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BAYESIAN INFERENCE FOR CAUSAL EFFECTS:
THE ROLE OF RANDOMIZATION
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Causal effects are comparisons among values that would have been
observed under all possible assignments of treatments to experimental
units. In an experiment, one assignment of treatments is chosen and only
the values under that assignment can be observed. Bayesian inference for
causal effects follows from finding the predictive distribution of the values
under the other assignments of treatments. This perspective makes clear
the role of mechanisms that sample experimental units, assign treatments
and record data. Unless these mechanisms are ignorable (known probabi-
listic functions of recorded values), the Bayesian must model them in the
data analysis and, consequently, confront inferences for causal effects that
are sensitive to the specification of the prior distribution of the data. More-
over, not all ignorable mechanisms can yield data from which inferences
for causal effects are insensitive to prior specifications. Classical random-
ized designs stand out as especially appealing assignment mechanisms
designed to make inference for causal effects straightforward by limiting
the sensitivity of a valid Bayesian analysis.

1. Introduction and overview. Discussion of the role of randomization in the
search for effective treatments is commonplace in the social and health sciences.
See, for example, Campbell and Erlebacher (1970), Gilbert (1975), Gilbert,
Light and Mosteller (1974), and Weinstein (1974). The rules of randomization
imply that treatment assignment be made by an objectively defined random
mechanism and not according to ad hoc decisions of the experimenters or the
subjects of the experiments. Since human subjects may be randomized to treat-
ments that some believe are less efficacious than other treatments under study,
there is increasing interest in designs that reduce or eliminate randomization.

Some opponents of randomization turn to Bayesian statistics as a conceptual
foundation for their position. However, careful development of the Bayesian
framework for drawing inferences about causal effects of treatments explicates
the steps required to analyze randomized and nonrandomized studies, and demon-
strates that randomized studies are in general substantially easier to analyze than
comparable nonrandomized studies. Therefore, we argue that randomization
plays a central role in Bayesian inference for causal effects.

Intuitively, the causal effect of one treatment relative to another for a par-
ticular experimental unit is the difference between the result if the unit had
been exposed to the first treatment and the result if, instead, the unit had been
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exposed to the second treatment (Rubin, 1974): “If an hour ago I had taken
two aspirins instead of just a glass of water, my headache would now be gone,”
or “Because an hour ago I took two aspirins instead of just a glass of water, my
headache is now gone.” The problem is, of course, that we cannot return in
time to give the other treatment, and so must compare an observed result and
an unobserved result.

Section 2 formalizes this idea by conceptualizing inference for causal effects
as inference about values that would have been observed under all possible as-
signments of treatments. Section 3 describes Bayesian models for (1) the prior
distribution of the potentially observable data, (2) the mechanism that selects
experimental units for exposure to treatments and assigns treatments, and (3)
the mechanism that chooses values to record for data analysis.

Section 4 shows that the Bayesian statistician® generally needs all three models
in order to draw inferences about causal effects. The models for the mechanisms
used to select experimental units, assign treatments and record data can be
ignored only in special cases when they are “ignorable,” which means that they
specify rules based on known, possibly probabilistic, functions of recorded
values, as with randomization. For example, we show that if the experimenter
assigns treatments so that the design “promised to tell him the most” (Savage,
1962), the assignment mechanism is ignorable only if the values used for making
the assignment decisions are recorded and modelled in the data analysis. If these
values are not recorded, the assignment mechanism is not ignorable and must
itself be modelled in order to account for possible correlations between recorded
values and unrecorded values used for assignment. In this case, inferences for
causal effects are sensitive to prior specifications because recorded values cannot
directly estimate correlations between recorded and unrecorded values. Infer-
ences for causal effects are also sensitive to prior specifications when ignorable
assignment mechanisms yleld data poorly balanced with respect to recorded
covariates.

Section 5 discusses the role of randomization. Ignorable mechanisms incor-
porating some randomization guard against data poorly balanced with respect to
recorded covariates. More importantly, we show that classical randomized
designs allow the Bayesian to achieve approximate balance with respect to many
blocking variables, and to draw inferences for causal effects without having to
formalize these blocking variables, record their values, or model their joint
prior distribution with outcome variables. This freedom from having to deal
explicitly with many blocking variables results in analyses for causal effects that
are relatively straightforward and insensitive to prior specifications.

1 By the terms ‘‘Bayesian statistician’ or ‘‘Bayesian’’ we mean, more precisely, ‘‘the statisti-
cian who analyzes data by calculating, via Bayes theorem, the conditional distribution of un-
knowns given knowns.”
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2. Assumptions and notation. Consider a study of T treatments and a popula-
tion P of N experimental units for which we wish to estimate the causal effects
of the treatments. By a treatment we mean a series of well-defined actions that
can be applied to a unit of study. Typical examples of treatments are medical
or surgical interventions on patients with coronary artery disease. The treat-
ment consisting of no active intervention is often of interest when the efficacies
of proposed interventions are unclear. By an experimental unit we mean a
particular unit of study (e.g., a person) at a particular time, since the effect of
a treatment on a unit may depend on when the treatment is applied. Only a
finite number of.experimental units need be considered since no treatment will
be applied into the infinite future.

The rows of the matrix in Figure 1 represent the N experimental units in P.
The entries of the matrix correspond to all values that one might record in a
study of the T treatments. The matrix is not a standard ‘“units by variables”
data matrix of observed values since in any study only some of the values re-
presented are actually recorded. This explicit representation of all potentially
observable values leads to substantial notation, but once established, the notation
permits important conclusions to be drawn almost immediately.

-
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Experimental units in population P

FiG. 1. All values in a study of T treatments.

2.1 Pretreatment values—covariates. The collection of ¢ columns labelled
X = (X, X, - -+, X,) refers to the values of all variables describing experimental
units that might be recorded before treatments are assigned. Each column of X
refers to a particular aspect of experimental units such as preoperative blood
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pressure, order of entry into experiment, age, or doctor’s assessment of pre-
operative health. When recorded and used in the data analysis, a particular
column of X is often called a covariate, concomitant variable, background vari-
able, blocking factor or group indicator if used to define subpopulations of P.
We assume that all pretreatment variables that might be used to distinguish be-
tween experimental units are included in X whether or not any of their values
are actually recorded for data analysis.

2.2 Assignment to treatment condition. The column labelled W indicates which
experimental units were selected for exposure to a treatment and which treat-
ment each selected experimental unit received. Specifically, the elements of W
take one of the T 4 1 values 0,1, ..., T: W, = 0 indicates that the ith experi
mental unit was not selected and so not exposed to any of the T treatments
being studied; W, = (> 0) indicates that the experimental unit was selected and
received treatment ¢.

In controlled experiments, W reflects two mechanisms, the sampling mecha-
nism which determines the experimental units to be studied (i.e., to be exposed
to a treatment) and the treatment assignment mechanism which determines the
sampled experimental units to receive each treatment. In observational studies,
W reflects the mechanism, beyond the control of the experimenter, that deter-
mines the experimental units to be exposed to each treatment; in such studies,
the sampling mechanism that selects which treated experimental units are to be
studied is reflected by the indicator variable discussed in Section 2.4.

2.3 Posttreatment values—dependent variables. The T collections ot columns
labelled Y = (Y7, Y%, ..., Y7) refer to the values of all variables describing ex-
perimental units that might be recorded after the assignment of treatments. Speci-
fically, the collection of d columns labelled Y* = (Y}, - .-, Y,') refers to the
observable values of Y if all experimental units were exposed to treatment 1
(e, if W=(1, ..., 1)), Y2 = (Y% ..., Y,?) refers to the observable values of
Y if all experimental units were exposed to treatment 2, and so on, Ifan experi-
mental unit was not selected for exposure to one of the treatments, we assume
that no Y values will be observed for the experimental unit. (Hence there is
no need for a Y°.) Each collection Y* includes the same d aspects of experi-
mental units, a particular column in Y* referring for example to postoperative
blood pressure, or doctor’s assessment of postoperative health. The two columns
Y,! and Y,? thus refer to the same aspect of the experimental units but given
exposure to different treatments. In a data analysis, a particular Y, = (Y},
Y% -+, Y,") is usually called an outcome variable, a dependent variable, a re-
sponse variable, or a criterion variable. There are T columns representing each
response variable because the observable value of the aspcct represented by Y,
would generally differ under different treatments.

In order for this representation using T columns for each Y, to be adequate,
we must assume that if the ith experimental unit is selected for treatment
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exposure and assigned treatment ¢ (> 0), the observable value of Y is the same
for all assignments of treatments to the other experimental units. That is, for
each k, Y/, represents the ith experimental unit’s observable value of Y, for all
values of W such that W, = ¢ (> 0). Without this assumption, we would need
more than T versions of each Y,, since we require a different version for each
value of W that leads to a potentially different value of Y,. This assumption,
called “no ‘interference’ between different units” by Cox (1958, page 19), is
usually made in practice. A common exception is cross-over designs with addi-
tive carry-over effects assumed. Our model can be extended to include more
general assumptions about interference effects between units, but for notational
and descriptive simplicity we assume 7" versions of each Y, are adequate. The
general results of this paper do not rely on the no-interference assumption.

2.4 Defining causal effects. The causal effects of the treatments are compari-
sons among the Y* values. For example, it is common to define the causal effect
of treatment 1 vs. treatment 2 on Y, for the ith experimental unit to be the ith
component of Y,' — Y,% Y;, — Y. the difference for the ith experimental unit
between Y, given exposure to treatment 1 and Y, given exposure to treatment
2. The fundamental problem facing inference for causal effects is that if treat-
ment ¢ is assigned to the ith experimental unit (i.e., if W, = r), only values in
Y* can be observed, Y’ values for j # ¢ being unobservable (or missing).

Without the no-interference assumption discussed in Section 2.3, more com-
plicated definitions of causal effects are needed. However, such definitions still
involve comparisons of Y, values only some of which could be observed in a
particular study.

2.5 Missing-data indicator. The ¢ + dT columns labelled M in Figure 1 indi-
cate recorded and unrecorded values in (X, Y) at the time of the data analysis.
The ¢ columns labelled M,*, - .., M,* indicate recorded and unrecorded values in
Xy, oo, X if M, = 1, X, is recorded for the data analysis; if M3, = 0, X, is
not recorded for the data analysis. Similarly, the d columns labelled M.¢, - - -, M}
indicate recorded and unrecorded values in Y* = (Y, -, Y, =1, ..., T.
For notational simplicity we assume that W is always observed.

The fundamental problem facing inference for causal effects is reflected by
the restriction that W, = timplies Mj, = Oforall j + randk = 1, ..., d. That
is, one cannot record values under a treatment not assigned.

Sometimes an element of M is itself unrecorded (e.g., two measurements of
blood pressure are taken on each patient, but for some patients only one value is
recorded and it is not clear whether it is the first or second measurement). As
with unrecorded W, this can be handled by using more indicator variables, but
the extra generality adds little insight and clutters the notation. Hence, we assume
M is known at the time of the data analysis.

In practice, the indicator M reflects the mechanism that chooses which values
to record for the data analysis, mechanisms that create unexpected (accidental)
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missing values, as well as the sampling mechanism and treatment assignment
mechanism (via the restrictions placed on M by W).

2.6 A specific study. In our model, we assume that any values capable of
distinguishing between experimental units are elements in (X, Y, W, M) with W
and M fully observed and (X, Y) partially observed. In a specific study of T
treatments let W and M be the actual observed values of W and M, and for
notational convenience write X = (X,,, X,;))and ¥ = (Y, ¥,;,) where each ele-
ment of (X, Y,,) corresponds to an element of M that is 0, and each element
of (X, ¥,,,) corresponds to an element of M thatis 1. Thus (X, ¥,,,, W, M)
is comprised of known numbers and (X,,,, Y,,,) is comprised of unknowns. No-
tice that these partitions of X and ¥ are defined by the observed value of M, M.

Within the structure developed, problems of inference for causal effects of
treatments on individual experimental units or collections of experimental units
are equivalent to problems of inference about values of missing data. That is,
most of (X, ¥) is missing, as indicated by M. If all of (X, Y) were observed
(which is impossible), we would simply calculate causal effects. Because of
missing data, we must turn to a method of statistical inference in order to esti-
mate causal effects. The concern here is with Bayesian inference. See Rubin
(1976) for general discussion of inference when confronted with missing data
and Rubin (1977a) for brief discussion of sampling distribution analogues for the
Bayesian results presented here.

2.7 Relating the model to the real world. Several aspects of our model for
causal effects should be clearly understood before it is applied to real world
problems. The common theme throughout this section is the need for clear
definition and understanding of the actions to be performed on those experi-
mental units selected for treatment.

First, within our model, each of the T treatments must consist of a series of
actions that could be applied to each experimental unit. This requirement may
seem obvious, but some colloquial uses of “cause” specify treatments that either
cannot be applied or are so ambiguous that no series of actions can be inferred
from the description of the treatment; such questions have no causal answer
within our framework. For example, consider the causal effect of sex (male—
female) on intelligence. What are the actions to be applied to each experimental
unit that define the treatments? Are we to give hormone shots beginning at
birth and surgically perform a ‘sex-change” operation, or at conception
“‘change” Y-chromosomes and X-chromosomes? Even if an ‘“‘at-conception X-
for-Y chromosome change” becomes possible, presumably there will be several
techniques developed for effecting the change with potentially different causal
effects. Without treatment definitions that specify actions to be performed on
experimental units, we cannot unambiguously discuss causal effects of treatments.

Second, in our model, the causal effects being estimated reflect the pretreat-
ment manipulations carried out on sampled experimental units as well as the
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different actions that define the treatments. For example, suppose in a medical
experiment all sampled patients are exposed to extensive medical examination
before treatments are assigned. The causal effects being estimated in such a study
assume that these examinations are given to experimental units before exposure
to treatment. If the pretreatment manipulations performed on the sampled ex-
perimental units are quite different from the pretreatment manipulations that
are likely to be used with future experimental units exposed to the treatments,
it may be wise to consider studying more realistic pretreatment manipulations
since there may exist interactions between the treatments and the pretreatment
manipulations.

Finally, in our model, we cannot attribute cause to one particular action in
the series of actions that define a treatment. Thus treatments that appear
similar because of a common salient action are not the same treatment and may
not have similar causal effects. An important practical implication is that treat-
ments given under double-blind conditions are different treatments than those
given under blind or simple conditions and may have different causal effects;
see Rosenthal (1976) for a summary of studies of interactions between experi-
menters and their subjects. Double-blind versions of treatments are generally of
more scientific interest, although simple versions of treatments may in fact be
of more immediate applied interest. For example, in an experiment to compare
aspirin and a prescription drug, simple versions of the treatments may be im-
portant because in practice a patient will usually know if his doctor is recom-
mending aspirin rather than a prescription drug. In some cases then, it may
be wise to consider studying both scientific (double-blind) and applied (simple)
versions of treatments, since different versions of treatments, being different
treatments, may have different causal effects.

3. The distribution of the random variables. Bayesian inference considers the
observed values X,,), ¥,,,, W, M to be realizations of random variables and the
missing values X,,, Y, to be unobserved random variables. For a study of T
treatments, the random variables are thus (X, Y, W, M). There is a specification
for the distribution of the random variables given an unknown (vector) parameter
= which is itself a random variable having a known prior (or marginal) distri-
bution. For reasons to be given shortly, we let f(X, Y|z)k(W|X, Y, n)g(M|X,
Y, W, r) be the joint probability density function for the random variables
(X, Y, W, M) given r, and let p(r) be the prior distribution of z.?> The distri-
bution f(X, Y|r) is the marginal density of the potentially observable data (X, Y)

2 Actually p(z) is the conditional distribution of z given the choice of the families of models
f>k,g. Writing zy x for the function of = that appears in f, the distribution of ”AY,X given the
family of models f, g, k may or may not be the same as the distribution of zy y given f, depend-
ing on the distribution placed on the process of choosing the models f, k, g. The distribution
of 7y x given f (not given f, k, g) is presumably what a Bayesian means by the prior distribu-
tion of the parameter of the data. This distinction is usually unimportant in practice when
prior distributions are chosen to be relatively diffuse.
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given the parameter z. The distribution k(W | X, Y, =) is the probability of the
assignment W of treatments given the value (X, Y) for the data and the para-
meter 7; we call k(W|X, Y, r) the assignment mechanism since it reflects the
mechanisms that select experimental units to be assigned treatments and assign
treatments to the selected experimental units. The distribution g(M| X, Y, W, )
is the probability of the pattern M of recorded and unrecorded values in X, Y
given: the value (X, Y) for the data, the value W for the assignment of treat-
ments and the parameter 7; we call g(M|X, Y, W, ) the recording mechanism
since it reflects the mechanisms that determine which values are recorded for the
data analysis.

The purpose of formulating all of these distributions is simply to tie unobserved
values to observed values so that the values we see tell us something about the
the values we do not see. This perspective holds that the models are only used
to draw inferences about the unobserved values X,,), Y,), and thereby the causal
effects of the treatments.

3.1 Restrictions on the prior distribution of the data. By assumption (Section
2.6), all values capable of distinguishing between experimental units are included
in (X, Y, W, M). Hence, without loss of generality we can assume that the
indices of the experimental units are assigned as a random permutation of the
integers 1, ---, N. Doing so, the distribution f(X, Y|z)k(W|X, Y, n)g(M|X, Y,
W, =) must remain constant under permutation of the row indices of (X, Y, W,
M). Similarly the distribution f(X, Y |z) must remain constant under permuta-
tion of the row indices of (X, Y). It follows from standard results on exchange-
able random variables with infinite N (de Finetti, 1964; Hewitt and Savage, 1955;
Feller, 1965, pages 225-226) and recent extensions to finite N (Diaconis, 1976),
that we can assume with nearly no loss of generality the rows of (X, Y) to be
independent and identically distributed (i.i.d) given :

(3.1) fX, Y[7) = TS f((X, Y| m)

where (X, Y), is the ith row of (X, Y).

In practice, other restrictions besides equation (3.1) are made on f(X, Y|x).
Already discussed are the restrictions on Y that follow from the usual assump-
tion of no-interference between experimental units. Less commonly, a particular
Y, may be assumed to have the same value no matter which treatment is applied:
Y= Y2 = ... =Y, (when studying whether an additive in the diet of pati-
ents decreases cholesterol in the blood, the precision of the experiment might
be improved by using “the amount of saturated fat eaten” as a covariate, claim-
ing that it is unaffected by the additive).

Since in any practical problem, any Y or any X can take only a finite number
of distinct values, with no loss of generality, f(X, Y|r) can be assumed to be
an unrestricted multinomial over the ¢ 4+ Td-dimensional contingency table of
possible values of X, Y. Often, in order to reduce the number of parameters
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appearing in this contingency table, p(x) places severe restrictions on these para-
meters, and so smooths the multinomial probabilities. Prior restrictions that
model each row of (X, Y) as, for example, multivariate normal, reflect the usual
efforts of model building.

3.2 Ignorable assignment and recording mechanisms. The explicit inclusion of
W and M as random variables is not standard but is central to understanding
Bayesian inference for causal effects. Moreover, the factorization of the joint
distribution of (X, Y, W, M) used above isolates essential differences between
the random variables (X, Y), Wand M. The model f(X, Y|r) is never totally
under the experimenter’s control since the conditional distribution of Y given
X reflects the state of nature; the marginal distribution of X is to some extent
under the experimenter’s control since he defines P by choice of experimental
units. The assignment mechanism k(W |X, Y, x) can be under the experimenter’s
control since he can assign treatments to experimental units. The recording
mechanism g(M|X, Y, W, r) is mainly under the experimenter’s control, since
subject to constraints of treatment assignment and aside from unexpected missing
data, he controls which values to record for data analysis. Thus the assignment
and recording mechanisms differ from the model for the distribution of the data
in that they can be “known” a priori in the following sense.

DEeFrINITION 1. The assignment mechanism k(W | X, Y, r) is ignorable at (X,
Y,,, W, M) if the probability of the observed pattern of treatment assignments
given X, ¥ and x, k(W|X, ¥, ), takes the same known value for all values of
the unknowns X, Yo, .

DEefINITION 2. The recording mechanism g(M|X, Y, W, z) is ignorable at
(X, Y., W, M) if the probability of the observed pattern of recorded values
given X, ¥, W and z, g(M|X, ¥, W, n) takes the same known value for all values
of the unknowns X ,, Y ,,, 7.

If the assignment mechanism depends on (X, Y) values, then those values
must be recorded by the recording mechanism if the assignment mechanism is
to be ignorable. For example, consider a two-treatment study and the “play-
the-winner” sequential k(W |X, Y, n) where the next patient receives the treat-
ment that past data suggest is better; all values used in making these decisions,
such as order of entry into the study, must be recorded for data analysis if the
assignment mechanism is to be ignorable. Similarly, if a doctor assigns patients
to treatments so as to balance the distribution of background variables such as
age and sex, these variables must be recorded if the assignment mechanism is to
be ignorable. If a doctor assigns treatments according to his unrecorded judg-
ments about the health of patients, the assignment mechanism is not ignorable.
Or if patients select the treatments themselves on the basis of their unrecorded
opinions of their health, the assignment mechanism is not ignorable. These
examples illustrate that for a particular assignment mechanism, one can choose
a recording mechanism that makes the assignment mechanism not ignorable
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except when k(W | X, Y, n) = k(W |r) (e.g., simple random sampling followed by
a completely randomized experiment). The more involved the assignment
mechanism (in the sense of depending on more values), the more complete must
be the recording mechanism if the assignment mechanism is to be ignorable.

In addition, the assignment mechanism cannot depend on (unknown)
parameters if it is to be ignorable. For example, if in the play-the-winner study
the stopping rule for ending the study (letting further W, = 0) is determined
by the experimenter’s unrecorded criterion of “enough evidence,” the assign-
ment mechanism is not ignorable since the criterion is unknown and thus some
function of the parameter =. In observational studies (Cochran and Rubin,
1973), such as those of heart disease and smoking, the assignment mechanism
is beyond the control of the experimenter, and thus generally it is not reasonable
to model it as being ignorable.

The recording mechanism g(M| X, Y, W, r) is largely under the control of the
experimenter/data analyst. In fact, in almost any real data analysis, some values
that could be recorded are not. For example, often unit labels, times of initia-
tion of treatments and other aspects thought a priori to be uninteresting (e.g.,
length of fingers of patients) are not recorded for data analysis. Such a priori
decisions are completely specified and so imply recording mechanisms that are
ignorable. However, if there is the possibility of unintended missing values, the
recording mechanism would not be ignorable (except by assumption) even if there
are no unintended missing values since the probability of such an occurrence may
be a function of values in (X, Y ,) or = (e.g., perhaps Y}, is observed because
it is less than a function of = or because Y3, would have been greater than 0).

4. Bayesian inference for causal effects. Using the distributions defined in
Section 3, Bayesian inference for causal effects proceeds by calculating the pre-

dictive distribution of Y, given the observed values, X,,,, ¥,,, W, M:
(4.1)  Pre(Y|X,, Y, W, M)
_ SVKOP|X, P, myg(M| X, ¥, W, 7) (X, ¥|m)p(x) dr dXe,
55 k(W[ X, ¥, 1)g(M| X, ¥, W, )f(X, P|m)p(x) dz dX AV

The predictive density (4.1), in conjunction with the observed Y,,, values, yields
the Bayesian inferences for the causal effects of the T treatments for the N ex-
perimental units in the population P. Commonly, the predictive distribution of
the column means of Y is calculated, the difference between each pair of means
being the average causal effect in P of one treatment relative to another. It is
also common to calculate predictive distributions for average causal eﬂ'ects in
various subgroups of P (e.g., males and females).

4.1 The role of ignorable assignment and recording mechanisms.

THEOREM. If the assignment and recording mechanisms are ignorable, then Baye-
sian inference for causal effects is completely determined by

(a) the observed values X ,), ¥ ,, M,
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(b) the specification for the conditional distribution of Y given X ,, and r:

(4.2) WY | Xo), m) = § fIX, Y|7) dXp/§ f(X, Ym) dX o dY

and
(c) the specification for the conditional distribution of & given X ,,:

(4.3)  q(@|Xw) = p(x) SV AX, Y|x) dX, dY[S§S p(z) f(X, Y |7) dX , dY dr .
Proor. This result is immediate because, from the definitions of ignorable

mechanisms, equation (4.1) can be rewitten as

7 WY | Xy, 7)q( | X)) dr
4.4 Pre (Y, | Xy Yooy W, K1) = ) @ @ :
( ) re( (O)I (1) (1) ) h(Yl s ﬂ)q(ﬂlX(l)) dﬂ dY(o)

This theorem shows that, given ignorable assignment and recording mecha-
nisms, inference for causal effects follows from the observed values and the
usual data specification ignoring the assignment and recording mechanisms.

Further simplification often occurs in practice in the case of ignorable assign-
ment and recording mechanisms. It is common to parameterize f(X, Y|x) so
that the conditional distribution of Y given X depends on one function of z say
7y x(7), and the marginal distribution of X depends on another function of x,
say my(m), where r, , and 7, are a priori independent. For example, in normal
regression models, r, , includes the regression coefficients of ¥ on X and the
conditional covariance of Y given X, and these are often declared a priori in-
dependent of the parameter of the marginal distribution of X, .. With such
models and ignorable assignment and recording mechanisms, inferences for
causal effects are determined simply by the observed values X,,,, ¥,, M, and
the prior specifications for the conditional distribution of Y given X,,, and the
marginal distribution of x .

If either the assignment mechanism or the recording mechanism is not ignor-
able, a valid Bayesian analysis follows from (4.1); using (4.4) in place of (4.1)
does not yield a valid Bayesian analysis. However, in practice, mechanisms
that are not ignorable because of dependence on (X,y, Y,,)) usually pose a greater
problem than those that are not ignorable solely because of dependence on x.
The reason is that in many practical problems, it is common to choose prior
distributions to be relatively diffuse and, to reflect weak prior dependencies be-
tween parameters. In a notation analogous to that used above, if 7, ,(7) and
Ty wx.v(7) are a priori independent, then if neither k(W |X, ¥, =) nor g(M| X, 7,
W, r) depends on (X,,, Y,,), inferences for causal effects follow from (4.4). Of
course if 7, , and 7, ,,,, are not independent a priori, inferences for causal
effects will vary with the specification of the a priori relationship between them.

If either k(W |X, Y, ) or g(M|X, ¥, W, z) depends on (X0, Yo), inference
for causal effects (equation (4.1)) depends on relationships between the observed
values (X, ¥,;) and missing values used to assign treatments and/or record
values. Since observed values cannot directly estimate these relationships, causal
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inferences vary with their prior specification, and it is usually inappropriate to
assume that given 7 the unobserved values used to assign treatments and/or
record data are uncorrelated with observed values (X, Y ,)).

4.2 Illustrating the sensitivity of inferences for causal effects. Suppose T = 2
and n experimental units (e.g., patients) are randomly sampled from P for ex-
posure to treatments (e.g., operations). Also suppose the recording mechanism
records a Y, value for each of the n experimental units exposed to a treatment
but records no other values; Y, is dichotomous: 1 indicates success (e.g., of the
operation) and O indicates failure. Let ¥! = 3%, Y*,/N be the proportion of
experimental units in P for whom treatment ¢ is successful, and suppose for
simplicity that interest focuses on the predictive distribution of (Y1, ¥ 2).

First assume that each sampled experimental unit is assigned with probability
} to treatment 1 and probability } to treatment 2. Thus, the assignment and
recording mechanisms are ignorable. By the theorem of Section 4.1, inferences
for causal effects are determined by the observed values (¥, M) and by the
specifications for the joint distribution of (Y.!, Y,?) given = and the prior distri-
bution of . Let the rows of (Y!, Y?) given = be i.i.d. with #* = z‘(r) the prior
probability that Yi{, =1, + =1, 2. Thus, the model for (Y}, Y;?)is a 2 x 2
contingency table, Yi, being binomial with probability =* of success, t = 1, 2;
see Figure 2a. We do not explicitly parameterize the joint distribution of (Y},
Y?) for the following reason. In most practical cases, the population of experi-
mental units that might be exposed to the treatments being studied is considered
to be much larger than the sample of experimental units exposed to treatments.
Since as N/n — oo the predictive distribution of (¥, ¥,?) converges to the pos-
terior distribution of (!, #?), interest often focuses on this posterior distribution,
with other parameters being considered nuisance parameters.

Conditional Distribution of Conditional Distribution of
1,2 1,2 1,2
Marginal Distribution of (Yl,Yl) (Yl, Yl) given Xl=1 (YJ.’Y].) given X1=2
1 1
Y 1
. —n b
————
1 0 1 0 1 0
2 22
) 1 T 1 ‘ o 1 n2(2-02)
Y v? 2
2 1 22
0 1 ) 1-a% 0 1-n2(2-a?)
1 1 1 1
"1 1_"1 mlnl l—alwl 7 (2~0") 1-1"(2-a")
2a 2b 2c

FiG. 2. Specification of distribution of (¥1!, Y12, X1) for examples.

Let j* = ¥ Yi Mi,/n* (where n* = Y. M), the observed proportion of ex-
perimental units exposed to o‘peration t for which operation is successful, ¢ =
1, 2. Then the posterior distribution of r is proportional to

(4.5) PUm) s [T — w0
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In order to dramatize the reduced sensitivity to model specification that is pos-
sible when ignorable mechanisms are used, consider the large sample case with
n— oo and N/n— oo. The limiting posterior distribution of = with a p(r)
giving positive density to all (', z?) € [0, 1] X [0, 1] is then proportional to

(4.6) p(x) i 6(=* — 7°)

where
d(a) = 1 if a=0

=0 otherwise.

Thus, in this limiting case, the predictive distribution of (¥, ¥,?) converges to
point mass at (7, 7).

If the assignment and/or recording mechanisms are not ignorable, inferences
for (¥}, ¥,?) are sensitive to prior specifications even when n — oo and N/n — co.
An extension of the above example will illustrate this fact. As before, suppose
that (a) the recording mechanism records only Y, values, (b) the n experimental
units exposed to treatments are a random sample from P, and (c) the prior dis-
tribution of (Y;', Y;?) is the 2 X 2 contingency table in Figure 2a. However,
now suppose that the unrecorded dichotomous variable X, (e.g., doctor’s assess-
ment of health status prior to operation) is used to assign treatments to sampled
experimental units: if X;, = 1 (good health), with probability 6§ = 6(z) the ith
experimetal unit {(if sampled) is exposed to treatment 1 and with probability
(1 — @) is exposed to treatment 2; if X, = 2 (poor health), with probability
(I — 6) the ith experimental unit (if sampled) is exposed to treatment 1 and with
probability # is exposed to treatment 2. Let the rows of (Y}, X)) be i.i.d. given
=, where the prior probability that X, = k is 4, k = 1, 2, and a'z* < 1 is the
prior probability that Y!, = I given X;, = 1, a' = a'(z) < 2. Thus, the model
for (Y}, Y% X)) isa 2 X 2 X 2 contingency table where X, is binomial 0.5, and
conditional on X, = k, Y, is binomial with probability of success a‘z*if k = 1
and 7'(2 — a') if k = 2; see Figure 2.

In this nonignorable case it is easy to show? that

(4.7)  Pr(Yi=1|W,=1t71)=¢& = &z
=21 — 6) + a¥(20 — 1)]  if r=1
= 74260 + a1 — 26)] if r=2.

3 Pr(YL=1|Wi=tn)=Pr(Wi=t|z)Pr(Y}, =1, Wi=t|r)
=203 Pr(Xi=k|m)Pr (YL =1, Wi=tXi=k, )
=N Pr(Wi=tYy =L, Xi=k,n)Pr(Y,, =1|Xi =k, )

‘where
Pr(Wi=t|1Ys =1L, Xi=k,z)=0 if t=k

=1-0 if t+k
and
Pr(Yi =1|X: =k, ) = ztat if k=1

=42 — at) if k=2,
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Hence the posterior distribution of r is proportional to

(4.8) p(m) TL (ST — &getamsts,

Suppase p(n) assigns positive density to all (%, %) [0, 1] x [0, 1]. Then as
n — oo and N/n — oo, the limiting posterior distribution of x is proportional to

(4.9) p(m) ITia 6(8° — 7).

Suppose further that conditional on each 0, a, a?) having positive prior density,
p(m) assigns positive prior density to all (z?, %) € [0, 1] X [0, 1]. Then condi-
tional on a (0, ', a®) that has positive posterior density, the predictive distri-
bution of (¥,!, ¥,%) converges to point mass at

(4.10) (P21 — 6) + (20 — 1)], 7/[26 + a¥(1 — 26)]) .

Therefore, the limiting predictive distribution of (¥, ¥,?) is expression (4.10)
averaged over the posterior distribution of (6, a*, a?), which is simply expression
(4.10) averaged over the prior distribution of (6, a', a?) restricted to values of
(0, a*, a®) such that for ¢t = 1, 2, (a) the rth component of (4.10) is < 1 and (b)
a* times the sth component of (4.10) is < 1. Consequently, even in this limiting
case, the predictive distribution of (¥,*, ¥7,?) will be quite sensitive to the speci-
fication of the prior distribution of 0, o, a?).

If 6 = §, each experimental unit was assigned with probability { to each
treatment condition, the assignment mechanism is ignorable, and the predictive
distribution converges to point mass at (5, 5*). Orifa'=a?*=1, X,isa priori
independent of (Y}!, Y;*) (and so equivalent to a binary random number), the
assignment mechanism is equivalent to an ignorable mechanism, and the pre-
dictive distribution converges to point mass at (5, ). In general however, the
predictive distribution of (¥}, ¥,%) does not converge to a single point, since
the possible values of the components of (4.10) range between 7!/2 and J2 4+ .5.

Since the likelihood function in (4.5) has a unique maximizing value of (x*, %)
equal to (7', ) while the likelihood in (4.8) has a ridge of maximizing values
of (z?, z?) defined by equating (', z%) to expression (4.10), in finite samples the
nonignorable assignment mechanism will lead to inferences for causal effects
more sensitive to p(r) than the ignorable assignment. In real data problems with
moderate sample sizes and assignment and/or recording mechanisms that are not
ignorable, the consideration of realistic models for f(X, Y|z )p(x) may easily lead
to such a variety of inferences under the different models, or such a large pos-
terior variance when a specific prior distribution is placed on the models, that
the Bayesian may consider his data worthless for inference for causal effects.

4.3 Ignorable mechanisms poorly suited for causal inference. The example of
Section 4.2 indicated the difficult problems of inference for causal effects that
can arise when the assignment mechanism is not ignorable: a valid Bayesian
analysis can easily be very sensitive to the data specification f(X, Y |z)p(x). This
does not imply that all combinations of ignorable assignment and recording
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mechanisms lead to data from which causal inferences are insensitive to the
data specification. By the theorem of Section 3.1, even with ignorable assign-
ment and recording mechanisms and =, a priori independent of z,, we still
must estimate the conditional distribution of Y given X ,, and this can be a
problem. If the experimental units exposed to one treatment have different
values of X' ., than the experimental units exposed to another treatment, the causal
inferences will be quite sensitive to the specifications (Y| X,;,, 7) and p(x).

As an example, Weinstein (1974, page 7) in some cases seems to recommend
assigning patients to operations on the basis of their preferences and tries to
justify the procedure by a Bayesian decision-theoretic argument. Suppose the
only X variable recorded is X, = patient’s preference for operation 1 or operation
2. Since all patients receive the operation they preferred, resultant inferences
about the causal effects of the operations are very sensitive to prior specifications
about associations between patient preference and Y given the nonpreferred
operation. That is, for X}, = 1 we can observe only Y?, and for X,;, = 2 we can
observe only Y?, yet we need to estimate the conditional distributions of Y
given X; = 2 and Y* given X, = 1. For a specific example with a dichotomous
Y, consider the example of Section 4.2 with # = 0, noting that # = 0 implies
X,; is known; in large samples, the predictive distribution of (¥, ¥,?) then con-
verges to (7'/(2 — a'), y*/a’®) averaged over the prior distribution of (a?, a®) re-
stricted to those (a', a®) for which a’ < 2 — 7' and a® > 7. Although there are
nonstatistical justifications for assignment to patient-preferred treatments, the
Bayesian statistician must consider the design inappropriate for estimating the
causal effects of the operations unless strong prior information exists about rela-
tionships between patient preference for operation and the outcome of each
operation.

Other obvious examples of ignorable assignment and recording mechanisms
that lead to data poorly suited for causal inference include cases with Y recorded
only for experimental units exposed to treatment 1, or assuming the average
causal effect in P is of interest, cases with Y recorded only for experimental
units with X; = 1.

4.4 Ignorable mechanisms relatively well suited for causal inference. The impli-
cations of Sections 4.2 and 4.3 are rather simple. Inferences for causal effects
will be relatively insensitive to prior specifications when both the assignment and
recording mechanisms are ignorable, and, for each distinct value of recorded
covariates, there are experimental units with recorded Y values within each
treatment condition. .

A simple modification of the previous examples further illustrates this rather
obvious point. Suppose (a) n sampled units are exposed to one of two treatments,
(b) Y, is dichotomous (0, 1) and either Y;! or Y,? is recorded for each sampled
unit, (c) X, is dichotomous (1, 2) and recorded for each sampled unit, (d) the
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assignment and recording mechanisms are ignorable, and (e) the specification
for (Y, Y%, X)) is the 2 X 2 X 2 contingency table given in Figure 2.

Let n,! = Y.¥ M{,6(X,;, — k) (the number of units exposed to treatment ¢ with
X, = k)and y,;' = 3V ¥i, M, 6(X,, — k)/n,' (the average observed value of Y,
when X, = k). The posterior distribution of r is proportional to

4.11)  p(r) 1P [z [l — atzt]ro-w
X I [7(2 — )1 — =42 — )5

Suppose for X, = 1 and X, = 2 there are experimental units in both treatment
conditions (i.e., n, > 0,¢t = 1,2,k = 1, 2). Then the likelihood in (4.11) has a
unique maximizing value of (7', %) given by ((7;' + 7')/2, (.* + 7»*)/2), and a
unique maximizing value of (a?, a?) given by
< 2y 2y )
AR A AR S

Hence the data are informative about the causal effects of the treatments in P
and the two subpopulations of P defined by X,;, = 1 and X,, = 2. In this sense,
inferences for causal effects are relatively insensitive to prior specifications. If
some n,' = 0, then the inferences for causal effects will be quite sensitive to
prior specifications because there will exist a ridge in the likelihood in (4.11);
for example, if n,> = 0, then z' and a' have unique maximizing values as given
above, but there exists a ridge of maximizing (a’, #*) defined by the equation
a’r? = jl

We consider these examples with a dichotomous Y and a dichotomous X re-
presentative of the most general practical case. This is because in any practical
problem any Y can take only a finite number of possible values and any X can
take only a finite number of possible values. The modelling of the rows of (Y, X)
as i.i.d. multinomial is thus completely general, models such as a normal linear
regression of Y on X being viewed as restrictions in p(z) that smooth conditional
multinomial Aprobabilities in special ways.

Thus, letting f(X, Y|x) be the unrestricted multinomial, we see that given
ignorable assignment and recording mechanisms, inferences for causal effects
in P and in subpopulations of P defined by each observed value of X are rela-
tively insensitive to prior specifications only if for each observed value of X
there exist experimental units with Y recorded in each treatment condition.

5. The role of randomization. There were four main messages in Section 4.
First, when the assignment and/or recording mechanism is nonignorable, a valid
Bayesian analysis requires the incorporation of models for the nonignorable
mechanisms, as well as a model relating observed variables to unobserved vari-
ables used in the nonignorable mechanisms. Second, inference for causal effects
is generally very sensitive to prior specifications when the assignment and/or re-
cording mechanisms are nonignorable even with no imbalance in the distribution
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of recorded covariates across treatment groups. Third, inference for causal
effects can also be very sensitive to prior specifications with combinations of
ignorable assignment and recording mechanisms yielding unbalanced distribu-
tions of recorded covariates across treatment groups. Fourth, inferences for
causal effects in P and in subpopulations of P defined by observed values of
covariates can be insensitive to prior specifications only when for each distinct
value of the recorded covariates there are experimental units in each treatment
condition.

A standard justification for randomization is that it has prophylactic effect,
guarding against data unbalanced with respect to recorded covariates. A Bayesian
interpretation of this statement is given by the result that, although randomized
designs are generally not optimal, they satisfy certain minimax properties over
choices of p(x) f(X, Y|x) (see Savage, 1972; Stone, 1973). These results, how-
ever, do not imply that classical randomized designs should be used. Of critical
importance, they do not address the following question: given a particular treat-
ment assignment W, is there any advantage in knowing that the assignment was
obtained by a randomized rule rather than a deterministic rule?

The framework we have developed shows, however, that classical randomized
designs can markedly reduce the sensitivity of a valid Bayesian analysis, because
only a randomized assignment mechanism can be ignorable and yield data having
more than one treatment condition represented for a distinct value of recorded
covariates. Furthermore, we argue that in many practical problems, classical
randomized designs can achieve this reduced sensitivity to prior specifications
and still balance covariates used to form blocks almost as well as, and perhaps
better than “optimal” designs. We will demonstrate the advantages of classical
randomized designs by first considering the problems of execution and analysis
that face a study using a nonrandomized (deterministic) assignment mechanism
to balance the distribution of many covariates across treatment groups and then
showing how these problems of execution and analysis can be obviated by a
comparable randomized design.

5.1 Deterministically balancing many covariates. In any study, the assignment
mechanism should be described explicitly in order to constrain the class of models
k(W|X, Y, ) that needs to be considered in the data analysis. Rules such as
“a large number of allocations were tried and one chosen that seemed to exhibit
the most balanced distribution of relevant characteristics across treatment
groups” or ‘“‘the study was continued until conclusive evidence was collected”
correspond to models for k(W | X, Y, ) that depend on 7 and possibly unobserved
(X, Y) values. Deterministic rules that try to balance many covariates may be

4 Two experimental units with identical values of )f’m appear identical (except for their ran-
domly assigned indices) to an ignorable assignment mechanism because an experimental unit’s
Y-values cannot be recorded until after treatment assignment. Hence, if two such units receive
different treatments under an ignorable assignment mechanism, some randomization must have
been employed.
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hard to formalize especially when the covariates being balanced are based on
personal assessments about the experimental units (e.g., medical judgments about
the health of the patients). The effort required to formalize covariates and/or
deterministic rules balancing many covariates may be great and delay the assign-
ment of treatments.

Even if deterministic rules and the covariates which they attempt to balance
are successfully formalized, in practice the rules may be difficult to follow be-
cause they are intricate, or easy to avoid following because once the covariates’
values are known, the treatment assignment is known (e.g., by changing the
value of a covariate, perhaps based on a personal assessment, treatment assign-
ment may be changed—this means that variables reflecting judgments about
preferred treatments are also being used to assign treatments).® Thus, it may
be difficult (and, if some values used to make assignment decisions are not re-
corded, virtually impossible) to verify that the proposed assignment rules were
actually used. Bailar (1976) makes similar points when discussing the infrequent
use of intricate patient assignment algorithms in medical research. The practical
implication is that when the experimental design proposes a deterministic as-
signment mechanism, a model for k(W|JX, Y, r) that reflects the assignment
mechanism actually used may have to be more complicated than the proposed
mechanism. Hence, even if an “optimal” deterministic design is proposed, the
actual assignment mechanism used may be neither optimal nor ignorable.

Furthermore, using a deterministic assignment mechanism to balance many
covariates may lead to a nonnegligible possibility of unintended missing values
because of the bookkeeping required to record the covariates’ values. Con-
sequently, in order to reflect the recording mechanism actually used in this case,
a complicated nonignorable model for g(M|X, Y, W, =) may have to be con-
sidered in the data analysis (remember that even if there exist no unintended
missing values, the possibility that there might have been missing values makes
the recording mechanism nonignorable).

In spite of the real possibility of nonignorable assignment and/or recording
mechanisms when attempting to use a deterministic assignment mechanism to
balance many covariates, suppose that the experimenter has successfully used
ignorable assignment and recording mechanisms. It now may be difficult to
perform a valid Bayesian analysis becaus¢ the observed data set is so highly
multivariate. Even if the parameter r,,, is a priori independent of the para-
meter ., the data analysis must still specify a model #(Y| X, 7, ,) and a prior
distribution for 7, ,. With many recorded X variables, the sensitivity of causal
inferences to a broad class of models for 4(Y| X ,,, 7, ;) is so great that a Bayesian

5 Results in Blackwell and Hodges (1957) and Stigler (1969) address this issue in a simple
sequential experiment: if the experimental unit is to be assigned a treatment (i.e., if W; > 0),
the proposed assignment rule must be followed, but the experimenter can try to bias results
by choosing which experimental units to study (i.e., he is allowed to choose W; =0 or W; > 0
by some unknown rule).
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analysis capable of yielding sharp causal inferences requires strong prior restric-
tions on these models; with a continuous Y, simply consider polynomial regres.
sion models of order N with many covariates (independent variables). Hence, il
a valid Bayesian analysis is to yield worthwhile causal inferences, the statistician
must expend the effort to formalize “‘reasonable” prior restrictions on the speci-
fication for the distribution of the data. As more and more covariates are
recorded, even an approximately valid Bayesian analysis becomes practically
impossible since an enormous commitment of time and resources is needed in
order to perform the mental contemplation, mathematical and/or Monte Carlo
analyses, and numerical computations necessary to understand a highly multi-
variate data set. The results of such efforts may be of interest for covariates
that are recorded because their relationships with Y are of central scientific or
practical importance but of dubious interest for covariates that are recorded
principally because they were used to balance treatment groups.

Of course, one could decide to avoid a highly multivariate data set in this
case by not recording some covariates’ values that were used to assign treat-
ments.® However, then the assignment mechanism is not ignorable and the data
analysis must explicitly incorporate the model k(W | X, Y, =) as well as still model
the joint distribution of Y and the covariates used to assign treatments. A
Bayesian cannot simply assert that incorporating these models will not affect
causal inferences and have a valid Bayesian analysis. Section 4.2 showed that
a valid Bayesian analysis with an assignment mechanism that is not ignorable
can be very sensitive to the specification f(X, Y|r)p(r) even with no imbalance
in recorded covariates. The inferences for causal effects may be especially
sensitive if the models for k(W | X, Y, r) and g(M| X, Y, W, x) reflect mechanisms
that might actually be operating when a complicated deterministic assignment
mechanism is proposed.

In sum, we argue that deterministically balancing many covariates in practice
generally leads to a study that is difficult to execute properly and hard to analyze.

5.2 Using blocking and randomization to balance many covariates. Classical ran-
domized designs utilize blocking and randomization to balance the distribution
of covariates that were used for blocking but not necessarily recorded for data
analysis. These designs thus offer alternatives to nonrandomized, deterministic
balancing of these covariates’ distributions and the subsequent need to model
their joint distribution with Y variables and either (a) record their values for
data analysis, or (b) explicitly incorporate models for assignment and recording
mechanisms.

The advantages of randomized designs are most dramatic when there are
many covariates to be balanced, including many based on personal assessments.

8 This appears to be the recommendation in ‘‘biased coin designs’’ (Efron, 1971) with “‘time
of entry into experiment’” and ‘‘block’’ used to assign treatments but the former not recorded
for data analysis.
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Specifically, suppose early in the study indices were assigned randomly to the
experimental units; then the experimenter blocked the experimental units in such
a way that on the basis of all covariates he wanted to control, the experimental
units within each block appeared similar to him; a final randomization assigned
treatments to experimental units within blocks (e.g., for 7 = 2 and 12 experi-
mental units in a block, the 6 experimental units with lowest indices received
treatment 7, 1 = 1 or 2 being decided by a coin toss). Since the assignment rule
is simple, it should be easy to follow. Also, it is difficult to avoid following
because within each block, the decision as to the experimental units to receive
each treatment is not made until the final coin toss, so that neither blocking nor
the initial assignment of indices (nor both) can be used to determine treatment
assignment. The initial random assignment of indices guarded against the
experimenter grouping experimental units within a block and assigning “pre-
ferred” treatments to the groups on the basis of some unrecorded variables; since
the experimental units with high and low indices are randomly grouped, there
is little to be gained by avoiding the coin toss. In order to verify that the assign-
ment rule is being followed, one need only verify that indices were in fact ran-
domly assigned and that the final assignment of treatments was also random.
Although the experimenter can “cheat,” the possibilities are far less than when
using a deterministic rule where a specific change in a covariate value is known
to correspond to a specific change in treatment asssignment. Thus when using
the randomized design, it is more likely that the proposed assignment rule is
being followed and consequently more likely that complicated models for
k(W|X, Y, r) need not be considered.

Since assignment is on the basis of the covariate X, = block number, the
recording mechanism need not record any X values other than X in order for the
assignment mechanism to be ignorable, and thus covariates used for blocking do
not have to be formalized. Since the recording mechanism need record only Y and
X,, it too can be ignorable more easily than if a complicated deterministic assign-
ment rule were used. Also, in the data analysis, f(X, Y|r)p(r) need only specify
an acceptable model for the randomized block experiment with no covariates
recorded (e.g., an analysis of variance model). Since within each block we have
a completely randomized experiment, the rows of Y in a block are exchangeable
and thus may be modelled as i.i.d. given'w. Although inferences for causal
effects will vary somewhat with prior specifications about the distributions of
Y given each block, a valid Bayesian analysis is far more straightforward and
insensitive to prior specifications than if many covariates were recorded and this
extensive exchangeability given recorded covariates could not be invoked.

If some X variables are especially important a priori (in the sense that that a
clear relationship to Y is likely), they should be recorded and modelled (e.g.,
an analysis of covariance model), or many blocks should be used to represent
their values. If some important X variables can be used to make future assign-
ment decisions they should be recorded so that different treatment effects can be
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estimated for subpopulations defined by their values. For example, the relative
effectiveness of medical treatments may be different for different age groups,
and age can usually be measured before a treatment decision is made. Ideally,
in each subpopulation defined by the values of these X variables, there should
be a classical randomized experiment. Of course for a fixed total sample size,
increasing the number of subpopulations increases the sensitivity of the Bayesian
analysis for causal effects to the prior specifications since the exchangeability is
reduced. Consequently, if many subpopulations are of interest we may be faced
with inferences for the causal effects in each subpopulation that are quite sensi-
tive to prior specifications.

We are not clairming that classical randomized designs make Bayesian inference
for causal effects trivial, but rather that they make it simple relative to Bayesian
inference for causal effects using data obtained by a comparable deterministic
rule balancing many covariates. The objection that the randomized design,
although yielding treatment groups balanced with respect to the covariates used
to form blocks, has not “optimally” balanced these covariates under any specific
model, seems irrelevant in real world problems having no accepted specific
model relating ¥ to X. This view agrees with some experimenters’ practical
experience suggesting that the gain from using an “‘optimal” design rather than
a good classical randomized design is usually trivial.” Furthermore we have
argued that even if an optimal deterministic design is proposed, in many prac-
tical problems it is unlikely that it will be followed.

In sum, when using the randomized design, the assignment rule is easy to
follow and difficult to avoid following, the recording mechanism can be quite
simple, a valid Bayesian analysis for causal effects is relatively straightforward,
and treatment groups are balanced with respect to covariates used to form blocks
almost as well as if the experimenter found the one allocation most satisfying
to him, and yet there was no need to formalize and record these covariates’
values. A comparable nonrandomized design would generally be substantially
more difficult to execute and analyze because of the need to deal explicitly with
all covariates being balanced.

5.3 Deterministic sampling of experimental units in randomized experiments. In
practice, most randomized studies use deterministic sampling of experimental
units since the actual population of interest, P, usually consists of experimental
units from different geographical areas and from the future (the objective of
most studies being to determine the potential efficacy of widely applicable treat-
ments such as medical operations). Suppose that by proper definition of the

"W. G. Cochran, in personal communications, has suggested that in his experience, experi-
menters often feel many covariates are important and should be explicitly controlled, but the
data analysis surprises them by showing that the relationship of many of these covariates
with Y is actually quite weak. D. R. Cox, in a personal communication relating unpublished
work comparing optimal designs and randomized designs in some agricultural studies, concludes
that in practice any advantage to the optimal designs appears to be quite small.
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covariates used to select experimental units for study, all selected experimental
units have the same values of those covariates. If we focus attention on the
experimental units sampled for study, considering them to constitute the popu-
lation of interest, a valid Bayesian analysis for the causal effects of the treat-
ments is straightforward since the covariates used to determine participation in
the study are constant in this subpopulation and thus need not be recorded for
data analysis.

When interest focuses on P, the actual population of interest, covariates used
to determine participation in the study must be recorded for data analysis if the
assignment mechanism is to be ignorable. In some cases such as when sampling
from the present but generalizing to the near future, it may be reasonable to
believe that the covariate used for selection (time) is unrelated to recorded
variables and so model the sampled units as a simple random sample from P.
In other cases such as when using prisoners for medical experiments, it may not
be reasonable to believe that the covariates used to select experimental units
are unrelated to recorded variables. In any case, the classical randomized ex-
periment on the sampled experimental units has led to a straightforward, valid
Bayesian analysis of causal effects for these experimental units. In many obser-
vational studies, the sampled experimental units may be more nearly a random
sample from P than in many controlled experiments; however, the rule for
assigning treatments is unknown. Therefore, in these observational studies it
is generally difficult to estimate causal effects for any collection of experimental
units, so that the ability to generalize results to the intended population may be
of limited practical use.

5.4 Conclusions and extensions. In some cases with strong prior knowledge,
randomization may not be important. For example, in an industrial experiment
comparing manufacturing procedures, the relevant covariates may be easily
recorded and their relationships to dependent variables well-understood; hence,
a design that is optimal under restrictive prior specifications for the data may
be appropriate. In other cases, such as when operating a familiar piece of equip-
ment (e.g., driving a car), causal effects of treatments (turning the steering wheel
left vs. right) may be so dominant that any formal design may be superfluous.

However, when causal effects of treatménts are subtle enough to warrant the
attention of a statistician for the design and/or analysis of the study, some rele-
vant covariates will be difficult to record and their relationships with dependent
variables poorly understood. In such cases, which abound in health and social
research, classical randomized designs must be considered vital tools for the
Bayesian statistician since they can dramatically reduce the sensitivity of valid
Bayesian analyses to prior specifications and greatly simplify the computation
of such analyses.

Nevertheless, it is possible in the age of the computer that other designs may
also be of interest. For example, consider “biased coin designs” (Efron, 1971)
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and “finite selection models” (Morris, 1975). These are randomized (and
“unbiased” in some sense) but use covariates to assign treatments without re-
quiring these covariates to be recorded for data analysis. Thus they correspond
to randomized nonignorable assignment mechanisms. Suppose the recording
mechanism is ignorable; then equations (4.1)—(4.4) imply that the predictive dis-
tribution of Y, is proportional to

(5.1) [§ h(Y|Xu)’ ﬂ)q(ﬂ|/\7(1)) dr]S(Y )

where

§§ k(| X, ¥, 2)f(X, | m)p(x) dr Xy,
$§ fX, Y|m)p(n) dr dX o,

Note that S(Y,,) is the expectation of k(W|X, Y, ) over the conditional distri-
bution of (z, X,) given (X,,, ¥,;,, Y,,) determined by the prior specification
f(X, Y|m)p(x). For a particular f(X, Y|z)p(r), a necessary and sufficient con-
dition such that inferences for causal effects will be the same as if the assignment
mechanism were ignored is that S(Y,,) takes the same value for all Y,,. Thus
if §(Y,,) is functionally independent of Y, we may say that the assignment
mechanism is ignorable given that particular prior specification of the data.
In the biased coin design and the finite selection model

(5.2) K(W|X, Y, )= k(W|X,, Xy) -

S(Y) =

Hence, if Y and the unrecorded X’s used to assign treatments are assumed in-
dependent given X,,), then S(Y ) takes the same value for all Y, and the assign-
ment mechanism (5.2) is ignorable given that prior specification. Furthermore,
for these assignment mechanisms, S(Y,,) can be nearly functionally independent
of Y, for a broad range of prior specifications. As an example, consider the
biased coin design where X, represents blocks and X, represents “time of treat-
ment assignment.” For fixed (X, ¥,,,, W) and any fixed distribution of X,,,
as the bias of the coin becomes smaller, the distribution of the values of
k(W| X, X,) generated by the distribution of X, becomes more concentrated
about some fixed value (e.g., (1/2)* for the biased coin design without blocks
and n experimental units having received treatments). Thus, S(Y,) becomes
“nearly” independent of Y, as the coin becomes fair.

Consequently, there are nonclassical randomized designs that can be “nearly
ignorable” in the sense that in practice we may be able to approximate them
as being ignorable. Of course, before making such approximations, we should
be convinced that S(Y,,) really is nearly independent of Y, for the full range
of reasonable data specifications. This checking may be possible in many cases
using a computer or may be possible to do’analytically.®

8 Sections 5 and 6 of Efron (1971) provide justifications for the recommendation to ignore
the covariate ‘‘time of treatment assignment’’ in some biased coin designs; the blanket recom-
mendation was implicitly criticized here in footnote 6. These types of arguments suggest that

(continue to next page)
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If the assignment mechanism is not ignorable or nearly so, then models
incorporating the assignment mechanism should be used. Observational studies
are especially difficult to analyze properly because the form of the assignment
mechanism is itself unknown. Models appropriate for prospective and retro-
spective observational studies need to be developed. In many observational
studies, no sharp inferences for causal effects will be possible, while in others,
reasonable models for nonignorable assignment mechanisms may lead to con-
sistent conclusions. Clearly, analyses like these require more computation and
demand more attention than analyses of comparable data obtained by ignorable
mechanisms; an example in the simpler but related context of nonresponse in
sample surveys is given in Rubin (1977b).

Further extensions of this work include application to data where nonstandard
definitions of treatment effects may be useful, e.g., data typically analyzed using
competing risks models. Since, within our framework, causal effects are defined
without reference to the parametric structure of particular models, it is con-
ceptually straightforward to evaluate the sensitivity of inferences for causal
effects to prior specifications (e.g., nonindependence of competing risks), even
if the parametric structure of the specifications change.

In conclusion, we feel that our framework not only provides theoretical justi-
fication for classical methods of estimating causal effects, but also suggests new
approaches to drawing inferences for causal effects in nonstandard problems.
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