n) ¥,2_, X;;. Then G,(y) =
®(nty/s) holds for all n, where @ is the N(0, 1) cdf. We now have
(5.1) " = § I ©(y + nté;/a) dD(y),

(5:2) "™ =10%y + ntd]o)dO(y), 1" = Oy + n¥o) dD(y).
For every r* e (1/k, 1) let b satisfy
(5-3) § ©7(y + 6) dD(y) = r*

(the values of b can be obtained from [4]). Then n, is the smallest integer
satisfying

(5-4) § 122 @(y + ntdyfo) dO(y) = 7*,
and ny, n, are the smallest integers satisfying
(5.95) n, = bie?/A?, n, = b*a*/3*,

respectively. It is clear that the conditions (Al), (A2) and (A3) are satisfied.
Hence Theorems 4.1, 4.2 and 4.3 apply.
For b satisfying (5.3), Equation (2.9) reduces to

(5.6) N, = the smallest integer n such that n > b’a“’/ﬁn“’ ,
(5.7 N, = the smallest integer n such that n > bzzrz/én2 .

Theorem 4.1 implies that N,/(b%6*/A?) — 1 a.s. and N,/(b%%/6?) a.s. as y* — 1.
To obtain a result regarding the average sample number we modify the proce-
dures slightly. Suppose that, with a sequence of positive real numbers {d,}
satisfying d, — 0 as n — oo, we consider the stopping variables
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(5.8) N,” = the smallest integer n satisfying
§ 12 @y + n¥(0.™ + d,)[0) dR(y) = 1+,

(5.9) N, = the smallest integer n satisfying n > b%¥(4, + d,)?,

(5.10) N, = the smallest integer n satisfying n > b”oz/(én +d,)}.
Clearly N < N, a.s. holds and Theorems 4.1—4.3 apply when N, is replaced
by N/ (I =1,2,3). We now investigate the behavior of N, N, and N,’. By
adding d,,, (3;’” + d,), (ﬁn + d,) and (9, + d,) are “bounded away” from zero,
thus we are able to prove a result concerning the expected values of N, (I=1, 2, 3).
Note that in the following theorem the limiting behavior of EN,’ does not depend
on a given choice of {d,}. In applications one may choose d, = c¢/n™ for some

¢ >0and m > 0, and d, may be made to tend to zero as rapidly as one wishes
by choosing m large enough.

THEOREM 5.1. If there exists an m > 0 so that lim inf,
every @ with A > 0 and for every ¢* < oo

(5.11) N/[n, —»1 as., EN/[n, — 1
hold as y* — 1 forl =1, 2, 3.

n™d, > 0, then for

Proor. The a.s. convergence follows immediately from Lemma 1 of [3] and
the fact that 4, — 0. To prove EN)//n, — 1, by Lemma 2 of [3] it suffices to
show that E, sup, AY(A, + d,)* < co. Applying (3.3), it follows that, for every
n and every v € (1, A%/d,?),

PAYA, + d,)* 2 v]

< T = {1 = @(—y — n¥((1 —v7HA + d,)/0)}’] dD(y)

< 2°QO(—n¥((1 — v 1A + d,)[2%0)

< C,-exp[—n((l — v })A + d,)*/4¢’] = C, - r(n,v), say,
where C, < C’ holds for some finite C’ for all n (the probability is zero for
v = A%/d,?). Therefore for every v > 1 we have

P,fsup, 8%(8, + d,)* = v] = P[Us, A8, + d,) = v] £ T s(n, v),
where
(5.12) s(n,v) = C'r(n,v) -« if v < AYd}?,
=0 otherwise.

Now consider Y%, >, s(n, j). Since by the condition on {d,} there exists a
Q > 0 such that d, = Q - n=™ holds for all n, it follows that, from (5.12), (for
every fixed j) s(n, j) = 0 holds for all n < (Q?%/A%Y*™ = D(j). Therefore

Di5ma Dim=t s(n’j) S O Xt Zn-piin r(”’j)
C X5 $5i 1w, J) dw
C (¢ exp{—A(1 — 2-#)D(u)} du < oo

A IA



668 Y. L. TONG

holds for some finite C. This shows

Esup, (A, + 4,0 <5+ N5, PIAYA, + d,) > j1 < oo
and EN,'/(b*¢?/A*) — 1 as y* — 1. The rest of the proof follows immediately
from the fact that n, < n,, n, < n,, N/ < N/, N,/ < N, a.s. and the dominated
convergence theorem.

It should be noted that the stopping variables N, and N, are quite similar to
that considered by Robbins, Sobel and Starr [9], except that in their solution
o’ is estimated sequentially under the indifference-zone formulation, while the
present solution is adaptive in which A is estimated sequentially and ¢* is assumed
to be known. If ¢’ is also unknown, then under the present approach the stop-
ping variables may depend on both estimators of ¢ and A. Hence after observing
{Xi;}Yjs fori=1, ...,k n = 2, one computes

% 1 n 1 n . ¥ (n
(5.13) X = — Tt Xiy s S22 = k_(n_:.l_) Tk D (X — X2,
Define, for [ = 1, 2, 3, N;”” to be the stopping variable such that ¢* is replaced
by §,% in (5.8), (5.9) and (5.10) respectively. Note that Theorems 4.1—4.3 also
apply when N, is replaced by N,” (I = 1, 2, 3). In the following theorem we
show that N’ and N/ (I = 1, 2, 3) possess a similar asymptotic behavior.

THEOREM 5.2. Under the same conditions imposed in Theorem 5.1
(5.14) N/'In,—>1 as., EN/[n,—1
hold for all 6* < oo and forl = 1,2,3 as y*— 1.

Proor. The a.s. convergence follows from Lemma 1 of [3], 6, — 4§, (i =
I, ..., p)as. and S, — ¢* a.s. To show EN,”/n,”” — 1, since

W = sup, A%S,2/o*(A, + d,)?
< sup, A%, + 4,y - sup, S} = W, - Wy, say,
a.s. and since the sequence of sample mean vectors and the sequence {S,?} are
independent, it follows that
Ew,aﬂ) w § E(a,oz) W1 * Ew,a2) W2

holds. Then from the proof of Theorem 5.1 it suffices to show that
E 4, .3 sUp, S,2[d® is finite, and this was already done in the proof of Theorem 3.3

of [11]. The rest of the proof follows from Lemma 2 of [3] and the dominated
convergence theorem.

6. Monte Carlo results and concluding remarks. Two Monte Carlo studies
were carried out on an IBM 360/65 computer at the University of Nebraska
Computing Center. The studies concern two mean vectors 8(1), 6(2) of k nor-
mal populations for k = 2, 4, 6, 8 and 10 and for y* = 0.75,0.90, 0.95 and 0.99.
The two mean vectors given by

(6.1)  6(1) = (0.0, ---,0.0,0.8),  (2) = (0.0,0.4,0.8,1.2, --.)
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reflect two extreme cases. (1) represents a slippage configuration under which
all except one of the means are equal, while #(2) represents a configuration
when the means are widely spread and equally spaced with an increment of 0.4.
The common variance ¢* was chosen to be 1. The formulas given in Table 5
of [10] were used to evaluate the probability integrals needed under the stopping
variable N, and the table values in [4] were used for the stopping variables N,
and N,. The inital sample size was taken to be 2 in order to give protection
against the undesirable situation of unusually early stopping with one observa-
tion. For each combination 400 cases were observed under each of the stopping
variables, and the average sample numbers, their variances and the probabilities
of correct selection were observed. In most cases the standard error of the
average sample number was less than 59, of the average sample number. The
values of n,, n,, n, under all stopping variables when § = (1) or under stopping
variable N, or N, when @ = 6(2) were obtained from (5.5) and the table in [4].
To find n, under N, the table in [8] was used through linear interpolations be-
cause (2) is equally spaced.

The first study concerns the comparisons of N, N/ and N,” ([ =1, 2, 3)

TABLE 1
Monte Carlo result—average sample number and observed probability of
correct selection for k = 4

Stopping 6 62)
variable  _x _ 975 0.90 0.95 0.9 7=0.75 0.90  0.95 0.9

Average sample number

m 5.00 10.00 14.00 23.00 8.00 21.00 34.00 68.00
M 6.26 12.87 18.47 30.09 7.34 21.26 34.99 62.65
Ny 5.83 12.34 17.84 29.57 6.85 19.87 32.42 60.24
Ny’ 7.96 15.15 20.50 31.45 9.38 23.60 36.58 63.32
ne 5.00 10.00 14.00 23.00 18.00 38.00 54.00 91.00
N. 9.86 17.22 23.22 35.56 14.45 35.36 47.91 80.55
Ny 9.20 16.65 22.58 34.62 13.23 34.15 47.13 78.74
N2’ 11.64 19.41 25.03 36.69 17.22 37.54 50.49 81.10
ng 5.00 10.00 14.00 23.00 5.00 10.00 14.00 23.00
N; 4.10 8.98 13.57 24.12 4.60 9.97 14.25 23.97
N3’ 3.86 8.62 12.95 23.68 4.33 9.60 13.79 23.51
Ny’ 5.99 11.64 16.28 25.62 6.27 11.90 16.13 25.45
Observed probability of correct selection
Ny 7075 .8950 .9525 1.0000 .7850 .9450 .9875 1.0000
N/ .6750 .8850 .9500 1.0000 L7700 .9375 .9875 .9975
N’ .7800 .9375 .9750 .9900 .8550 .9500 .9550 .9975
N, .8350 .9400 .9875 1.0000 .8750 .9800 .9850 1.0000
Ny .8150 .9325 .9850 1.0000 .8650 9775 L9975  1.0000
Ny’ .8750 .9675 .9875 .9925 .9225 9775 .9875 1.0000
N3 .5250 .7850 .8850 .9850 .6200 .8575 .9125 .9625
N3’ .5025 L7750 .8725 .9825 .6050 .8500 9125 .9625

Ny’ .6650 .8525 9275 .9800 L7150 .8700 .9050 .9650
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defined in Section 5 for k = 4 (the value of d, was chosen to be 0.05¢/n* = 0.05/n*
for convenience). Note that for this particular k value we have

6(1) = (0.0,0.0,0.0,0.8),  6(2) = (0.0,0.4,0.8, 1.2) ;

and the two mean vectors give a common 6 value. Hence this study also serves
the purpose of illustrating how the solution of the problem depends on a par-
ticular configuration through spacings.

The numerical result given in Table 1 shows that, for fixed/ = 1, 2 or 3, there
is very little difference among N,, N/ and N,”. Because of this fact attention
was then restricted to the comparisons of N,, N, and N; only in the second study.
The results of the second study are summarized in the following tables, which
cover a wide range of y* values and k values under both #(1) and (2) and under

TABLE 2
Monte Carlo result—average sample number for k = 2(2)10
Stopping o) 62)
variable . _0.75 0.0 0.95 0.99 *=0.75 0.90 0.95 0.9
k=2
m 2.00 6.00 9.00 17.00 6.00 21.00 34.00 68.00
M 2.98 7.81 12.56 21.40 3.85 13.69 26.97 71.02
k=4
m 5.00 10.00 14.00 23.00 8.00 21.00 34.00 68.00
N 6.26 12.87 18.47 30.09 7.34 21.26 34.99 62.65
ny 5.00 10.00 14.00 23.00 18.00 38.00 54.00 91.00
N: 9.86 17.22 23.22 35.56 14.45 35.36 47.91 80.55
ng 5.00 10.00 14.00 23.00 5.00 10.00 14.00 23.00
N3 4.10 8.98 13.57 24.12 4.60 9.97 14.25 23.97
k=6
m 7.00 12.00 16.00 26.00 8.00 21.00 34.00 68.00
M 9.04 17.97 23.56 34.97 8.22 22.95 33.41 61.83
ny 7.00 12.00 16.00 26.00 25.00 46.00 63.00 101.00
N 15.68 24.65 30.10 42.31 22.25 41.40 56.10 90.03
ny 7.00 12.00 16.00 26.00 4.00 8.00 10.00 17.00
N3 4.48 11.00 16.02 26.37 3.51 5.9 7.83 12.36
k=38
m 8.00 13.00 18.00 27.00 8.00 21.00 34.00 68.00
M 10.68 20.34 26.63 39.31 8.22 23.85 35.26 65.32
ny 8.00 13.00 18.00 '27.00 29.00 52.00 69.00 108.00
N: 19.39 29.40 35.53 48.52 28.81 49.83 64.65 101.71
ng 8.00 13.00 18.00 27.00 3.00 5.00 6.00 9.00
N3 5.16 12.36 18.05 28.88 2.69 3.84 4.91 7.41
k=10
n 9.00 14.00 19.00 29.00 8.00 21.00 34.00. 68.00
M 12.61 22.44 28.65 40.83 7.63 20.60 32.98 64.70
ny 9.00 14.00 19.00 29.00 33.00 56.00 74.00 113.00
N: 22.37 32.00 38.23 52.39 27.47 51.14 67.61 102.34
n3 9.00 14.00 19.00 29.00 2.00 3.00 4.00 6.00

Ns 5.41 12.98 18.67 30.05 2.20 2.77 3.44 4.9
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TABLE 3
Monte Carlo result—observed probability of correct selection for k = 2(2)10
Stopping 6(1) 62)

variable .« _ 975 0.90 0.95 0.99 % =0.75 0.90 0.95 0.99
k=2

M .6000 8175 9575  .9925 .4225 6125 7725 9725
k=4

M 7075 .8950  .9525 1.0000 .7850 .9450  .9875 1.0000

N; .8350 .9400  .9875 1.0000 .8750 .9800 .9850 1.0000

Ns .5250 .7850  .8850  .9850 .6200 8575 9125 9625
k=6

N .7075 L9275 .9700  .9800 7875 L9575 .9950 1.0000

N; .8900 .9750  .9850  .9950 .9350 .9750 1.0000 1.0000

Ns .4050 .7450  .8900  .9750 .6125 7425 8125  .8825
k=

M .8000 .9575 9925 1.0000 .8300 .9550  .9800  .9975

Nz 9425 .9950 1.0000 1.0000 .9675 19925 9975 1.0000

N; .5150 .8150  .9300 .9975 .5925 .6800 .7625  .8025
k=10

M .8400 L9725 9975 1.0000 .8225 L9475 .9825 1.0000

N; .9725  1.0000 1.0000 1.0000 .9650 .9950 1.0000 1.0000

N; .4700 .8300 .9350 1.0000 " .6075 .6325 6725  .7725

each of those three stopping variables. Note that for k = 2 we have
6(1) = (0.0,0.8), 6(2) = (0.0,0.4).

In this special case those stopping variables are identical and the results given
simply illustrate how the solution of the problem depends on the distance be-
tween the two normal populations. Also, the results for k = 4 are reproduced
here for the purposes of comparison and completeness.

From Tables 2 and 3 it seems safe to draw the following conclusions:

(a) Although the Procedure R, does yield an observed probability of correct
selection in excess of y* in all cases considered, it is too conservative and the
average sample number tends to be unnecessarily large, especially under the
slippage configuration (6(1)).

(b) The average sample number (as a function of y*) behaves well under R,,
i.e., EN,/n, is almost 1 for all y*. However, the procedure performs very poorly
in the probability of correct selection under both configurations unless y* is
extremely large.

(c) It appears that the Procedure R, performs remarkably well under all
circumstances. The average sample numbers behave reasonably well, the prob-
abilities of correct selection do exceed y* in almost all cases; and it shows
improvements when k becomes large. This is not surprising because R, is most
adaptive among the three procedures considered. Therefore, one should expect
that it has the flexibility to make adjustments according to various configurations.
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For implementing Procedure R, the computing facilities needed for calculating
the exact values of those probability integrals are not really essential. Their
values can be approximated by using existing statistical tables, and methods of
approximations were already discussed in [8].

Acknowledgments. I wish to thank Professors I. Olkin and M. Sobel for
several helpful discussions.
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