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A NATURAL IDENTITY FOR EXPONENTIAL FAMILIES WITH
APPLICATIONS IN MULTIPARAMETER ESTIMATION

By H. M. HubpsonN
Macquarie University

A random variable X is said to have distribution in the class &, if, for
some real valued, positive function a(.), the identity E{(X — p)g(X)} =
E{a(X)g’(X)} holds for any absolutely continuous real valued function g(+)
satisfying Ela(X)g’(X)| < co. Examples of a random variable X possessing
a distribution in &, are (i) X normally distributed with mean ¢ and stand-
ard deviation 1, (ii) X having a gamma density with mean z and location pa-
rameter 1, (iii) X = 1/Y where Y ~ [(n — 2)]"'X4%, n > 2. Suppose Xi, ---,
Xp, p 2 3, are independently distributed with distributions in &, for some
function.a(+), and with means g, - - -, #p. Define b(x) = | a(x)~! dx, where
the integral is interpreted as indefinite, B; = b(X;), S = X7, B3, X' =
(X1, +++, Xp) and B’ = (B, - -+, Bp). Then the estimator X — ((p — 2)/S)B
dominates X if sum of squared error loss is assumed. Similar estimators
are obtained, when p = 4, which shrink towards an origin determined by
the data. There are corresponding results for some discrete exponential
families.

1. Introduction. The estimator X of x4 in a p-variate normal distribution,
with mean  and identity covariance matrix, has long been known to be inad-
missible if p > 3 and the loss function is L(g, 6) = ||0 — g|P. In this case James
and Stein (1961) introduced the estimator

(1 - P_?_%) X
IIXIP 7+
which is much superior in risk to X in any case in which ||y|| is small.

Berger (1975), Brown (1966), (1975) and other authors included in the bibli-
ography of Berger’s paper have extended the inadmissibility results to cover
estimation of the location parameter of a wide class of location invariant dis-
tributions for a broad range of loss functions. Ina very wide class of problems,
then, the best invariant estimator is inadmissible. In this more general case there
has been very little progress in obtaining estimators showing considerable practi-
cal improvement, there being no analogue of the James-Stein estimator.

The aim of this paper is to introduce an identity which affords a straightfor-
ward evaluation of the risk of an estimator in an exponential family, and hence
permits the extent of possible improverent on the usual estimator to be deter-
mined. This identity is an extension to the exponential family of an identity
for the normal distribution used by Stein (1974) to obtain a similar unbiased
estimator of the risk of an estimator of the mean.
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474 H. M. HUDSON

2. A natural identity for an exponential family. Let X be a continuous ran-
dom variable with the exponential density

(2.1) fo(x) = exp{0x — $()}k(x)
with support R = (— oo, ). Let

_KX)
(2.2) HX) = )

Then a simple identity holds for any absolutely continuous function g on R
such that E|g’'(X)| < oo, namely

(2.3) E{(t(X) — 0)g(X)} = E{g'(X)} .
The choice g(x) = 1 shows #(X) to be unbiased for §. Since the exponential

family is complete this implies that #(X) is the minimum variance unbiased es-
timator (MVUE) of §. The proof of (2.3) is direct;
Eg/(X) = § g/(x)e"~#Vk(x) dx
= —§ g(X)e?=¢P[0k(x) + k'(x)] dx
= E{(¢(X) — 0)g(X)} .
The second equality is obtained, on integrating by parts, since g(x)e?*~¢®k(x)
vanishes when x — =+ oo if E|g’(X)| < oo.

If X has as support an interval (c, d), then it is necessary to impose a condi-
tion on the form of the density f,(+) at the endpoints ¢, d if we are to maintain
the identity (2.3) and require no more of g than E|g’(X)| < co. (Equivalently,
this condition is required if #(X) is to be unbiased for §.) The condition re-
quired is that e’*k(x) — 0 as x | ¢ or x T d. The appropriate condition is auto-
matically satisfied if c = —co or d = oo

A subclass of the continuous exponential family has particularly simple prop-
erties. Consider the class g, of probability measures {P,: 6 € ©} with densities
fo(+) with respect to Lebesgue measure for which

2.4 E{(X — 1)9(X)} = E{a(X)g'(X)}
for some function a: R — R and for all absolutely continuous functions g such

that E|a(X)g'(X)| < co; where X is any random variable with distribution P,,
and E X = p. The density f,(-) may then be shown to be of the form

(2.5)  fu(®) = exp{u § a(x)"dx — 3(0)}a(x)* exp{—§ xa(x)" dx}
where the integrals are to be interpreted as indefinite integrals, provided simple
regularity conditions are satisfied.

It suffices for the purposes of this paper to note that if X has the density (2.5),
if @ = 0 and if { a(x)~*dx exists in the interior of the domain of X, then (2.4)
is an immediate consequence of (2.3). For, setting b(x) = | a(x)~*dx, B = b(X)
has density of the form

(2.6) fuB) = exp{ub — G}k (b) -
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Applying (2.3)
E(4(B) — p)h(b)} = E{H'(B)}
provided E|h'(B)| < co. But#(B) = X, since X is an unbiased estimator of  and
a sufficient statistic, and #(B) is the MVUE of 1. Rewriting the above identity in
terms of X, by setting g(X) = A(B), so that #'(B) = ¢'(X)(dX/dB) = a(X)g'(X),
the result (2.4) is obtained. Note that if EJa(X)| < oo then, on substituting
g(x) = x in (2.4),
o' = E{(X — 1y} = E{a(X)}
so that a(X) is an unbiased estimator of the variance of X.
Some examples of distributions satisfying (2.4) follow.
ExampLE 1. If X ~ N(g, 1) then, from (2.3),
E{(X — )9(X)} = E{g'(X)}
whenever E|g’'(X)| < oo, 80 &, contains the normal distributions.

ExampLE 2. If X ~ gamma (g, 1), so that

@) 19 = 5

then f,(x) is given by (2.5) when a(x) = x. B = log X has range (— oo, ) s0
(2.3) is satisfied. Thus the gamma (g, 1) distribution is contained in &.

xt~le=* x>0,

ExampLE 3. If a(x) = x*/(n/2 — 1), x > 0, in (2.5) then
Jo(x) oc exp {—(% — 1>lpx‘1>} x~?exp {-(% - 1> log x}
= x~"*1exp {—(% — 1) px'l} x>0.

Now B = (n/2 — 1)(1 — X~*) has range (—oo, 1). Here k(b)) =1 — b, and
e®®(1 — b) —>0as b 11, so (2.3) holds.
If X has this density then ¥ = 1/X has density

2.8) f) < yrriexp{— (5 = 1) wy}y >0

-5 1))
ie., Y ~ [(n — 2)p] "y, 2
A similar identity for a discrete exponential family may be obtained. Let X,
taking values in N = {0, 1, 2, - - -}, have the probability function -

(2.9) %) = exp{0x — G(ON(x) -
Let ¢ = . Then, for g: N — R satisfying E|g(X)| < oo,
(2.10) PEg(X) = E{t(X)g9(X — 1)},
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where
(2.11) H(x) =0 for x=0
_ kx—1)
k(x)
is the minimum variance unbiased estimator of ¢.

for x=1,2, ...

3. Applications to continuous multiparameter estimation. Suppose random
samples are selected from each of p populations, and it may be assumed that
the distribution of the ith sample is given by the density

fox) = exp{0, T(x) — (8:)}k(x) i=1.-p.
Then in estimating any function of 4,, i = 1, - -, p, it is enough to consider
a sufficient statistic X;, i = 1, .., p, obtained from the ith sample. It is well
known that X itself follows an exponential distribution.

A common problem is that of the estimation of the mean p = (g, - -+, t,)’
of X = (X,, ---, X,). Here the alternative form of the identity (2.3) may be
used to obtain an estimator which dominates the usual estimator X of y for the
subclass &, of the continuous exponential family.

Let X,, - - -, X, be independent, and X satisfy the identity

Eﬂ{(Xi - #)g(XL)} = E/t{a(Xi)g’(Xi)} )
for some nonnegative function a(-), for any function g such that

E{|a(X)g'(X)|} < co. Consider the difference in risk, AR, for the estimators X
and X + g(X) under squared error loss

AR = E,L(p, X) — E,L(z, X + g(X))
= E{X (X; — )’} — EfX (X + 9(X) — )’}
where g, - - -, g, are the components of g: R» — R. Then, on expanding the
squares,
AR = E{—2(X; — p)g«X) — X 9(X)}
= E{—2 X a(X)9.(X) — X 9X(X)} ‘

where g,,(X) = (9/0X,)g(X). This last equality is obtained by conditioning on
{X,: j # i} and applying (2.4). The necessary assumptions regarding the func-
tion g(+) will be checked later.

Set 4
gf(X)=—Q_'S'_22b(Xi) i=1,...,p
where
3.1 b(x) = (a(x)™dx, ~S= xr,b(X).
Then
(3.2) 0ux) = L5 a4+ L2 pxy 20

= —22 2ax) + 222D pxya(x)
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so that
2(p—2 4p—2 (p—2)
(33 AR=E,{ (PS ) p— (PS2 ) 57 (X, — '—sz’—) % 51X |
~E, {(___1’ - 2)2} .
S
If p = 3 then (3.3) indicates that the improvement in risk of the estimator
(3.4) X, — Q’_;_ﬁ b(X))

is necessarily positive, since S is positive. Thus the estimator (3.4) dominates
the unbiased estimator X of the mean vector ¢ when p = 3.
It remains only to check the conditions for the identity (2.4). From (3.2)

:
o5+ g2

_ -2
S

|a(X:)9:(X)| = ‘__P ; 2 + 2(p—2) bz(Xi)'\

Thus, provided E{S~!} < oo, the condition is satisfied.
Now note that, from (3.1) and (2.6), A

1
S——Z o
It clearly suffices to show the finiteness of the integrand in the sphere 4 =
{t: ||l < 0}. The result is then obvious on transforming to polar coordinates

(r, @) recalling that the Jacobian of the transformation is bounded by cr»=* for
some constant ¢, and that k is bounded in A.

E{S7} = § - Jorexpiy;t; — ‘(r/’(ﬂi)}k(tj) dt; .

CoroLLARY 1 (James-Stein (1962), Stein (1974)). Let X have a p-variate nor-
mal distribution with mean vector y and variance matrix the identity. Suppose p = 3,
then, with squared error loss

(3'5) L(p, 5) = 27, (0, — 1),
the unbiased estimator X is dominated by the estimator

<1 _L:._2>X,
3

which has risk
—2)
— E (» } .
P “ { S

COROLLARY 2. Let X,, - .-, X, be independent random variables having gamma
densities of the form (2.7) with means p,, - - -, p,. If p = 3, the unbiased estimator
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X is dominated by the estimator
x_P=2

- ’

where
B, =log X;
S=nr,log?X,.
The risk of this estimator is
CoROLLARY 3. Let X,,- .., X, be independent and Y, = X,~* have the distribution
Y, ~[(n — 2)m] 72" » " on>4.
Then the unbiased estimator X of its mean vector y is dominated by the estimator

B (p_2) - - | = PN
. (”/2—1)2(1—)(].—1)2(1 X, i=1,--,p,

when p = 3 and L(p, 0) is given by (3.5).

The improvement term, E{(p — 2)?/S}, is quite substantial in favourable cir-
cumstances. For the normal distribution example S has a noncentral y? distri-
bution and the improvement term can be calculated exactly, being (p — 2) when
¢ = 0. This compares favourably with the risk p of the unbiased estimator. In
Corollary 3 one may apply Jensen’s inequality to AR and obtain a lower bound
for the improvement, when y, = ... =y, = 1, relative to the risk R, of the
unbiased estimator. Then AR/R, = ((p — 2)*/p*)((n — 4)/(n + 2)), if n > 4.
Jensen’s inequality may be applied in Corollary 2 also. Then AR/R, > (p—2)*/vp?
when ¢, = ... = ¢, = l and v = Elog® X, where X has a negative exponential
distribution with mean 1. )

Note that the estimators obtained in (3.4) shift all estimates towards an arbi-
trary origin in the domain of X (chosen in Corollary 1 to be 0 and in Corollaries
2 and 3 to be 1), the choice of origin being determined by the actual choice of
the indefinite integral. This suggests that there is an analogue of the usual re-
finement of the James-Stein estimator

X’+<1+P_§_§)(Xi_,?) i=1,.p,
where X = >7_ X,/p, S = 2., (X, — X)? which shifts towards an origin de-
termined by the data.

4. Some refinements of the multiparameter estimator. In this section a theo-
rem is obtained showing the method of shifting towards an origin determined
by the data.

THEOREM 1. Given X, .- -, X, independently distributed as in Section 3, and
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squared error loss, set B, = b(X,), with b(+) as defined in (3.1}, B= Y B,/p, S =
Y. (B, — B)’. Then for p = 4 the estimator

Xi—(P;:;)(B,-—B)

dominates X and has risk function
_ g {(p=3)
R(z, X) @{S y

Proor. The estimator is X + g(X) where g,(X) = —((p — 3)/S)(B, — B), i =

L, ..., p. Since
aBjox, = La(x), 380X, = 2(B, — B)a(X)"
P

] _agi__(]’—3) X'—l__l_ X.)-1 2(1"—3)3_ 2 -1
0uX) = 3% =~ (a(x) = ) ) + FECE) (B — Bya(x)
and therefore

-3 2(p—3
— T a(X)gu(X) = (Lg__l (r—1)— _(_1%_2___) > (B, — By

(=3
S

Thus, proceeding as before,
AR = E{3 (X; — p)’ — 2 (Xi + 9(X) — )"}
= E (-2 ] a(X))9:(X) — X 9X(X)}
= E, {QL__-W} >0.
S

It is simple to check that the conditions required for application of the identity
are satisfied.

Other refinements which can be made to the James-Stein estimator have their
analogue in the class &, of distributions. The following theorem, for instance, is
simple to obtain. The original proof for the normal distribution is due to Stein.

THEOREM 2. Given X,, - - -, X, independently distributed as in Section 3, and
squared error loss, set B, = b(X,), with.b(+) defined in (3.1), and arrange them in
increasing order of absolute magnitude

0 é |B(1)| é IB(2)I é te é |B

(p)l *

For any k = 3 define S = Y% B;, + (p — k)BY, and g: R» —» R by
k—2 .
o = -2 p, if |B| < |Bal

(k —2)

|Bi| sgn (B;) if |By| > |Byl-



480 H. M. HUDSON

Then the estimator X 4 g(X) dominates X and has risk

R(, X) — E, {(k - 2)’} :

5. Applications to discrete exponential families. The identity (2.10) for a dis-
crete exponential family allows similar results to be obtained in multiparameter
estimation of ¢,, - - -, ¢,, where X, - .., X, are independent with distributions
of the form (2.9), natural parameters 6,, ---,0,, and ¢, = e%, i =1, ..., p.
The parameter ¢ is only of statistical interest for two distributions, however,
these being the Poisson and negative binomial distributions.

If X is a Poisson variable with mean 4 then the identity (2.10) is that

(5.1 #Eg(X) = EXg(X — 1)
provided E|g(X)| < oo. This identity was first obtained by Stein. If X has the
negative binomial distribution

falx) = (e (1 — @y x=0,1,2,...,
then the identity (2.10) provides that

X

(5.2) TEg(X) = E {r——m

9(X — 1)}

if E|g(X)| < oo.

In multiparameter estimation of y,, --., g, and =, - .., x,, respectively, from
independent observations X, ---, X, having either Poisson, or negative bino-
mial, distributions the MVUE can once again be bettered. The following argu-
ment is an extension of a use of the identity (5.1) in the Poisson case by Peng
(1978) to show the inadmissibility of X under squared error loss if p > 3.

Suppose X, - - -, X, are independent observations satisfying the identity

9. E{9(X;)} = E{t(X)9(X; — 1)},
where #(X;) is the MVUE of ¢,, provided E|g(X})| < o0, i =1, ..., p. Let T =
((Xy), - -+ (X)) 6 = (¢, -+ +» ¢,)" and
(5.3) L(¢, 0) = X1, (0, — ¢9)* .

Assume also that E|g,(X)| < oo, i =1, ..., p. Then the improvement in risk
of the estimator T + g(X) on T is

AR = E{X2., ((Xy) — ¢:)' — L2 (1(X) + 94X) — ¢.)%}
= E{— 21 9 X)[2¢(X,) — 26, + 94(X)]}
= E{—-2 3 0(X)9/X) + 2 T #(X))g(X — e;) — X 9X(X)}
= E{—2 X (X)[g4X) — 9(X — )] — X 9(X)}
where e, is the unit ith coordinate vector (0,0, --.,1,0, .-, 0)’. The iden-

tity (2.10) is used to obtain the third equality above, after conditioning on
{X;:j=+i}
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Following Peng we shall treat the indices as interchangeable and, for nota-
tional convenience, define

I =max{X;i=1,...,p}, thelargest observation,
NJZ#{IXZ.:]} j=0,1,---,1,
N=(Ny, N, ---,N),
#:{N) = g«(X) for those i for which X, =
i = 1, ,p,]= 1, el
Then, upon defining ¢, = #(}j),
(5-4) AR = E{-2 2o thj[¢j(N) — 9;a(N —¢e; + e;,)]
— Zi= N;i$*(N)} -
Finally, choose
(5.5) ¢j(N):—%bj j=0,1,...,1
where b, =0, b, = 2i_, ¢, if j=1,and § = S(N) = 3L N;b p, will be
chosen later as either (p — N, — 2), or (p — N, — 3),.
LEMMA. With the above choice of ¢ (N), with p, = (p — N, — 3),,
2
(5'6) —2 Z§'=o thj[¢j(N) - ¢j—1(N - 3:‘ + ej—l)] - Z§'=o Nj¢j2(N) = %9:

provided t, = 0 and {t} is increasing in j. If ¢; =1t,7Y(b; + b;_)), j=1,2, .-,
and {c;} is decreasing for j > 2, then, with the choice p, = (p — N, — 2), in (5.5),
the inequality (5.6) remains true. :

Proor. Note first that, if N; > 1,

S(N— e, + e;_) = S(N) — ti (b, + b, .

J

Thus
—2 3o N;ti[9,(N) — ¢, (N —e; + ;)]
1 b. b,
— 2Nt P2 42 L N.t.l:__i_ i-1 :l
117g tl + 2p, ZJ—Z i g S — (l/tj)(bj + b,-_l)

(b; — b;_)S — (b,/t;)(b; + b;-1)
S — (1/1;)(6; + b;.)
2 S — b, + b;_y)
— 2N, Po 2P0 s N i\%j i-1
s s Zisma s S — (1/1;)(b; + b,-,)
Since Yi_, N;¢,A(N) = p,*/S it is sufficient to show that
L, N, S —b;(; +5,-,)
S — (1/1;)(6; + b;-,)
gP_No—N1_39 if P0=(P_N0_Nl_3)+
>p—N,—N,—2, if p=(p—N—N,—2),.

2
= 2Nl% + Jsi’ﬂ YL, Nt
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Let

t

J

. . 1 1
gl={J:2§]<l,—(bj+bj—1)g—t‘(bz+bz-1)}
j i

iz

. . 1 1
&= {28 <b -+ b0 S b+ b))
j l
and n, = Yo, Njy M= X, N;» Note that n, =p _ N,— N, — N, and
n, = 0 when the sequence t,7'(b, 4 b,_,) is decreasing.
Ifjez,and N; = 1
S —b(b; + b;_,) > S — b(b; + b;_,)
S — (l/ti)(bj + bi—l) TS (l/t,)(b, + bl—l)
since b;(b; + b, ) 262 < b+ b*< S. If je €,and N; = 1
S—bb; +b;.,) _ b;_y(b; + b;_,)
S — (1/1;)(b; + b;_1) S — (1/;)(b; + b;_,)
R I O
- S — (1/6)(b; + b,_,)

Thus
i N, 2= i+ i)
S — (1/t;)(b; + b;_,)
= S —b;; +6;-1)
S — (1/t))(by + b,-y)
b,_(b; + b;_)
+ 2je ‘Ni[l_ I 1 :|
€ S — (1/t)(b, + b,_)
S — by(b, + b,_)
(5.7) + N, A -1
'S — (1n) (6, + b,oy)
1
= N)S — . N.b.(b, + b,
S, — (/1)(b, + b,_y) {t + ) ZJE%IU(” ! j( 3+ i)
— Diee, N;b;_y(b; + b;_1)} +
L (N =S
=S = (1/n)b, + b,y)
=zm+n+N—-2)=p—N,— N, —2,

+ n,

where the last inequality is correct provided n, 4+ N, = 2, which is certainly
the case whenever n, > 1 or N, > 2. If n, = 0 and N, = 1, then (5.7) may be
written
L, N, S —byb; + b;_,) > L, N, — Di=a Nyb;y(b; + b;)
S — (1/1;)(b; + b;-) S — (1/1)(b, + b,-y)
Then

i=aN;b; (b + b,.))
=2 Z§'=z N].b].’ - Zﬂez Nj(2bj’ - bj—lbi - b§‘~l)
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1 .
=28 — 3} N; 7 (2(06; + b,_,) — b;.,)

J

1 1 1
=25-2— (b + i) + =i — pap N;— (2b; + b;_)
1 l J

<2(s— L @+o))+ b
tl tl

Therefore
S —b;(b; + b;_y) ! (1/2)b,_
ZL=N. i\"j -1 §Z=N—2— 1
R (V75 TCHE 0 B S — (1), + b,2)
1
> LN, — 2 —
= L= tb_y
2 ShaN, -2 -2 BN, -3
l

=p'—N0—N1—3

where the second inequality uses the fact that

1
Sz - 't— (bz + bl—l) = S(N - el + el—l) ; b?—l

l
and the third inequality follows because b, , > 1/t,_,. Thus the proof is com-
pleted.
This lemma together with (5.4) shows the following result.

THEOREM. Let X,, ---, X, be independent, satisfying the identities ¢, E{g(X;)} =
E{t(X,)9(X; — 1)} whenever E|g(X;)| < o0, i=1,---,p. Define g(X) = —(p,/S)B;,
i=1,-.-,p, whereb; = i (1/t,), B, = by, and S = 31, b% .

1. If p=4 and p,= (p — N, — 3), the estimator T + g(X) dominates T =
(KX, - - +» H(X,))" under squared error loss (5.3). The improvement in risk exceeds
E{p,’[S}-

2. Ifpz3,pp=(p— N, — 2),, and (1/t;)(b; + b,_)) | for j =2, then T +
g(X) dominates T under squared error loss (5.3). The improvement in risk exceeds
E{p/S}-

CoroLLARY 1 (Peng (1978)). If X,, - - -, X, are independent Poisson variables,
with means g, - -, pt,, then, if p > 3, the estimator X + g(X) of p dominates X
under squared error loss, if g(X) = —((p — N, — 2),/S) X (1/k), where S =
Zia (D (k)

COROLLARY 2. Let X, - -+, X,, p = 4, be independent negative binomial varia-
bles measuring the number of successes before the rth failure, with the probabilities
of success being m, - - -, m, respectively. The MVUET = (#(X)), - - -, H(X,))’, #(x) =
x/(r — 1 + x), is dominated by T + g(X), if 9(X) = —((p — Ny — 3)./S)(X; +
(r — 1) ZFe (1K), where S = o, (X, + (r — 1) T (k)

6. Comments. The correspondence of the results obtained here from some
exponential families of distributions with the James-Stein result for the normal
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distribution is striking. It would be surprising if dominating estimators could
not be produced in many further cases.

In the class of distributions &, the estimator X — ((p — 2)/S)B, with B, =
b(X;), b(x) = § a(x)~*dx, was proposed. Recall that E{a(X;)} = Var X,. For
distributions outside the class &, there may be similar unbiased estimators of the
variance, and the above estimator would appear satisfactory. In cases where no
unbiased estimator of the variance exists, the above results suggest the speculation
that an estimator with reasonable properties could be obtained by defining

a(d) = Var, (X),  B(x) = § a(x)dx
and then proposing the estimator X — ((p — 2)/S)B, where now B, = (X)),
S =3 B2

Further work is needed particularly in the discrete exponential family. The
results of Sections 3 and 4 permitted a shift towards an arbitrary point in the
range of a continuous variable but for the discrete distributions considered the
results obtained only concern shifts towards the origin. The corresponding
results for shifts towards nonzero origins are complicated by the discreteness
of the distribution but do not appear intractable.

The identity is also useful in giving further insight into, and a simple proof
of, the result of Clevenson and Zidek (1975) concerning minimax estimation
of the means of Poisson random variables.
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