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ON THE TIME AND THE EXCESS OF LINEAR
BOUNDARY CROSSINGS OF SAMPLE SUMS

By CHUNG-SIUNG Kao0
Brookhaven National Laboratory

For an infinite sequence of independent and identically distributed
random variables X, X1, Xz, +++; Xy, +++ for which EX =0and Var X =1,
the behavior of crossings that Sy = Yigk<n Xr = ne (¢ > 0) for some n = 1
has recently been under intensive investigation, of which the subject mat-
ters are the largest excess Z = supaz1(S. — ne)t, the last time M =
sup {n; S» = ne, | < n < oo}, or = 0 if no such sup exists, and the number
of crossings N = Yi1<n<o I{S% = nc} (I means the indicator function). This
paper describes a striking distributional similarity between 2N and
¢2(M — N) in the limiting sense as ¢ — 0. Moreover, a new and systematic
treatment for the moments problem unifies the previously published results
as well as giving some new results. Existence of the limiting moments as
¢ — 0 and of the moment generating function is also considered in detail.
Most of the results for the one-sided crossings (i.e., S, = n:) are then ex-

tended to cover their analogues in two-sided crossings (i.e., |Sn| = ne).

1. Introduction. Boundary crossings of the two linear types (i) S, = ne for
some n > 1 (one-sided), and (ii) |S,| = ne¢ for some n > 1 (two-sided), where ¢
ispositiveand S, = X, + X, + .- + X, is the sumof a sequence of independent
and identically distributed random variables X, X, X;, - -+, X, - - - having zero
mean and unit variance, have recently received considerable attention. If we
conveniently set S, = 0, then the subject matters have been (1) the largest excess
of crossings (Z = sup,, (S, — ne)* for the one-sided and Z = sup,., (|S,| — ne)*
for the two-sided), (2) the last time of crossings (M = sup {n; n = 0 such that
S, = ne} for the one-sided and M = sup {n; n > 0 such that |S,| > ne} for the
two-sided) and (3) the number of crossings (N = },cucw Iis, 20 fOr the one-
sidedand N = ¥ ._..... Iiis, 2ne) fOr the two-sided, where / stands for the indicator
function).

Robbins, Siegmund and Wendel (1968) as well as Miiller (1968) started
the first inquiry about M. They obtained the limiting distribution of ¢*M as
¢ — 0 and conditions for the existence of limiting moments. Miiller (1972) gave
the limiting distribution of ¢2N and e*N as ¢ — 0. Slivka and Severo (1970) gave
necessary and sufficient conditions for the existence of moments of N in terms
of the moments of X, and later Stratton (1972) extended their results to that of
|S,,| = n%¢ for some n with a > 0, for which case we would use Z,, M, and N,
to denote corresponding largest excess, last time and number of crossings. In

Received July 1974; revised September 1976.

1 Work performed under the auspices of the ERDA.

AMS 1970 subject classifications. Primary 60F10; Secondary 60F15, 60G50.

Key words and phrases. Sample sums, linear boundary crossings, largest excess, last time, total
number, limiting distribution, limiting moments, moment generating function.

191

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. BIEOIS ®

Www.jstor.org



192 CHUNG-SIUNG KAO

this connection, some results were obtained earlier by Baum and Katz (1965).
Chow and Lai (1975) obtained bounds, in terms of moments of X, for the mo-
ments of Z, and M, as defined using the general boundary of Stratton, and they
also determined the limiting distribution and limiting moments of Z, and M, as
¢ — 0 in terms of boundary crossing in a Wiener process. It seems that these
results are pieces of a unified structure in which Z, M and N are somehow con-
nected, and are insufficient to cast a clear light on the whole structure. The
theorems in Section 3 are either new or carry new proofs in such a way that they
reflect that structure. The relations amongst moments of Z, M and N and of Z,
M and N may then be seen more clearly from Theorem 3.1 and the remark in
Section 4. Equally significant in this presentation is the interesting identity
between the limiting distributions of ¢*N and (M — N) as ¢ — 0. This identity
and other results in Section 2 are obtained with an approach based on the find-
ings in Baxter (1956). Such approach, which is different from the approach by
Miiller in a Markovian context, enables us to visualize, to some extent, the re-
lation between M and N in the limiting sense as ¢ — 0.

In the context of the paper, there are basic relations frequently brought into
use. Itis easily seen that M > Nandsup,., (S, — ne/2)* = S, — Me/2 > Me —
Me/2 = Me/2. Therefore, we have the basic relations

(1.1) 2¢7sup,,, (S, — nef2)* = M = N.

2. Some limiting distributions. The finding of limiting distributions in the
following context is largely based on the results in Baxter’s paper [2]. In addition,
there is a common procedure in proving theorems in this section before final
application of Baxter’s formulas in the proof. The common procedure mainly
includes a truncation process in the beginning and the application of Donsker’s
“invariance principle” next. For this reason, we only prove the theorem about
the limiting distribution of ¢*N as ¢ — 0 to demonstrate the procedure. It should
be noted that Lemma 2 of Robbins-Siegmund-Wendel’s paper [10] is funda-
mental to the truncation process. This lemma was used by the authors to prove
that lim,, P{e’M < x} = 2@(x}) — 1 for x = 0, which was then generalized to
obtain a corollary that asserts lim,_, P{e sup,, (S, — ne)* < x} =1 — e * for
x = 0. The function @ here stands as usual for the cumulative distribution
function of the standard normal. Therefore, in Mann-Wald symbols, the largest
excess is O ,(¢7') while the last time is O (¢72) as ¢ — 0. As to the order of N, it
will be shown to be O,(¢7?) next.

For our convenience in what follows, we would let [x] denote the smallest
integer greater than or equal to x, and let

(2.1) F(y) =1 — {2 [{r 2nu®)~te=* du] dt for y>0.
THEOREM 2.1. For each x > 0, lim,_, P{¢!N < x} = F(x).

Proor. Let W, denote the Wiener process, and let ¢ denote Lebesgue measure
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on the real line. Then, for T > 0 and any m > 0, define W, by
(2.2) W™ = 8., /m} for ¢+ in (0,7).

It is obvious that

(2.3) P{e’N > x} = P{g{n in N*: 8, = ne} > x/e%},

where # refers to the cardinality of 4 or the number of elements in 4, and N*
means the set of all positive integers. Consider the truncation at mT and put

(2.4) A = {g#{n in N*: 8, > ne,n < mT} > x/e%,

and
A, ={#{n in N*:S,>ne,n>mT}>0}.

For m = 1/e* we have
P(A,) = P{p{t in (0, 00): Sy = [1)/m?, [f] £ mT} > mx}
< P{p{t in (0, mT): S,y = [t]/mt} > mx}.

Since p{t in (0, mT); Sy, = [f)/mi}/m = p{t in (0, T); W, ™ > [mt]/m}, it then
holds that P(4,) = P{p{t in (0, T); W,™ = [mi]/m} > x}. Then as ¢ tends to 0,
m tends to oo, and by Donsker’s “invariance principle,” we have
(2.5) lim,_, P(4,) = P{p{t in (0,T); W, =1} > x}.
But P(4,) < P{M > mT}, so by Lemma 2 in [11] it holds that P(4,) < 8T.
Hence, by letting 7 — oo in P(4,) < P{e!N > x} < P(4,) + P(A4,), (2.5) gives

lim,_, P{eN > x} = P{pf{t in (0, c0); W, =t} > x}.
Then from Baxter [2] the theorem is immediate.

To start looking into the distributional relation between M and N, we define
M, and N, for Wiener process W, by

(2.6) M, =sup,,(t; W, = 1) and

N, = p{t;t = 0 such that W, > 1},

and also define f on R?, the Euclidean plane, by
2.7y flx,y) = 2ryPev)t for y>x=0 and =0 otherwise.

Then, using Baxter’s formula in [2], the probability density function (pdf) of
(N,, M) as well as of (M,, — N,,, M,) may be shown to be f. In accordance
with the remarks made in the first paragraph of this section, we shall state the
next two theorems without proofs.

THEOREM 2.2. For any rectangle B = {(x, y); x, S X < x,, ), < y < ys} in R,
lim_, P{(e*N,e’M) in B} = lim,_, P{(sM — N), &M) in B}
= 15 /1%, ) d(x, ) -
THEOREM 2.3. For each x = 0, lim,_, P{¢(M — N) < x} = F(x), where F was
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defined by (2.1) and is obtained by integration on f to eliminate the second (i.e., y)
argument.

There is thus an exact similarity in the limiting sense as ¢ — 0 between N and
M — N, as clearly exposed in the foregoing theorems.

3. Finiteness of moments, moment generating functions and their limits. In
this section, we shall discuss a number of propositions and references which
lead to the following unified conclusion:

THEOREM 3.1. For each 2 = 0 ande > 0 the following conditions are equivalent:

(a) E(X*)y** < oo,

(b) EZ'* < oo,

(c) EM'* < o,

(d) EN"* < oo,

(e) Xg_,n*P(S, = ne) < oo.

(Observe that the random variables Z, M and N depend on ¢ through their defi-
nitions.)

Of these, Chow, Robbins and Siegmund [4] (page 92) assert that (a) < (b);
Robbins, Siegmund and Wendel [11] assert without proof that (a) < (c) when
2 > 0; inequality (1.1) immediately leads to (b) = (c) (but for different ¢’s); and
inequality (1.1) immediately leads to (c) — (d) (for the same ¢’s). It follows
that (a) implies each of (b), (c) and (d). (The issue of different ¢’s is not a
serious problem.) In Proposition 3.1, we shall show that (d) = (e) (but for dif-
ferent ¢’s), and, in Proposition 3.2, show that (e) = (a). Since condition (a)
does not depend on ¢, Theorem 3.1 must follow.

LemMA 3.1. If{A,}isany sequence of events and N = 3 ,<<. 14, (not necessarily
finite), then

ENY = (1 + 2) e n*P(A,) for —1<2<Z 0,
and
ENY < (1 4+ 2) X7, n‘P(4,) for 0Z21< oo

PrOOF. Suppose —1 < 2 < 0. If (N = o0) > 0, then EN'** — oo and there
is nothing to prove. Therefore, assume P(N = o0) = 0. Set N, = 3,5, 1y,
and observe that )

Dink IAn[Nn=k] = Iiyzi -

Thus P(N = k) = Yicn<e P(A.[N, = k]), and, hence,
(1 + ,2)_1ENl+x =\ x* dx P(N = n)
= Dea(Xi K)P(N = n)
= 2 klP(N = k)
- Zl?=1 kl Z::k P(An[Nn = k])
= Yo nt Yo P(ALN, = k])
= Zean'P(4,),
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which verifies the first inequality. If, instead, 0 < 2 < oo and P(N = o) = 0,
the previous argument goes through but with the inequalities reversed. The
unwanted condition P(N = co) = 0 can be removed by invoking a simple trun-
cation argument. Specifically, P(N,, = o) = 0 and, hence, for 0 < 1 < oo,

EN,** < (1 4+ ) Zr i n*P(A,) + Drma MP(D))
< (1 +2) $5., miP(4,).
Then, we let m — oo and apply the monotone convergence theorem.

We shall only have cause to use the first part of this lemma, but the second
part is of intrinsic interest and, in particular, shows immediately that condition
(e) of Theorem. 3.1 implies condition (d). It is the reverse direction which
interests us at this point:

ProposITION 3.1. [fEN'** < oo for some A = 0 ande >0, then Y, ., n*P(S, >
ne') < oo for some ¢’ > 0.

ProoOF. Let N, = > %" Iis, _s,=-me> Which is independent of S, for n > 1.

m=n+1

Moreover, N > N, when S, = 4ne. Thus

(3'1) ENH—Z - E Z:;:l I(Sngm)Nz g E Z:=1 I(Sn;«me)an
= v P(S, = 4ne)EN,* .

Let n, be the smallest integer greater than {¢=2. Then, by Chebyshev’s inequality,
we have P(S,, — S, = —2ne) = fforn 4+ 1 <m < 2nand n > n,.

If 2 =1, then, by Jensen’s inequality, EN,* = (EN,)* and it follows from
(3.1), that

(3.2) EN“ = Fiv, P(S. = 4ne)(EN,)* = 274 Dineng P(Su = 4ne)nt .
If 0 < 2 < 1, then we apply the first part of Lemma 3.1 by setting 4, = @
=

(the empty set) for 1 < m < norm > 2n,and = {S,, — S, = —2ne}forn 4 1
m < 2n. Note that here n is fixed. Then

EN/ =23 mP(S, — S, = —2ne) = $A (i m*~'dm for n=n,,

m=n+ =
and it follows, from (3.1), that
(3.3) EN“ = C 3iv.,, P(S, = 4ne)n’

where C = $4(2* — 1) > 0.

Thus, the proposition is immediate from (3.2) and (3.3).

It should be mentioned that the proof to be given for the next proposition is
motivated by Erdds [6]. ‘

PROPOSITION 3.2. For A = 0, E(X+)** < oo if Y 5., n*P{S, = ne} < oo.

Proor. For 1= 0, it may be shown that E(X*)*** < oo is equivalent to
Ve n+iP{X = 2ne} < oo for some ¢ > 0. For the fixed ¢ > 0 such: that
Yo n*P{S, = ne} < oo, we have P{S, = ne} — 0 as n— co. It follows, by the
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assumption of i.i.d., that there is a constant p > 0 independent of k and n such

that
Pl e Xl < nel=p for n>=n,.

Let R, = {X, = 2n¢}, and let T, = {|2]%., ;.. X, < ne}. Then we have
Uroi (R T,) C {S, = ne}. Therefore, denoting by R’ the complement of R we
have

P{S, = ne} = P(Ur, (R, T.))

2 P(Uio (RT)) -+ (Reea Tin))' R T

Y PR - R,_,R,T),)

D=t [P(ReTy) — P(Ry(R, U -+ U R, )]
= Lk PRYIP(TL) — (k — DP(R))]

= Lk P(Ry)[p — nP(R)] -

Since EX* < oo, we have nP(R,) = nP{X = 2ne} = o(1) as n — oo. Then there
exists n, > 0 such that nP(R) < p/2 for all n=n,. So P[S,= ne} =
0 2ke1 P(R,)/2 = pnP{X = 2ne}/2 for n = m, where m = max (n,, n,). Therefore
S mHPIX = 2ne} < Yirstattt 4 2 e ntP{S, = ne}/p < oo. This shows
that E(X*)"** < oo.

About the limiting behavior of moments, Robbins, Siegmund and Wendel stated
without proof that, for 2 > 0, lim, , E(¢?M)'** = (& x!** dG(x) if E(X*)*** < oo,
where G(x) = 2®(x}) — 1 for x = 0. In fact, it may be proved that
lim,_, E(e sup,5, (S, — ne)*)"** = (¢ x!**dH(x) for = 0, H(x) = 1 — e™* (x =
0). Then the uniform integrability of (e sup,,, (S, — ne)*)'** as ¢ — 0 and the
relation of (1.1) together constitute the uniform integrability of (e2M)!*2, (¢2N)!+*
and (M — N))'+* as ¢ — 0. Thus, the statement by Robbins, Siegmund and
Wendel on lim, ,, E(¢’M)'** is proved, and in light of the limiting distributions
in Section 2, it is immediate that lim,_, E(e?N)'** = lim_, E(¢¥M — N))'+* =
{o x*** dF(x). Chow and Lai (1975) obtained, based on bounds, a proof (Theo-
rem 7) for the uniform integrability of (¢ sup,., (S, — ne)*)**+*, while earlier the
original proof by this author was by a lengthy combinatorial treatment. An
interesting instance of the obtained limiting moments is lim,_, E(¢?N) =
lim, , E(¢¥(M — N)) = {lim_,, E(¢*M) = }, which happens also to be the value
of lim,_, E(e sup,, (S, — ne)*). '

From this point to the end of this section, we will assume that the moment
generating function Ee’” exists in a positive neighborhood of 0, and will denote
it by ¢(0) (¢ = 0). Then for sufficiently small ¢ >> 0, there uniquely exists 6, > 0
that satisfies ¢f, = log ¢(¢,), and we may define 6, > 0 by ¢f, — log ¢(0,) =
SUPy<yso, (€0 — log ¢(f)). It will be shown that Ee*” < oo for some 42 > 0 (Theo-
rem 3.2), and that lim, , Ee*** = (i e** dH(x) for any 2 < } (Theorem 3.3).
When we take ¢’ = ¢/2 and let Z’ = sup,,, (S, — ne’)*, it holds from Theorem
3.2 that Ee*”’ < oo for some 2 > 0. Therefore, in light of (1.1), it is easily seen
that Ee*” < oo and Ee’" < oo for some A’ > 0 (e.g., I’ = 2¢/2). In order to

[\ \a ||



ON LINEAR BOUNDARY CROSSINGS OF SAMPLE SUMS 197

prove for uniform integrability of Ee*? with respect to ¢ as ¢ — 0 it will be
shown in the proof for Theorem 3.3 that, for 2 > 0, Ee*' %[, 415m tends to 0
independently of ¢’ in [0, ;] (¢, > 0) as m — oco. Since it is clear from (1.1) that

e’ Z? 2e’'2M 2e2M 262N
e i gromy Z € Lnyom Z €M Layzim = € Laysim »

we have uniform convergence for {Ee*™ ] ,,.,,;0 < ¢ < 2¢} to 0 as m — oo,
where V stands for any of M, N and M — N. This then leads to the result that

lim,_, Ee*™ = (& e* dG(x)

e—0
and
lim,_, Ee’*¥ = lim,_, Ee** ¥~ = (% ¢4 dF(x)

in light of the limiting distributions in Section 2.
THEOREM 3.2. There exists 2 > 0 such that Ee’? < co.

PrROOF. Since ¢, — log ¢(#,) = 4, > 0, we may take a fixed value 2 such
that 0 < 2 < 4,. It is obvious that P{Z > 2me} = P{S, = 2me + ne for some
n =z 1} < Plmax,_,<, S, = 2me} + P{S, = neforsomen = m}. Fromthe lemma
on page 91 of Chow-Robbins-Siegmund [4] we have, for sufficiently large m,
that P{max,.,.,, S, = 2me} < 2P{S, = me}. Therefore, P{Z = 2me} < 3PS, =
ne for some n = m}. Then by (i) of Theorem 3 in Kao [8], we have P{Z >
2me} < 6e~™h, from which it becomes obvious that lim,_, Ee*?]{Z = 2ke} <
lim, , ce~*“%~% = 0, where c is a constant. This means that Fe?? < co. Before
presenting the next theorem, we need the following lemma.

LEMMA 3.2. Let A(c) = ¢, — log ¢(0,), then lim,_, A ()/e* = }.

Proor. It should be noted that ¢, and ¢(6,) are analytic functions of ¢ on (0, 0)
for some 6 > 0. Since 0 < 0, < 6, — 0 when ¢ — 0, we have
(3.4) lim,_, 2)(¢) = 0.

Moreover, since ¢f — log ¢(d) = 0 at § = 0 and 6,, we have, from the definition

of 8,, that (d/df)Ee’*~9 = 0 at § = 6,, which is equivalent to

(3.5) Exe"™ = ¢p(0,) .

By using this equality, it may be shown that

(3.6) 4 o) = 6,
de

which tends to 0 when ¢ tends to 0. We defferentiate both sides of (3.5) with
respect to ¢ to obtain that

Dy _ Eenvj(Extens — cEXenY) .
de
5o from the assumption of EX = Oand Var X = 1, and the fact that lim,_, 6, = 0,

we have
(3.7) lim,_,df /de = 1.

e—0
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Therefore, in view of (3.4) and (3.6), we may apply I’Hospital’s rule twice to
obtain lim,_, 4,(¢)/e* = } lim__, df,/de, which is equal to 4 as seen from (3.7).

e—0

THEOREM 3.3. For any 2 < %, we have lim,_, Ee*? = {7 e** dH(x).

e—0

Proor. For given 2 < 4, Lemma 3.2 asserts that there exists ¢, such that
e7%(¢) > 2, > 4 for all ¢ in [0, ¢]. From the limiting distribution of ¢Z, we
see that the theorem is proved if {e*#;0 < ¢ < ¢} are uniformly integrable.
Therefore, it is sufficient to prove that {Ee*“],,.,,; 0 < ¢ < ¢} converge uni-
formly to 0 as m — co. It is easily seen that P{¢Z = m} < P{max,_,cp/e2 S, =
2m[e®t + P(S, = ne for some n = m/e’}. By the lemma on page 91 of Chow-
Robbins-Siegmund [4], we have for m = 2 the inequality P{max, ., /2 S, =
m[e?} < 2P{S|,.,2; = m/e*}. Therefore, P{eZ = m} < 3P{S, = ne for some n = m/¢?}.
By Theorem 3 in [8], we then have P{eZ = m} < 6e~™%@/#, which is (upper)
bounded by 6e~™4 for all ¢ in [0, ¢]. Hence, for each ¢ in [0, ¢(],

Eekzl(ezgm) é Z::m e“”P{eZ g n} é 6 Z:=m e—m(A—2)
< 6(1 — e~ (= D)=lg=my-b)
which tends to 0 independently of ¢ as m — co. Thus we have the desired uni-

form convergence of {Ee*?], ,.,,; 0 < ¢ < ¢} to 0 as m — oo, and the theorem
is proved.

4. Concluding remarks. If weletY = —XandY, = —X,,1 < n < oo, then
Y,Y,Y,, ... arei.i.d. with EY =0 and VarY = 1. Define 7, = —S,, 0 <
n < oo, and for the same given ¢ > 0 let Z’, M’ and N’ be respectively the largest
excess, the last time and the number of crossings of T, = ne, 0 < n < c0. We
are interested in the values @/ and a,, 1 < i < 5, defined by a/ = E(Y+)***,
a) = EZ"*%, q) = EM"*%, a) = Y % n*P{T, = ne}, a) = EN"'**, a, = E|X|**%,
a, = EZ'**, a, = EM'**, a, = Y,7_, n*P{|S,| = ne} and a, = EN'**. It may be
shown that max (a,, a/) < a, < 2**%(a, + a/) for 1 < i < 5. Therefore, apply-
ing Theorem 3.1 to the X,’s and the Y,’s separately, we conclude that either (i)
a; < oo foralli,1 <i<5,or(ii)a, = oo foralli, 1 £i< 5, holds (the two-
sided analogue of Theorem 3.1).

As for the limiting behavior of M as ¢ — 0, we may consult (5.8) on page 329
of Feller [7] to obtain that P{sup,<,s, |W(1)| = y} = G(y), where

G(y) = 2 T (((4k — 1)) — O((4k + 1))} =1 for y =0,
to show that lim,_, P{e2M < x} = G(x) for each x = 0.

Finally, since it is clear that Ee?’ < 2 max (Ee", Ee'") < 2Ee’ for V = Z,
M and N, it may be shown that there exists 2 > 0 such that Ee'Z < oo, EeM < oo
and Ee’¥ < oo if the moment generating function of X exists in a neighborhood
of the origin, and that

lim,_, Ee*” = {7 e dH(x), lim,_, Ee' = | e'* dG(x)
and
lim,_, Ee**¥ = (= e** f(x) dx ,
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where H(x) = P{max,.,|W(f) — t| = x} (W(¢) is the Wiener process) and f(x) is
defined at (5.21) in Miiller’s (1972).
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