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HYPOTHESIS TESTING FOR THE CCMMON MEAN AND
FOR BALANCED INCOMPLETE BLOCKS DESIGNS

By ARTHUR COHEN! AND H. B. SACKROWITZ
Rutgers University

Let X1, Xz, - - -, Xm be a random sample of size m from a normal popu-
lation with mean ¢ and variance ¢,2. Let Yi, Y, ---, Y, be a random
sample of size n from a normal population with mean ¢ and variance o,2.
The X-sample and Y-sample are independent. Note that this model is ap-
propriate in balanced incomplete blocks designs. We consider various
hypotheses testing problems concerned with ¢ and obtain the following
results:

(1) For testing Hy: @ = 0vs Hi: § # 0 (and the usual variants of these
hypotheses), the usual #-test based on only one sample is proven to be ad-
missible. This is somewhat surprising in light of results obtained in point
and confidence estimation.

(2) For testing Hy: 6 = 0vs H; # 0, suppose it is assumed that ¢, > B,
where B is any positive constant. Then a similar test is found, which is
better than the s-test based only on the X-sample, if m = 3 and n = 4.

(3) Let 6 = 6/o, and test Hy: 0 =0vs H1: 0o < 0 < 6;. Here 6o >0
can be determined by the sample sizes and size of the #-test and 4, is arbi-
trarily large. For this separated hypothesis a test, based on improved es-
timators of 4, is found which is better than the usual #-test form = 2, n = 6.

(4) Let g,2 be known and test Hy: § = 0vs H;6 0. It is shown in
this case that the test which rejects if |X| > C, is admissible.

1. Introduction and summary. Point and confidence estimation of a common
mean and the related problem of recovery of interblock information has been
studied recently by Brown and Cohen [2]. They indicate conditions under
which improved estimates and improved confidence intervals can be found and
also offer the improved procedures. Bhattacharya [1] has made some improve-
ments on the Brown-Cohen results.

In this paper we prove that the usual t-test based on data from only one
population (or based on the intra-block estimate) for testing the hypothesis that
a treatment contrast is zero, is admissible. The proof of admissibility is ac-
complished by applying a theorem due to Stein [6].

When the variance of the first population is close to zero, the r-test cannot
be beaten uniformly. However, competitors to the t-test can be found which
are better than the ¢-test except at extreme points of the parameter space. One
competitor is a similar test which is better than the r-test as long as the variance
of the first population is bounded away from zero and sample sizes are at least
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1196 ARTHUR COHEN AND H. B. SACKROWITZ

3 and 4 respectively for the first and second populations. Another competitor
exists which is appropriate for testing a separated hypothesis. That is, suppose
the standardized mean for the first population is d, and the null hypothesis is
0 = 0. Suppose further that the alternative hypothesisis 0 < d, < 6 < 0,. The
number d, can depend on the sample sizes and size of the t-test and can be de-
termined before carrying out the test. The number J, can be made arbitrarily
large. Under these conditions a test can be found which is uniformly better
than the 7-test as long as sample sizes of at least 2 and 6 are taken. This latter test
is based on the improved estimators of the mean developed in Brown and Cohen.

This study represents the first attempt at tackling the recovery of information
problem from a testing point of veiw. The results are also significant in several
other senses. The first admissibility result is somewhat surprising in light of
previous inadmissibility results for the counterparts in estimation and confidence
intervals. Intuitively one would expect data in the second sample to help in
inferences pertaining to the mean. Another interesting feature regarding the
first admissibility result is that the Stein method is exploited to its fullest ad-
vantage. That is, the t-test based on the first sample is admissible only because
it cannot be dominated when the variance of the first population tends to zero.
The second main result of this paper proves this. In previous applications of
the Stein method, the tests shown to be admissible have also been shown to be
admissible by other methods and not because they could not be dominated at
extreme points of the parameter space.

The second main result yields, for each B > 0, a similar test which is better
than the #-test everywhere provided o,, the variance of the first population, is
greater than B. These similar tests are not invariant (under scale transforma-
tions), but it can be shown, using arguments of Section 2, that no invariant test
can be better than the one sample #-test in such a situation. Thus the particular
choice of test must depend on some knowledge of B. In practice this means
that we must know what unit of measurement is being used or else we could
not guarantee that ¢, > B, for any B > 0, and so there would be no hope of
improving uniformly on the one sample r-test. However, if we do know our
unit of measurement (and now also B), we can do better than using the one
sample #-test. At present the practical value of this result is limited as the im-
proved procedures derived in Section 3 are probably not the best improvements
possible and the amount of improvement may be slight.

The result concerning the separated hypothesis is important for the following
reasons. First, it represents a demonstration of a nontrivial inadmissible test
for a realistic and important problem. The only other result of this type, re-
flecting inadmissibility of a test, appears in Portnoy and Stein [5], where the
problem is artificial. Secondly, whereas the result is in terms of the existence
of a better test, the form of the test is given. This means that the result has
potential for practical application.

Still another result of interest concerns the model where the variance of the
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first population is known. Consider the test which rejects if the sample mean,
based on the first population, is large. It is quite surprising that in this instance
such a test is also proven to be admissible. An adaptation of Stein’s theorem
can be used to obtain this result.

The model and admissibility result are given in the next section. A com-
petitive similar test is given in Section 3, while the better test for the separated
hypothesis is given in Section 4. The model where the variance of the first
population is known is discussed in Section 5. All results will be given for the
common mean problem. For the connection with balanced incomplete blocks
designs the reader is referred to the beginning of Section 3 of Brown and
Cohen [2].

2. Admissibility of r-test. Let X, X,, ---, X, be a random sample from a
normal population with unknown mean 6 and unknown variance ¢,’. Let
X=3nr X/m, s2=3r, X, —X)}(m—1), T, = 3, X2 s> = s5,°/m. Let
Y, Y,, .-+, Y, be a random sample from a normal population with unknown
mean ¢ and unknown variance ¢,>. The Y sample is independent of the X sample.
Define Y, s, T,, s;* in analogy with their counterparts in the X sample. We
assume m = 2 and n = 2. The problem is to test Hy: § = Ovs H,: 6 = 0. If
t, = mtX]s,, the usual t-test of size a based on the X sample is to reject H, if
|t,| > t,_i(a), where t, () is the two-tailed a-percent critical value determined
from Student’s ¢-distribution with (m — 1) degrees of freedom. We assume
throughout that a < 3.

Clearly the joint probability density of the sufficient statistic Z’ = (X, T,, ¥, T,)
is multivariate exponential family with respect to y, a measure, absolutely con-
tinuous with respect to Lebesgue measure, and with natural parameters & =
(61 € &30 §4) = (mb/0,?, —%0,% nbla?, —%0,?). (See for example, Lehmann [3],
page 168.) Now let 2" be the sample space, 2" be the adjoint space, ® be a
subset of 27 such that for each § €0, | ef* du(z) < oo and [§,/mé,] = [&,/n€,].
Also let B, = {£€©: & = (0, —%0,%, 0, —40,%)}. We now paraphrase Stein’s
theorem as

LeEMMA 2.1. Let Z be distributed as multivariate exponential family. Let A be a
closed convex subset of %~ such that for every § ¢ %' and real C for which

2.1) {z: 62> Cn A= @ (the empty set),

there exists w e © = {€: (et du(z) < oo}, such that there exists arbitrarily large 2
for which @ + 2§ € ® — O,. Then the test ¢,, defined by

(2.2) 0(2) =0 if zeA
is admissible for testing £ € Oy vs € © — O,
PROOF. See Stein [6], page 617.
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We now prove
THEOREM 2.1. For testing H,vs H,, the t-test is admissible.

Proor. It can be verified that the acceptance region for the #-test is equivalent
to the intersection of all half spaces of the form

2.3) {(X, T, ¥,T,): nX — -?Tx < g_} :

and T, > 0, where 7 ranges over the reals, 7 = 0. The constant C is the critical
value of the equivalent r-test expressed as; accept if (X?/T,) < C. (See Stein
[5], page 620.) Thus those & such that the half spaces {z: {2 > C}n 4 = @,
are of the form (&, &,, 0, 0) where &, is negative. To prove that the #-test is
admissible we must find an w € © such that w + A£ lies in the alternative space
for arbitrarily large 2. We may write (0 4 4§) = (@, + 4§,, 0, + 4§, 0;, 0,).
Choose o such that

(2.49) [(w, + 28)/(w, + 2£,)] = [moy/nw,] .
That is, let w, = &,, W, = &, w, = n&,, o, = mé,. Since & # 0, §, < 0, such a

choice of w lies in ©. Also (2.4) implies that w 4+ 4§ € © — ©, for all 2. This
completes the proof of the theorem.

REMARK 2.1. The above proof can establish a similar result for the one-sided .
case and for the case of common mean vector for multivariate normal distri-
butions. That is, Hotelling’s T*-test based on a sample from one population
would be admissible even if another independent sample were available from a
population with the same mean vector but with different covariance matrix.

3. Improved similar test when ¢,? is bounded below. The model in this section
is an in Section 2. We consider H,: § = Ovs H,: § = 0. We prove that for
m = 3 and n > 4, there exists a test which is better than the usual r-test based
on 1, provided ¢, = B, for B, any given positive constant. In Remark 3.2 at
the end of the section, we briefly indicate the rationale for the choice of the
better test to be given. We need some preliminaries before stating what the
improved test is. The method of proof makes use of a Taylor series expansion.

The joint density of X and 7, is

fo.0,(% T,) = K(0, 0, )(T, — mx2)m-¥2 exp(—T,[20,> + mOx[a.?)
3.1 if T,= mx*
=0 otherwise,
where K(0, 0,) = K exp(—m0*/2¢,%)[o,”. The marginal density of T, is
(32)  [1.0,(T.) = K(0, 0,) exp(—T,/20,})T, " *XT,[m)* {2, (1 — v?)m=27
X exp(mbv(T,)t/mta.?) dv .

Let 6, = mf/o,?* and let k, (X| T,) denote the conditional density function of X
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given T,. (This density depends on (6, ¢,%) only through 4,.) Also let H, (+|T,)
denote the conditional cdf of X given T, so that

(33) H, u|T,) = S'ffum'x)% (1 — v?) ™32 exp (5, 0(T,)}/mb) dv .
’ Sl—l (1 - ,Uz)(m—a)/z exp(azv(Tz)%/mi) av

Let ¢, (%, T,, y, T,) denote the t-test based on ¢, of size a. That is, ¢, (%, T,,
¥, T,) = 1if m¥|x|/(T,)* > k, ,, and is zero otherwise, where k, , is the two-sided
a-percent critical value. (Note k, , is related to the two-sided a-percent critical
value from Student’s ¢, 7,, by k3, =12(m — 1 4 t,’) and so k,, satisfies

0 < ko, < 1.) We may also write ¢, (%, T,, , T,) as follows:
(3‘4) gDO,a(x’ Ta:’ y-’ Tu) = O lf COL(Tz) < x < COU(Tz)

=1 otherwise,
where

GH(T,) = HyY(a/2) | T,) = —koo(T,[/m)?
and
C/(T,) = Hy (1 — (a/2)) | T,) = koo(T.[m)* .
Now for any constant @ such that 0 < a < 1, let
3.9) C0o®: T, 5, T,) =0 if CXT,,5,T)<X<CYT,, 5T,
=1 otherwise,
where
CHT I, T,) = Hy(((¢/2) — a(T,)k(sgn 7)/2(1 + (T)HAC + 5,)) | T.)

and
CH(T,, 3, T,) = Ho (1 — a/2) — a(T,)¥sgn §)[2(1 + (T)HAC + s,)) | T.) -

In (3.5), sgny is —1,0,1 when y is < 0, = 0, > 0 respectively, and C is a
fixed constant such that C > 1/a. Clearly ¢, , are tests of size a. Now let us
note some properties of C,* andC,”. The form of Hy(u|T,) given in (3.3) implies
that the corresponding density Ay(u | T,) is symmetric, which in turn implies

(3.6) cX«T,,p,T)=-CYT,, —p,T).
There exist functions k; (T,, T,) and & (T,, T,) and constants k- and k* such
that
(3'7) O < k+ é k;,a(Tx’ Ty) é kO,a é k;,a(Tx’ Tu) é k_ < 1 £
and
CaU(Tav’ )-;’ Ty) = k;,a(Tx’ .)7’ Ty)(Tx/m)% if )7 < 0
=k} (T, y, T,)(T,[m)} if 7>0.

This is easily seen, since if § > 0, the conditional acceptance interval shifts
to the left. Also k;, < k= < 1. This follows since C > 1/a, which in turn

a0 =

implies [a(T,)}sgn 7)/2(1 + (T,)H*C + 5,)] < a* < /2. Finally (3.7) implies
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that there exist constants 0 < m; < m, < 1 such that
(3.8) mT,<T, —m(CYlyY<mT,,

xz

and

mT, < T, — m(Cr)? < m,T,.
Denote the power function of ¢, , by
B0 0, 93 8) = Eqg gy opf@0al®o Tur 71 T,)}
3.9 =1 = Egpp o \H; (CO(T, 5, T,) | T.)
— H, (CA(t,, 7, T)) | T,)}
We are now ready to state

THEOREM 3.1. Let m = 3, n = 4 and let 6, = B. Then there exists an a suf-
ficiently small, such that the test ¢, , is better than the test ¢, , for testing H,vs H,.

Proor. Expand the power function in a Taylor series about ¢ = 0 with a
second order remainder term so that
(3.10) B, e, 0,; a) = p(0, a,, 0,; 0) + ap'(0, a,, 0,5 0)
+ [a%/2]p"(0, o, 0,; a*),
where a* = a*(0, o, 0,; a) is some value between 0 and a. Since (0, g,, g,; 0)
is the power of the test ¢, ,, we can prove the theorem by showing that g'(0, o,,
¢,,0) > 0 for all (0,0,,0,), 6 0, and |8'(0, o,, 0,; 0)/8"(0, 0, 0,; a*)| = M,
for all 0 < a* < 1, all (0,0,,0,), 0 %0, where M is a positive constant. We
proceed to show these properties of # and B”.
From (3.9), (3.5), (3.6), the symmetry of Ay (u|T,), (3.2) and (3.3) we find
B0, 0, 0,;0) = Eg,, 0 {[(h:,(CO(T,) | T,)
— by (— CV(TL) | T))h(CI(T,) | T2)]
X [(T,)tsgn yj2(1 + (T,)H¥C + s}
(3.11) = (1/2m¥)K(0, a,) {1, (1 — v¥)"™=32dy
X {[1 — 2®(—n*0/s,)]E, [1/(C + s,)]
X §¢ [T, V211 4 (T,)4)]
X [exp(mié"ko(Tx)i/oxz) — exp(—mtky(T,)t0,*]
x exp(—T,/20,%) dT,}.
From (3.11) it is easily seen that §'(f, g,, 0,; 0) = g'(—¥0, g,, 0,; 0) and that
g, o, 0,0)>0.
Now from (3.9), (3.5), (3.2), and (3.3) we find
g8, o,, 0,; a*)
= —0,E0,0){[1:,(CoT s> 7> T,) | To)[h(CIT, 7, T,) | T,)
- h%(C‘f’,(Tx, }7’ Tﬂ) I T:c)/hoz(ccl;‘(Tz’ )7’ Tﬂ) l Tx)]
(3.12) X [(T,)tsgn p/2(1 + (T)HXC + 5,)I'}
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= —(1/4m)K(8, 0,)(\1; (1 — v*)™=¥2dv)%d,

X ST (1 + (T 1o {[(Te — m(CalTs, 3, Ty)))= ="

X exp((mb/o.?)CUT,, 7> T)))

— (T, — m(C(T,, 3, T,))")~ """ exp((mb]o,*)Co(T 3, T,))]

X (1/(C + s,))"y exp(—T,/20.%) dT, .
Since the distribution of y under — 6 is the same as the distribution of —y under
6 it can be verified, using (3.6), that 8”(0, o,, 0,; a*) = B''(—0, o,, 0,; a*). This,
plus the fact that 8'(0, o,, 0,; 0) = §'(—0, g,, o,; 0) enables us to consider only
the case § > 0 in the remainder of the proof.

The remainder of the proof is devoted to showing that |8'/8”| = M. The

needed computations are lengthy and detailed. To ease matters we will list
several lemmas, deferring their proofs to the Appendix. Also we use sub-

scripted capital letters K and M to denote positive finite constants (not depending
on b, o,, 0,, a, OF a*).

LemMma 3.1. If n = 4, E[(C + s,)"'/0E[(C + 5,)] = K, i =0, 1, where
(n — 1)s,*/o,? has a chi-square distribution with (n — 1) degrees of freedom.

LEMMA 3.2. Let @ denote the standard normal cdf. If 6/, < 1, then
[1 — 20(—mi6)s,)}/0 = Kyfo,.

LemMA 3.3. If 0o, = 1, then [1 — 2®(—ntb/c,)] = K,.
LeMMA 3.4. If0/o, < 1, then
(3.13) [1 — exp(—2mibk,Z]0,*)]0,/0 = K (1 — e ¥s%/%a) ,
and
(3.14) [exp(mib(k: — ko)Z[o,?) — exp(—miO(k: + ko)Z[o,?)]o,[0 < eXe?/oz,
where k% means taking either k}, or k. in both terms of (3.14).

LemMaA 3.5. For Z = 0,

(3.15) ka(Z%, T,) — ko < K[ZJ(1 + Z)XC + 5,)]
and (
(3.16) [k+(Z22, T,)) — k))Z £ K, .

LEMMA 3.6. Let Z be a normal random variable with mean m6k, and variance
o2 IZ)=1ifZ =0, and (Z) = O otherwise, then

(3.17)  E{(Z)[Z"/(1 + Z))|(1 — e ®s")} = K E(I(Z)Z"+*/(1 + Z)°},
and
(3.18)  E{(Z)[Z*/(1 + Z))(1 — %)} = K,E(I(Z)Z"/(1 + Z)}.

LemMma 3.7. Let V be a normal random variable with mean mtk, and variance
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g, /0):. If (0]¢,) = 1, 0, = B, then
=19)

(3.19) E{I(V)[V*H (0~ + V)']} = K, ,
and
(3-20) E{I(V)[V"+*(0-* + V)?] exp([Kp/o, (07" + V)]} = K,y -

We now return to the proof of the theorm. In (3.12), use (3.7) and (3.8)
and take the expectation over the variable y and find that
1876, 0., 0,5 a¥)|
< [0/0.21K (0, 0)[§14 (1 — v) ™92 do K,
X [ [T.3(1 4 (T)PIE,([1 — ©(—ntb)a,)]
X [exp(m0(T,)*kifa,) — exp(—m¥0(T,)k[a.?)
X [1/(C + 5,]) exp(—T.[20,%) dT.}
(3.21) + (57 [T 0301 4 (TR, ([1 — 20(—n6)o,)]
X exp(—mi0(T, ) ki[o )[1/(C + 5,)%]) exp(—T,/20,%) dT,}
+ {35 [T.m3Y(1 + (TLPFIE, (@(—ni0)o,)
X [eXp (MO(T,)k[o,?) — exp(—mib(T,)kz[o.?)|
X [1/(C + 5,7) exp(—T, |20, 4T}
+ {37 T 93(1 4 (T)E,([1 — 20(—nib/a,)]
X exp(—m0(T,)thz/o,)[1/(C + 5,)7) exp(—T, /20,3 dT.}] .
Denote the curly bracketed expression on the r.h.s. of (3.11) by 4 and denote
the four curly bracketed expressions on the r.h.s. of (3.21) by 4,, i = 1, 2, 3, 4,
respectively. To complete the proof of the theorem we must show that (4/d, 4;)
is bounded away from zero uniformly in (0, o,, 0,; a*) for i = 1, 2, 3, 4.
For i = 2, 4, from (3.21) and (3.11) we have
(322) A4, < [1 = 20(—=n0/0,)]E, [1/(C + 5,)°] §& [T."*7/(1 + (T,)})’]
X exp(—T,/20¢,%) dT,,
and
(4)6,) = [1 — 20(—n6[0)E, (1/(C + s,))mk, §5 [T.*/(1 + (T.)]
(3.23) X exp(—T,/20,% dT,
= [1-20(—mi0/s,)]E,,(1/(C+s,)ymbk, \5 [T, /(1+(T,)})]
X exp(—T,/20,%) dT, .
From (3.22), (3.23) and Lemma 3.1 we do have (4/d,4,) = K,, fori =2, 4.
For i = 1, 3, start by writing A, the bracketed term in (3.11), as
A =[1 - 20(—0nto )|E, (1/(C + s,))(2n)t0, exp(mb°k,’|20,%)
X 5 [T (1 4+ (To)*))[1 — exp(—2m*0ky(T.)!/0.7)]
(3.24€ X [exp(—((T,)} — m*bky)*[20,%)/(2n)te,] dT,
= 2[1 — 20(—0nt/o,)]E, (1/(C + s,))(2n)t0,
X exp(m6*k;t/20 DE([[(Z)Z"/(1 + Z)]
X [1 — exp(—2mbk,Z]s,%)]},
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where Z is normal with mean m*6k, and variance ¢,>. Similarly,
(3.25) A, = (2n)'o, exp(mky 20, )E([LZ)Z"|(1 + Z)1E,[1/(C + 5,)']
X [exp(mi0(ky. — ko)Z[a,’) — exp(—mib(ki + ko)Z[o.?)]}
and
(3.26) A, < (2n)0, exp(mky[20,)E([I(Z)Z"|(1 + ZYIE[1/(C + 5,)']
X [exp(miO(kz — ko) Z]o,?) — exp(—mib(ky + ko)Z[o,")]} -
Now consider
Case 1. [0/0,"] <1, [0/s,] < 1. By Lemma 3.4, (3.13) and (3.14) we get

(3.27)  (A[6.4) = 2K|[1 — 20(—0n/0)][E,,(1/(C + 5,))[E,, 1/(C + 5,)']
« EUZ)Z"[(1 + Z)'|(1 — e~ Fo*e)}
0, E{[LI(Z)Z™**|(1 + Z)°|(e"+*7*=)}

Note that from Lemmas 3.1, 3.2, 3.3 and the fact that ¢, = B, we have
([1 — 20(—8r¥/a,)|E, (1/(C + s))/[0/071E.,(1/(C + 5,1}
(3.28) > BK,K, if [0/s,] <1
> KK, if [0/e,] > 1.
Furthermore, since Z™*+?/(1 + Zy < Z™/(1 + Z)*and 1/(1 + Z)* = 1/(1 4+ Z)°,
(3:29)  E{[(Z)Z™|(1 + Z)*)(1 — e *s"/on)}E([I(Z)Z™**|(1 + Z)°]eXs?/7=}

> E{[I(U)U"LH/(%—I + U)“](l . e—K5U)} ,
~ E(U)UmT(e. + Ul

where U is normal with mean mk,0/o, and variance 1. From (3.27), (3.28),
(3.29), m = 3,0, < Band [0/s,] < 1 it follows that(A4/d,A4,) = K, fori =1, 3,
in Case 1.

Case 2. [0/o,}] £ 1, [0/0,] > 1. Since [0/s,] > 1,
(3.30) (1 — exp(—2mbk,Z|s,?) = (1 — exp(—2mtk,Z]o,)) .
Also since [0/0,?] < 1, (3.16) of Lemma (3.5) can be used to yield
(3.31) exp(mtb(k;. — ky)Z|o,?) — exp(mib(ki + ko)Z/o,?) < exp(miK;).
Now one may proceed as in Case 1, noting that the only difference is that e*s”
in (3.29) is replaced by exp (m}K,).

Case 3. [0/c,*] = 1,[0)0,] < 1. From (3.24), (3.25), (3.26), and (3.15) of
Lemma 3.5 we get

(4/6,4;) =2 K[l = 2®(—0n¥s,)]o.E, {[1/(C + 5,)]E[1(Z)2"/(1
(3.32) + Z)'[(1 — e )}/0E, [1/(C + s,)"}E{[H(£)Z™ (1 + Z)]
X exp(0Z2°K,K,;/(1 + Z)%,%)} .
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Use (3.32), Lemmas 3.1, 3.2, and (3.18) of Lemma 3.6 to find
(4/0, 4;) = Ky K KK E[I(Z)Zm (1 + ZPE([(2)Z"+/(1 + Z)]
(3.33) X exp (0K, Z*(1 + Z)'0,")
= Ky OE(I(V)V ™ 2(67F + V)Y E([I(V)V 207 + V)]
X exp(Ky/(67" + V)o.)},

where V' = Z/6 is normal with mean mtk,, and variance (¢,%/0%). Since ¢, = B
and [0/0,’] = 1, then 6 = B*. Therefore from (3.33) and Lemma 3.7 we have
(A4/0,A4;) = K.

Case 4. [0/o,*] = 1 and [f/o,] = 1. As in Case 3 we have (3.32). Use
Lemmas 3.1, 3.3, and (3.18) of Lemma 3.6, make the transformation to ¥, and
use Lemma 3.7. This leads to (4/6,4;) = K,,. This completes the proof of the
theorem.

We conclude this section with some remarks.

REMARK 3.1. For the one-sided alternative hypothesis, results analogous to
those obtained in Sections 2, 3 and 5 hold. The correct form of the better test
corresponding to (3.5) when o, > B, is C,Y or C,” of (3.5). In the one-sided
case, however, the conditional tests given (T,, y, T,) are no longer of size a as
in the two-sided case. Nevertheless the overall size must be a.

REMARK 3.2. The motivation and intuition which led to the test given in
(3.5) is best illustrated when examining the one-sided case. Using a result of
Matthes and Truax [4] it follows that all (measurable) functions of the form

(3.34) %, T, 5 T,)=0 if x<CYT,, 5T,
=1 otherwise

form a complete class. Let g(J, T, 0,) = E, (9%, T,, ¥, T,)| ¥, T} be the
conditional size function. We now note that (for fixed y, T,) there is, essentially,
a one-to-one correspondence between conditional size functions g and test func-
tions, ¢, of the above form. Consider the set of functions Q = {w(+): there
exists a test function ¢*(%, T,) for the one sample problem for which £, {#*(%,
T,)} = o(c,)}. Then an interpretation of a test of the form (3.34) is to use
(7, T,) to choose a function, g(y, T,: «) from Q and then use the one sample
test based on %, T, which has g(j, T,; ¢,) as its size function. A test of the form
(3.34) will be a-similar if and only if E,, {9(J, T,; 0,)} = a for all 5,, 0,. It
is interesting that the above characterization can be used to prove the admissi-
bility results of Section 2 and Section 5.

We now exlain how the specific test given in (3.5) was found. This entails
explaining how the expression

(3.35) [(T2)sgn P)/2(1 + (T)})(C + 3,)]

was arrived at. Clearly a logical first choice would be j/s,. But since it is
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necessary to bound (3.35) by «/2, the next logical expression is y/2(C + s,),
where C > 1/a. The quantity (sgn j) enabled computations whereas y would
not. The computation using (sgn y)/2(C + s,) indicated a need for some func-
tion of T, that was bounded by one and which went to zero as T, went to 0 or
co. Hence the expression (T,)}/(1 + (T,)})* was eventually arrived at as the
proper multiplier. The power of 3 in the denominator of that expression was
needed for the finiteness of certain expectations used in the lemmas.

ReMARK 3.3. It should be noted that the test given in (3.5) can probably be
improved upon as it depends on j in one place through (sgn y). It is possible
that this could be done through use of the characterization mentioned in Remark
3.2. However it is also likely that the computations would be even more in-
volved than those of this section.

REMARK 3.4. We note that using the argument in Section 2, it can be shown
that no invariant test (invariant under a scale transformation) can be better
than the one-sample t-test even when o, = B.

4. Improved test for separated hypothesis. The model.is the same as in
Section 2. We assume m = 2, n = 6. The problem is to test the hypothesis
H,: 6 = 0 against the alternative, H,: §, < 0 = (0/0,) < d, where §, > 0, J, will
be specified later, and ¢, is arbitrarily large. Let #,_,(«) now denote the one-
tailed a-percent critical value determined from Student’s t-distribution with
(m — 1) degrees of freedom. We seek a test which is better than the usual
t-test.

Let z = s/s;% v = s,%0,%/s, 0% © = oo’ u=(m — l)is,[o,, w =0 C =
tw_y(@)/(m — 1)}, 6% = omt. Note that w is distributed as a chi-square variate
with (m — 1) degrees of freedom, v is distributed as an F-variate with (n — 1)
and (m — 1) degrees of freedom and the joint density of w and v is

(4.1) h(w, ,v) —_ Ke—wv/2w[(m+'n-—2)/2]—-lv[(n—1)/2]-1 ,
where
K = (1)2tm+m=22)T((m — 1)[2)T((n — 1)/2) .
Now consider the test procedure which rejects if
4.2) {[X + a¥ — D)1 + 2)]/sz} > tus(a)
where a is a constant, to be determined, such that 0 < a < 1 — ¢, for ¢ > 0.
We prove the following.

THEOREM 4.1. For d, sufficiently large, there exists a positive constant a suf-
ficiently small, such that the test given in (4.2) is better than the usual t-test for
testing H, vs H,.

Proor. For the test in (4.2) it is easy to see that one minus the probability
of rejection is

(4.3) Eyo . ®((Cu — 6%)(1 + ve)/[(1 + ve — a)* + a]).
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Since the usual t-test is (4.2) with a = 0, we must show that there exists a d,*
and an a such that

(i) For ¢* = 0, and the selected a value, (4.3) = (4.3) with a = 0, and,
(if) For all 6%, such that j* < 0* < 6,*, and the selected a value, (4.3) <
(4.3) with a = 0.

That (i) is true follows from the proof of Theorem 5.1 in Brown and Cohen [2].
(Expression (5.9) of that paper is expression (4.3) of this paper, with 6* = 0.)
To prove (ii), expand (4.3) in a Taylor series about the point a = 0, to get

E, . ®(Cu — %) + (a(2x))E,. [(Cu — 6%)/(1 + vr)]e-(cr-am22
+ (a2/2(2n)§){E5*,re—-(Cu—-6*)2(1+vr)‘3/2[(1+vr-—a*)2+a‘2r]
(4.4) X (1 + ve)/[(1 + vz — a*)* + a*c]?
X [((6% — Cup(l + vey(a*(z + 1) — (1 + v)f[(L + ve — a*y
+ @) 4 (3% — Cu)(z + 1) — 3(3* — CU)@a*(r + 1)
— (14 v0)[(1 + ve — a*)* + a*e]]} ,

for 0 < a* <1 — ¢. Note that the first of the three expectation terms in (4.4)
is (4.3) with @ = 0. We proceed to show that there exists a d,*, sufficiently
large, so that the second term is negative uniformly in 7, for all §* > §,*.
Furthermore, the bracketed part of the third term will be shown to be uniformly
bounded in a*, z, and ¢* for * such that §;* < 6* < 6,*. This will enable us
to choose a sufficiently small, so that when 6* = §,*, (4.4) will be < (4.3) with
a = 0. Also for ¢* any value such that §,* < 6* < 8,*, a suitable a value can
be obtained. By taking the infimum over all such a values, we have the desired
result.

Now use (4.1) and change variables and find that the second term of (4.4) is
a constant times

(4.5) eI (o (Cy — §¥)yme=LA+0M2][u=Co/(1+CD]2
X {5 e A (pm=vm=1y? 4 tr])dtdu .
Let z = (1 + C)¥u — Co*/(1 + C?)), expand, and simplify to find that (—1)
times (4.5) becomes ,
[1/(1 + Cytle-smssen
X ASEomavonty €5 §5 eI 1z 4 (z)(1 4 O
(4.6) + Cox[(1 + CPI[E*H[Cm(1 + CY™1] + i, 6% C(m)
X [1 — (m 4 1)C¥i(1 + CH]zm+1-¢)(1 + CP)i-t+m+1-v/2
— Czm(1 4 CAH™+D2) dt dz} .

Note that the term in brackets in (4.6) with 6* raised to the highest power is
a positive term. Now multiply all terms in the bracketed expression by 9*’r,
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and assume only for now that > 1. First note that for the term involving
5*m+1’

P A T s (G ()
(4.7) + ((2[3*(1 + C) + C(1 + CH)Y] dr dz
= §p e G e Y (1 4 ((2)(1 + C)
+ C/(1 + CH)}]dtdz > 0.

(For 0 < = < 1, one can argue in a similar fashion.) Similar arguments can be
used to bound from below, with positive constants, the positive parts of all
other terms in (4.6). Also the negative terms can be uniformly bounded above
by positive constants. This implies that there exists a d,* such that for all
0% = d,*, and all z, the second term of (4.4) is negative.

We complete the proof of the theorem by giving a crude finite upper bound
for the product of (d**r) times the third expectation term in (4.4). Eliminating
all negative terms, and arguing for ¢ > 1 we find a bound to be

(4.8) §5° 6 A(w, v){(0%® + 30*Cw)(1/e*?) + (20*[ev?) + (3Cw/c*v?)} dv dw .
The term (4.8) is finite for n > 6. (See equation (5.15) of Brown and Cohen
[2].) One can argue similarly for r < 1. This completes the proof of the

theorem.
We conclude the section with the following remarks.

REMARK 4.1. In the case where ¢_ is known, say o, = 1, one seeks a better
test than the one which rejects if m*X > Z_, where Z, is the critical value
obtained from the standard normal. The hypothesis is H,: § = 0vs H,: 0 <
0, < 0 < 6,, where 0, is arbitrarily large but fixed. The test procedure which
rejects if miX + a(¥Y — X)/(1 4+ ms;*) > Z,], can be shown to be better pro-
vided 6, > Z,/m?, for the proper choice of a.

5. Admissibility when ¢,? known. In this section the model is the same as in
Section 2, save that now o¢,? is assumed known and set equal to 1. The null
hypothesis is Hy: § = 0vs H,: 6 = 0. We consider the test which rejects H, if
(5.1) mtX| > C,,

where C, is the two-sided a-percent critical value obtained from a standard
normal distribution. The sufficient statistics are z = X, 7, T,). The joint
density is
dP(z) = K exp(—m(% — 0)*2) exp(—n6*/20,)[1/o, 5" (T, — ny?)n-9:2

(5.2) X exp(—T,/20,%) exp(nb]a,’) d(2)

for —o<E¥<o0, 0T, < o0,

—(Ty/n)i < )_’ < (Ty/n)é ’

where v is Lebesgue measure. Clearly, from (5.2) it follows that the density
is multivariate exponential family with respect to p, a measure, absolutely
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continuous with respect to v and with natural parameters & = (£,, &,, &) =
(m0, 6o}, —1/20,%). Thus (5.2) is a special case of the family

(5.3) dP,(z) = Kexp(—&,*/2m) exp(§,7/4nE ) (—&;)* et du(z) .
Let © be the set of parameter points for which [&, . ] = [—mé,/2n]. Note

that (5.3) is appropriate even for those & not lying in ©, as long as ¢(¢) =
§ ef*dp(x) < co. We now prove

THEOREM 5.1. The test given in (5.1) is admissible.

Proor. The first steps of the proof are essentially the same as those given to
prove the theorem of Section 3 in Stein [6], page 618. The explanation for this
is as follows: The set 4 = {z: |[X| > C,}. If ¢ is a strictly better test than that
given in (5.1), then the set B = {z: ¢(z) < 1}, is such that the set 4’ n B has
positive Lebesgue measure. Let us assume B contains a set of points of positive
measure for which X > C,. (Otherwise B would have to contain a set of posi-
tive measure for which X < —C, and we would argue from there.) Now con-
sider the following half space, S = {z: £z > C,}, where & = (1, 0, 0). We must
have (4’ n B n §) > ¢. Alsoconsider a sequence of alternatives, §, = 6,;, + ¢,
where §,;, = (0, [2n/Am], —1/2%). Note 6,,€© — ©. With the above choices
we may compute, exactly as in Stein’s equation (22), page 619, that the differ-
ence in powers of the test in (5.1) and ¢(z) at 6,, is

(54 [P0 S wisascn [1 — 24(2) — @(2)]€X€ dPy,(2)

+ S(z:fzsCa) [1 — x4(2) — p(2)]e* =0 dPQu(Z)} .
Clearly, for every 4, the second term in the bracketed expression of (5.4) is
bounded. Note that from (5.3) and the definition of §,;, we may write the first
term in the bracketed expression of (5.4) as

(5:5)  Klwesea [1 — x4(2) — @(2)]ele 0 (12)" emem =25/ dpy(z) .

Now observe that, despite the term [1/4]*?, the term e*¢>~C) tends to infinity
exponentially fast as 2 — oo for z’s in the set {z: £z > C,}. This fact, the nature
of u, plus the fact that u(4’ n B n S) > e, implies that expression (5.5) ap-
proaches oo as 4 — co. The argument is now completed as in Stein’s proof.
This completes the proof of the theorem.

6. Appendix. In this appendix we prove the seven lemmas stated in Section 3.

Lemma 3.1. If n = 4, {E[(C + s5,)7']/0,'E[(C + 5,)7%]} = K}, i = 0, 1, where
[(n — 1)s,*/a,?] has a chi-square distribution with (n — 1) degrees of freedom.

Proor. Since (C + s5,)"' = (C + s,)7% for i =0, take K, = 1. Similarly,
wheni =1, if ¢, < 1, take K, = 1. If ¢, > 1 multiply numerator and denomi-
nator by ¢, and note

E{[(Cla,) + (s,/o,)]VE([(C/a,) + (5,/9,)]77}

2 E{[C + (sy/9)]7VE((s,[0,)7"} = Ky
ifn > 4.



HYPOTHESIS TESTING FOR THE MEAN 1209

LEMMA 3.2. Let ® denote the standard normal cdf. If 0lo, < 1, then
[1 — 20(—6)0,))j6 = Kyfs,,
Proor. Note that
[1 — 20(—n¥6)0,)]/0 = 2[®(0) — D(—n46)a,)]/0
= 2n20®'(—nb/o )00,
= 2~ md)fo, = Ko,
where @’ is the standard normal density.
LemmaA 3.3. Ifb)o, = 1, [1 — 2®(—nib/c,)] = K,.
Proor. Take K; = 1 — 2@(—nt).
LemMma 3.4, If 0o, < 1, then
(3.13) [1 — exp(—2mtbk,Z]o,})]o,/0 = K (1 — e %5s7/7z)
and
(3.14) [exp(m}O(kE — ko)Z[o,?) — exp(—miO(ki + ko)Z[a,P)]o,/0 < eXe?/%=.
Proor. For (3.13) note that at Z = 0, both sides are equal. Take the de-
rivative with respect to (Z/s,) on both sides and find, for K, > 2mt and K, K; <
2mtk,, that the derivatives satisfy 2mik, exp (—m?0k,Z/s,?) = K,K e *s?/7=. Thus

the 1.h.s. increases more rapidly than the r.h.s.
For (3.14) note that

[exp(m0(ke — k)Z[,’) — exp(—m0(k + ki)Z[o,")]
(6.1) < [exp(mtO(ky + ko)Z]o,?) — exp(—mib(ks + ko)Z[o,?)]
< [exp(2mt0Z]o,’) — exp(—2mt0Z]c,%)] .
Use the method used to prove (3.13) above on the last term of (6.1) and the
r.h.s. of (3.14) to complete the proof of the lemma.

Lemma 3.5. For Z = 0,

(3.15) k(Z8 T,) — ky < K[Z)(1 + 2)(C + 5,)]
and
(3.16) [ka(Z3, T,)) — k))Z £ K, .

Proor. Since (3.16) follows from (3.15) and the fact that C = 1/a, we need
only prove (3.15). Toward this end, use (3.3), the definition of C,” in (3.5),
and the definition of k. in (3.7) to conclude

(6.2) [§ (1 — v @-92dy — {50 (1 — p2)m-92gy]/§L, (1 — V) m=3/2 dy
= [a(T)}2(1 + (T)HAC + 5,)] -
Equation (6.2) may be rewritten as
(6.3) G (1 —v)™9dy
= a(T,)* §4, (1 — o)™ dv[2(1 + (T)HC + 3,)
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The r.h.s. of (6.3) is less than or equal to K,[(T,)}/(1 + (T,)})*C + s,)]. Also
for the 1.h.s. of (6.3) we have
(6.4) fo (1 — o)™ dy = (kg — ko)Ky

as over this range of integration v < k= < 1. (See (3.7) for the definition of
k=.) Thus combining (6.3) and (6.4) we have

(ka(Tor T,) — ko) < [KufKuJ(TH(L + (TODHC + 5,) -
Since Z = (T,)! the result follows.

LEMMA 3.6. Let Z be a normal random variable with mean m*@k, and variance
o’ If(Z)=1if Z = 0and [(Z) = O otherwise, then
(3.17)  E(Z)[ZY/(1 + Zy)(1 — ")} = KE{(Z)Z*/(1 + Z)} ,
and
(3.18)  E((Z)[Z*(1 + Z))(1 — ) = KE((Z)Z*/(1 + Z)} -

Proor. Note that
(6.5) Z"(1 — e %29))(1 + Z)* = Z(1 — e X5))(1 + Z)° if 0<Zz<1

> Z"(1 — e ®))(1 + Z)® if Z=1.

Since [Z*41/(1 + 2)'] = [Z**}(1 + Z)] and [Z*/(1 + Z)'] = [Z**/(1 + Z)'],
(3.17) follows with K, = 1 — e %s. Essentially the same proof yields (3.18).

LeEMMA 3.7. Let V be a normal random variable with mean m‘k, and variance
(a./0)* If (0]0,) = 1, 0, = B, then

(3.19) E{I(V)[V*)(0* + V)']} = K,
and
(3.20) E{IM[V"**(07* + V)*] exp[Ky/a (07 + V)]} = Ky -

Proor. First note that the conditions 6/s,2 > 1, ¢, = B imply 6 = B* and
(0,/0)* < 1/B:.  Now (3.19) is immediate since E{I[(V)V"* /(6 + V)} =
E{I(V)V"+/(B~* + V)*} = K,. To prove (3.20) let f(v) denote the density of V
and break up the region of integration for the expectation into [0, k,m?/2] and
[k,m#/2, oo]. First consider

§imia [V exp[Ky /o, (071 + 0)] /(07" + v)]f(v) dv
< (ombse [V777 exp (2K, kom? BY) [ (kom?[2)°] f(v) dv
< (2/k,m*)® exp (2K, B’k ,m})E|V|**? = Ky,
since V is normal with mean k,mt and variance (¢,/6)* < B~%. On the other hand
§eom72 [0+ exp[Kyy /(67" + v)a. 21071 + )] f(v) dv
< (kym#[2)"*%60° exp (K, 0/0,%)f(k,m?/[2)
(6.6) = O%(k,mt[2)"** exp (K, 0/0,%)[0]0,(27)}]
X exp(—0*([kom*[2] — kom?)’[20.7)
< [07(k,mt[2)~+2|(27)} B] exp[0]o,’][K,, — Oky'm/[8] < K,
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since

[6/0,2][K,y — Okym/8] < 0 if [8K,/ksm] < 6

<
< 8K Jk2mB*,  if [8K,lkim]> 6.

This completes the proof of Lemma 3.7.
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