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ASYMPTOTIC PROPERTIES OF MAXIMUM LIKELIHOOD
ESTIMATES IN THE MIXED MODEL OF
THE ANALYSIS OF VARIANCE

By JouN J. MILLER!
Rutgers University

We show that in the mixed model of the analysis of variance, there is
a sequence of roots of the likelihood equations which is consistent, asymp-
totically normal, and efficient in the sense of attaining the Cramér-Rao
lower bound for the covariance matrix. These results follow directly by an
application of a general result of Weiss (1971, 1973) concerning maximum
likelihood estimates. This problem differs from standard problems in that
we do not have independent, identically distributed observations and that
estimates of different parameters may require normalizing sequences of dif-
ferent orders of magnitude. We give some examples and comment briefly
on likelihood ratio tests for these models.

1. Introduction. The estimation of the parameters in the mixed model of the
analysis of variance is a problem of considerable interest to statisticians and
many different methods of estimation have been proposed. The maximum likeli-
hood method received little attention until recently because the complexity of
the likelihood equations precluded their use in practical problems. The develop-
ment of high speed computers has made feasible the solution of the likelihood
equations. Therefore it is of interest to discuss the properties of the maximum
likelihood estimates in the mixed model. Hartley and Rao (1967) proposed a
computational algorithm for the solution of the likelihood equations and proved
that under certain restrictions the estimates were consistent and asymptotically
normal as the size of the experimental design increased. Anderson (1969, 1971)
considered maximum likelihood estimates in a more general class of models
(multivariate models where the covariance matrix has linear structure) and pro-
posed a different method of solution; he proved that the estimates were consistent
and asymptotically normal as the entire design was repeated. In this paper we
consider asymptotic properties of the maximum likelihood estimates for a large
class of design sequences whose size increases to infinity; this class of design
sequences contains all sequences treated by Hartley and Rao and most sequences
which could occur in practice. We take the basic model of Hartley and Rao,
rewrite it in the form used by Anderson and prove consistency and asymptotic
normality of the estimates in this model.

In order to obtain asymptotic results in the mixed model, the number of levels
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of each random factor must increase to infinity. One way this can be accom-
plished is by considering repetitions of a given experiment; in this case Anderson’s
results apply. More often in the analysis of variance a conceptual sequence of
experiments with the number of levels of each of the random factors increasing
to infinity is considered. Hartley and Rao treat such sequences. However, one
of their assumptions is that the number of observations at any level of any factor
must remain less than some fixed constant for all designs in the sequence. This
assumption eliminates many crossed designs where the number of observations
at a given level of one factor is proportional to the number of levels of another
factor. We loosen the assumptions to allow such sequences.

Using this larger class of design sequences introduces several problems into
consideration of asymptotic results. Results on maximum likelihood estimation
with independent, identically distributed observations do not apply because, as
in any sequence of mixed model designs, the observations in a particular design
are not independent. A more important difficulty is the possibility that estimates
of different parameters may require normalizing sequences which differ in order
of magnitude. For example, if #, and 6, are two parameters and if é,, and 4,,
are their estimates, there may be no single function of n, v(n), increasing to
infinity such that vi(n)[(éln — 0)), (92,, — 0,)] converges in distribution to a
bivariate normal distribution. It may be necessary to use two such sequences,
vy(n) and vy(n), where [v,#(n)(0,, — 6,), v}(n)(6,, — 05)]’ converges to a bivariate
normal distribution but where v,(n)/v,(n) converges to zero or infinity. Asymp-
totic results must be modified to allow for this possibility. A general theorem
of Weiss (1971, 1973) on maximum likelihood estimates allows us to overcome
both of these difficulties. We will be able to show that for a reasonable set of
conditions for the design sequences, the assumptions required for the theorem
of Weiss are satisfied. Then the consistency, asymptotic normality and ef-
ficiency will follow for the mixed model analysis of variance as a corollary to
Weiss’ theorem. '

In Section 2 we discuss the basic analysis of variance model and assumptions
about it and give the likelihood equations and Weiss’ theorem. In Section 3 we
give and explain the restrictions on the design sequences and we state and give
an outline of the proof of Theorem 3.1, which yields the consistency and asymp-
totic normality of the maximum likelihood estimates. In Section 4 we give two
simple examples of the application of asymptotic theory. In Section 5 we make
some comments on the asymptotic efficiency of the maximum likelihood esti-
mates and on likelihood ratio tests. Appendix A contains details from the proof
of Theorem 3.1. Appendix B contains a sufficient condition on the design se-
quence to guarantee the positive definiteness of the matrix C,.

2. Basic results. The basic model we shall use in the mixed model analysis
of variance is that given by Hartley and Rao (1967); it can be written as

(1) y=xa+U1bl+U2b2+"'+U1’1b?’1+e’
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where y is an n X 1 vector of observations, X is an n X p, matrix of known
constants (the design matrix for the fixed effects); @ is a p, X 1 vector of un-
known constants; U, is an n X m, matrix of known constants (a design matrix
for a random effect), i=1,2, ..., p;; b, is an m;, x 1 random vector, i =
1,2,...,p;eis an n X 1 random vector. Let G, =U, U/, i=1,2,...,p,
and G, = I,. The following assumptions are made about the model.

AssUMPTION 2.1. The random vectors b, b,, - - -, bz’x’ e are mutually inde-
pendent, with e ~ _#7(0, ¢,1,) and b, ~ %i(O, 0;1,), i = 1,2, ..., p.2

AssUMPTION 2.2. The matrix X has full rank p,.
ASSUMPTION 2.3. n = p, + p; + 1.

AsSUMPTION 2.4. The partitioned matrix [X: U,] has rank greater than p,,
i=12,---,p.

AssUMPTION 2.5. The matrices G, G,, - - -, G,,l are linearly independent; that
is, 1, 7,G;, =0 implies 7;,=0,i=0,1, .. *s P1-

AssUMPTION 2.6. The matrix U, consists only of zeros and ones and there is
exactly one 1 in each row and at least one 1 in each column, i = 1,2, -+, p,.

Note that Assumption 2.2 can always be satisfied by a suitable reparameteriza-
tion of the problem. Assumption 2.4 requires that the fixed effects not be con-
founded with any of the random effects. Assumption 2.5 requires that the
random effects not be confounded with each other. Assumption 2.6 states that
the U, are standard design matrices and it has three consequences: U/U, = D,,
an m, X m, nonsingular diagonal matrix; U, has full rank m;; and m, < n. As-
sumptions 2.1—2.5 are sufficient to guarantee estimability of the parameters.
Assumption 2.6 is added for convenience.

It follows that y ~ .4 (Xa, Z(a)) where Z(¢) = };71,0,G,. The objective

is to observe y and estimate @, oy, gy, - - -, o, by the method of maximum
likelihood.

The parameter space is defined as follows: Let p = p, + p, + 1 and let ¢ =
(Ggs G15 =+ +s v,,l)’. Then © C R” is the parameter space, where

2 ©={fcR |0 = (@ o) acRu0,>0020,i=1,2-,p}.

The vector @ may be represented by its components §,, by its partitioned forms
a and ¢ and their components a; and ¢,, or by mixed expressions (for example,
0A(y, 60)/90,, |6, — a,|, or 0A(y, 8)/oa). The log-likelihood function A(y, 6) is
given by

3 Ay, 0) = —3nlog2r — }log |Z| — L(y — Xa)'Z-(y — Xa) .

Anderson (1970) proved that in a less restricted model (no restrictions on the

2 This differs from the usual convention of using ¢:2. ¢ is used as a variance to simplify nota-
tion. This also follows the notation of Anderson (1969, 1971, 1973).



ASYMPTOTICS FOR MLE’S IN ANOVA 749

a,) 6 may be calculated by solving the likelihood equations, which are
(4) [X'Z-X]a = X'ZYy,
tr Z7'G, = (y — Xa)Z'G, 2y — Xa), i=0,1,.--,p,

and X is taken as a function of ¢. If there is more than one solution to (4), &

is taken to be that solution which maximizes A(y, ). In the present model it
is necessary to insure that 8 belongs to the parameter space. If any solutions
of the above equations have negative estimates of a variance component, it is
necessary to obtain solutions along the boundaries of the parameter space and
compare their values to obtain . 1tshould be noted that this poses no essential
problem because the restricted or reduced model (with one or more g, set to
zero) is another model of the same form. Therefore the techniques of solution
of the likelihood equations may be used in the reduced model. 8 is that estimate
which is a solution of the full or any reduced likelihood equations which maxi-
mizes A(y, #). Numerical techniques for solution of the likelihood equations
have been discussed by Hartley and Rao (1967), Hartley and Vaughn (1972),
Anderson (1973) and Miller (1973); these techniques will not be discussed here.
The asymptotic results proved here are not affected by the “truncation” of the
variance estimates since the asymptotic results concern roots of the likelihood
equation when the true parameter point is an interior point of the parameter
space. The consistency of these roots means that with high probability no
truncation will be required.

Weiss (1971, 1973) gave a very general theorem on asymptotic properties of
maximum likelihood estimates which we can apply to our sequence of mixed
model analysis of variance designs. We will paraphrase Weiss’ statement of the
theorem to fit our needs and notation. Y, will be the observations from a design
in our sequence of designs and @ will be as defined by (2).

THEOREM 2.1 (Weiss (1971, 1973)). Consider a sequence of random variables Y,
with density L,(Y,, 0) where 6O, 6 is p x 1. Let A(Y,, 0) =logL,Y,,6).
Suppose 0,, the true parameter point, is an interior point of © and let there be 2p
sequences of nonrandom positive quantities n,(n) and q(n),i = 1,2, - - -, p such that
lim,_ ny(n) = o, lim,_, q,(n) = o, lim,__[q,(n)/n,(n)] =0, i=1,2,...,p.
[g:(n) may depend on 6,.] Further assume that there exist nonrandom quantities
J;(60) such that —[1/ny(n)n;(n)][0°A(Y,, 6)/30;06,,] converges stochastically to
Ji(0)) asn— o0, i,j=1,2,---,p. J(8,) is assumed to be a continuous function
of 0, and to be positive definite. Now let N,(0,) denote the set of all vectors @ such
that |0, — 0y < q:(n)/n,(n), i=1,2,...,p. Denote —[1/n(n)n;(n)][0°A(Y,,
6)/06,00,] — J;(6,) by ¢,;(0, 6,,n). For any given positive value y let R, (6,, 1)
denote the region in'Y, space where 337_, 312, 4,(n)q;(n) SUPse v, (o) [€:5(6, O, )| < 7.
Assume there exist sequences {r(n, 8,)}, {0(n, 8,)} of nonrandom positive quantities
with lim,  r(n, 8,) =0, lim,__ d(n, 6,) = O such that for each n P,R,[6,,

7(n, )1} > 1 — &(n, 8,) for all @€ N,(6,). It then follows that there exists a
sequence of estimates of 0(n) (which are roots of the equations dA(Y,, 6)/06, = 0O,
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i=1,2, ..., p) such that the vector whose ith component is ni(n)[ét(n) — 0,;] con-
verges in distribution to a normal random vector with mean vector 0 and covariance
matrix 3-%(0,). That is, the sequence é(n) is consistent, asymptotically normal, and
efficient.

Now all we must do is prove that the conditions of this theorem are met,
which we do in the next section. (Note that although n will approach infinity,
it will not generally behave as an index n = 1,2, 3, ... but may move in in-
creasing jumps; this, of course, does not affect the asymptotic results.)

3. Main result. In this section the assumptions used to carry out the asymp-
totic theory will be stated and briefly explained and the main result of this paper
will be stated and an outline of its proof given. Consider a sequence of experi-
ments each following the model (1). An experiment in this sequence may be
an extension of previous experiments or an entirely different design. However,
all such sequences must have the following properties.

AssumpTiON 3.1. nand each m;, i =1,2, .-, p,, tend to infinity; each m,
can be considered a function of n. (Note that all matrices and vectors in the
experiment now should properly be denoted to depend on #; that is we should
write y,, X,, U,,,, etc. For convenience, these dependencies on n will not be
explicitly carried in the notation.)

AssuMPTION 3.2. Let m, = n; then for each i,j=0,1, ..., p,, either
lim,_,, m;/m; = p,; or lim,_, m;/m;, = p;, exists. (If p,; = O, then let p;; = oo
for notational convenience.)

Now without loss of generality, let the U, be labeled so that for i < j, p;; > 0;
i.e., the m, are in decreasing order of magnitude. Generate a partition of the
integers {0, 1, - -+, p;}, S, S, - - -, S,, so that for indices i in the same set S,, the
associated m,’s have the same order of magnitude. Such a partition is generated
as follows:

iy (,4=0; S$={0}; i=1.
iify For s=1,2,..., itistruethat i,eS,. Thenfor i=1i,+ 1,
%) iy4+2,..., include i in S, until p, ; = co; call the first
value of i where this occurs i,,,; then i,,,€S,,,.
iii) Continue as in step ii until p, has been placed in aset. Call
this set S, .
There are then ¢ + 1 setsin the partitions, S, S, - - -, S,,and S, = {i,, - - -, i,,; — 1}
(where i,,, = p, + 1 to insure S, is correct).

Foreachi=1,2,...,p,ie S, forsomes =1,2,...,c. Define sequences

v, (depending on n) as follows:

vy=rank[U, : U, ,:---:1U,]
(6) —rank[U; :---:U; ;2 U, o000, ], i=12,-.--,p,
n—rank[U;:...:U,J.

Yo
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(The v, so defined are closely related to the degrees of freedom of sums of squares
in the analysis of variance.)

AssumpTION 3.3. Let r, = lim,_,v,/m;, i = 0,1, ..., p;: then each of the r;
exists and is positive.

Now let 8, = (&, @) be the true parameter point, where , = (04, 015 * * *>»
d5,) - Let Zy = 3121, 0,;G; be the true covariance matrix.

AssuMPTION 3.4. There exists a sequence v, ,, (depending on n) increasing to
infinity such that the p, X p, matrix C, defined by

) Cy = lim, .. [X'Z,X]/%, 11

exists and is positive definite.
Define the (p, + 1) X (p, + 1) matrix C, by

®) [C.):; = 3 lim,__ [tr Z,7'G, X7 G ] /v by b, i,j=0,1,.--,p,.

AssuMPTION 3.5. Each of the limits used in defining [C,];; in (8) exists, i, j =
0,1, ---, p,. The matrix C, is positive definite.

The object of these assumptions is to rule out certain sequences of experi-
ments for which the limiting distributions either degenerate or “blow up.” For
example, asymptotic theory requires an expanding sequence of experiments,
which is what Assumption 3.1 requires. Assumption 3.2 requires that the ex-
pansion should be orderly—sizes of various parts of the design should relate to
each other in an orderly way.

The remaining assumptions require that the sequence not be a degenerate one.
The v, defined by (6) is the dimension of the part of the linear space spanned
by the columns of U, which is orthogonal to the space spanned by the columns
of the other U; where i, < j< p,, j+ i, and i€ S,. (i, and S, are defined by
(5).) Thus v, is the dimension of the part of U, not dependent on the other U,.
Assumption 3.3 says. that this part remains an integral part of U,; it does not
get overwhelmed by the other columns of U;. It could be said that this assump-
tion requires that the ith effect not be “asymptotically confounded” with the
effects associated with the other U; mentioned above. This assumption implies
that v, and m, are of the same order of magnitude and hence that v, — oo, i =
0,1, ..., p, by Assumption 3.1.

The matrices C, and C, defined by (7) and (8) determine the asymptotic co-
variance matrix of the estimates of the fixed and random effects respectively.
Assumptions 3.4 and 3.5 insure the existence and positive definiteness of these
matrices. If either C, or C, does not exist or is not positive definite then its
associated estimates do not converge to a nondegenerate distribution. It should
be noted that Assumption 3.5 states that the limits given by (8) exist; it is easily
shown fror}l Assumptions 3.1—3.3 that the lim inf and lim sup exist so that the
assumption only requires the additional fact that the lim inf equal the lim sup.
Appendix B contains conditions on the design sequence sufficient to guarantee
positive definiteness of C,. It appears that any design or set of designs that might
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be used in practice can be imbedded in a sequence satisfying Assumptions 3.1—
3.5. This is of some importance because asymptotic optimality properties are
usually cited as one justification for the use of maximum likelihood estimates.

Theorem 3.1 is the main result of this paper. It states that under the condi-
tions given above the maximum likelihood estimates are consistent and asymp-
totically normal.

THEOREM 3.1. Consider a sequence of experiments each described by the model
(1) and each satisfying Assumptions 2.1—2.6. Suppose the sequence satisfies As-
sumptions 3.1—3.5. Let the parameter space © be given by (2) and the log-likelihood
JSunction A(y, 0) be given by (3). Suppose that the true parameter point 6, is an in-
terior point of ©; (i.e., 6, > 0,i=0,1, ..., p). Define the p X p matrix J by
J = [§0 ], where C, and C, are defined by (7) and (8) respectively. It follows that
there exist sequencesn,, i = 0,1, ..., p1 + 1 (depending on n) increasing to infinity
and a sequence of estimates of 6, 5,,(y) = [&,/(y), ./ (Y)]' with the following
properties.

i) Given ¢ > 0 there exists b = b(¢) such that 0 < b < oo and n, = ny(e) such
that for all n > n,

0A(y, 6)
P { a0,

=0’i=132”"ap;

A
0=6,(y)

I[&n(y)]y - anl < ’j = 1’ 2a . ‘apo;

P+l
[Ou))e = oul < 2 i = 0,1, o pf 21—
1

ii) The p X 1 vector whose first p, components are n, .{@.(y) — @&} and whose
(po + i + 1)th component is n{[&,(¥)];, — 0y}, i =0, 1, - .-, p,, converges in dis-
tribution to a 4 ,(0, J-*) random variable.

Proor. To prove this theorem we need only prove that the conditions of
Theorem 2.1 hold from which the conclusion of this theorem will follow im-
mediately. We begin by defining the sequences n, by using the v; as defined by
(6) and (7):

%) ny(n) = [vi(m)]t, i=0,1, .. wp+ 1.
(For the remainder of the proof all notation of dependence on n will be sup-
pressed unless that dependence is to be emphasized.) Then for A(y, 8) defined

by (3) we observe that the derivatives of 2 with respect to @ and ¢ are given
below. (All indices i and j run from 0 to p,.)

(10) dijoa = X'EY(y — Xa),

(11) 94/d0, = [—tr Z'G, + (y — Xa)Z-1G,Z(y — Xa)]/2,
12y | #ijoa da’ = —X'ZX ,

(13) 32/d0, 0@ = —X'Z-1G,Z-Y(y — Xa),

(1) 34/30, 3o; = [tr 2-'G,2~'G; — 2(y — Xa)'E-IG,2-'G, 2 Y(y — Xa)]/2,
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which are respectively a p, X 1 vector, ascalar, a p, X p, matrix, a p, X 1 vector
and a scalar.

Observe that (12)—(14) with (7) and (8) show that the matrix J in Theorem
3.1 is indeed the J(8,) required for Theorem 2.1 in the sense that (i)
—&,,(0°4/30, 06 ,,,)/(n;n;) — [, (ii) I(6,) is positive definite, and (iii) J(6,)
is continuous in #,. (Requirements (i) and (ii) are true by Assumptions 3.4
and 3.5 along with (7) and (8); (iii) can be shown to be true by arguments
similar to those used in the subsequent proof.) Now define for each n £ =
max, ; I—[Ef,o(azl/aﬁi 0,15,)1/[n:n;] — [J];;] and set
(15) g =q =min(nt, nt, ..o nbnd k7Y, i=0,1,..0,p 1.
(Note. It is convenient to have ¢, equal for all i and violates no requirement of
Theorem 2.1.) It follows that g, — co because n; — oo by Assumptions 3.1 and
3.3 and £ — 0 by Assumptions 3.4 and 3.5; obviously ¢,/n, — 0 for all i.

To prove the conditions of Theorem 2.1 it then suffices to prove that

| —(0°4/00; 96 ,,)/(n;n;) — [J];4 —p4, 0 and that
(9:9;) SUPs,c n0p | —(0°4/00, 80 |,,)/(n, ;) — [I]5] Py, 0
for all @,e N,(0,) and
all i, j where by T, —,,. 0 for all 6* e N,(0,) we mean that for any fixed
€ > 0, 6 > 0 there exists ny(e, 0) such that for all » > n, and all 6* e N,(8,),

Pu{|T,| > ¢} < 0. We shall prove the second requirement first and in the pro-
cess shall prove the first requirement. We note that

—1 il
sup, . —_— —[J )
Porenyop (nin,. a6, 36, le, [91:;

—1 9’2
= SUPy,en, 0y {——“‘ [(—“-

)~ G,

I

9%2
(16) ( ;00 [60 a0, :|>
oy (% LEp YA 71)
30 00 lo, |
< a2 7] I: 632 :|
aai 00; ao_
—1 92 7
+ ( o Ef,o _W%_ - [J]ia'> .

We may then bound g,4, times each term of the right-hand side of (16) sepa-
rately. Denote the five terms as ¢, — @, respectively. ¢, ¢, and ¢; are non-
stochastic and will only involve limiting arguments. For ¢, it suffices to prove
q9.q;* Var, (¢;) — 0. For ¢, we appeal to Lemma A.4. We will give an example
of the proof of convergence to zero of each term. Then we will show how to
assemble all these proofs into a proof of the theorem. The remaining details
are very similar to those given in Miller (1973).
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For the remainder of this proof we shall represent each ¢; as ¢ and will call
n, =ng (f for fixed). Suppose Conditions A.1 and A.2 are true. Consider
¢*|¢s| < £~ = £t — 0 by (15), (7) and (8). For ¢, take the 0°1/0a do, form;
from (13) it suffices to bound for any p, X 1 § such that §’§ = 1 the quantity
¢ = [¢*/(n;n)18'X'Z,7'G, 2, X (@, — @,). (A subscript a =0,1,2 on @ or Z
means it is formed from the appropriate 8, = (a,’, @,’) where @, = (g,
Guts =+ *5 Oap)> and @,, 8, are any elements of N,(6,).) Now

¢ < [¢/(nPn H]E'X'E,'G, zo_lxe][(aa — a)X'Z,7X(a, — a)]

< [¢4/(rn A8 Xy XE ] [Amax(Zo7G)'][@1 — o) (@3 — &) [Amex(X'Zo™X)]

=< [¢'/(n’n )8 &(@: — @) (@3 — B)[Amex(X' 2o X) [ Amax(Zo'CG:)']

= [¢'n/[n’18'€(@: — @0)'(&; — o) Aax(X' 2o X)/1 /T [Amax(Z0™G1)']
where the first inequality follows from an application of the Cauchy-Schwarz
inequality and the next two by definition of characteristic root. But §§ = 1;
(@ — @) (@, — @) < p,g*/n by Lemma A.2.i; A,,,(X'Z,""X)/n,* is bounded be-
cause the matrix converges to the constant matrix C,; the last term is bounded
by 1/03; by A.2.iii and A.2.iv. Thus ¢ is bounded by a constant times ¢°/n;
which converges to zero by definition of g.

For ¢, consider the ¢°/dada term; from (12) it suffices to bound
for any p, X 1 vectors §, &, such that §'§ = §/§, =1 the quantity
¢s = [¢*/n18/X" (2, — Z,7)XE,. As above we may bound ¢ =<
q'8,8,8./8,[ 100 (X' Z,7X) /n ][ max |2,(Z,7Y(Z, — Z,))|]*. The last term is bound-
ed by 4¢’/min (n,0,)* via A.2.v; thus ¢ is bounded by a constant times
¢°/min (n,0,,)* — 0 by definition of q.

Now consider the §%4/dg; do; term for ¢,. It suffices to prove that Var,, ¢, — 0
where ¢, = [¢*/(n;n;)][tr Z,7'G, Z,7'G; — 2(y — X@,)'Z,7'G, Z,7'G,; Z,7(y — X@,)]/2.
Then using rules for variances of quadratic forms we find that Var, (¢,) =
24/ (nin )] tr (2,76, G, 2, E,) < 2¢[min (my, m,) [0 s 227G, 2,7G ) ?
because there are at most min (m,, m;) nonzero characteristic roots of
(Z,7'G; Z,7'G,) each of which is bounded by 2},,[Z,7'G,Z,7'G,]. This term is
in turn bounded by 16/(s},03;) via Lemma A.2.iv. min (m,, m;)/n;} is bounded
by definition of the n® =y, in (6) and Assumption 3.3. Thus Var,, (¢,) is
bounded by a constant times ¢*/n; — 0. Note that proving Var,, (4°¢,) — 0 will
also prove the first condition of Theorem 2.1. [1/(n;n;)](—0%4/36; 66 ,|s) — [I];; =
[1/(nin;)][—0%2/06, 00|, — &, (—0"4/30,; 60 ;s)]+[(1/[n;n,;])& p (—0°406; 36 1 ,)) —
[J]:;]- The second term is bounded by « and the variance of the first under 6,
is covered above; 6, ¢ N,(6,) and leaving out ¢* will only increase the conver-
gence to zero. ‘

The convergence of ¢’p, to zero is the subject of Lemma A.4. Now we as-
semble all these steps together. Given 8, € N,(8,), ¢ > 0 and 6 > 0 we wish to
find n, such that for all n > n, the probability under 8, that ¢* times the abso-
lute value of the left-hand side of (16) is greater than ¢ is less than e. First
choose n, such that for all n = n,, P, (Conditions A.1 and A.2 are false) < ¢/2,
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which is possible by Lemma A.1. Now choose n, = n, such that for n = n,,
P, {q%|$,| > 0/5} < ¢/2, which is possible because 7|¢s| —p,, 0. Now choose
n, = n, such that for n > n,, ¢*|¢,|, ¢*|$,| and ¢’|¢;| are all less than d/5, which
can be done by definition of limits. Finally choose n, > n, such that for n > n,,
¢*|¢,| < 9/5 when Conditions A.1 and A.2 are true, which can be done by
Lemma A.4. Then for n > n, P,{¢*|LHS (16)| > 6} < e. This proves the final
condition of Theorem 2.1 and hence proves Theorem 3.1.

4. Two simple examples. To illustrate the asymptotic properties proved in
Theorem 3.1 we first take the simplest possible case, the one-way balanced
random effects model. y,;, =p+ b, 4+ ¢, j=1,2,.--,J, i=1,2,.--,1,
where y,; is the observation, g is the unknown mean, the b, are independent
identically distributed as _#7(0, 4,), the e, ; are independent identically distributed
as 470, o) and the b, and ¢,; are independent. This may be written in matrix
form as y = Xa& + U,b, + e, where y is an IJ X 1 vector of observations, X is
an IJ x 1 vector of ones, « is an unknown constant, U, is an IJ X I standard
design matrix for this model, b, is an 7 X 1 vector of random effects and e is
an IJ X 1 vector of random errors. In this case the likelihood equations can
be explicitly solved to yield the following maximum likelihood estimates. (We
use standard analysis of variance notation: y,, = (X: X ; Vi;))//Vs yie = (X2 Vi)Y

88, =J X (Fie — Yo S8 = 20 25 (D5 — yu)'s MS, = SS/I(J — 1).)

a = y-. 3
8, = (SS,/I — MS,)|J when SS,/I > MS,,
=0 otherwise,
8, = MS, when SS,/I > MS,,

= (SS, + SS)/1J otherwise.

Now y,., SS,, and S, are independent and distributed as _47[a, (0, + Jo,)/(1])],
o013y, and (g, + Joy)x?,_,, respectively. Thus the means, variances and co-
variances of &, d,, and &, can be calculated. It is easily seen that only & is
unbiased. To consider asymptotic properties it is sufficient that  — co. How-
ever, it is of some interest to observe the behavior of the estimates as 7 and J
each increase to infinity. (It is not necessary that I and J be of the same order
of magnitude.) If ¢, > 0 and ¢, > 0, truncation will be needed with proba-
bility approaching zero so that we find that as I, J — oo, &(&) = a; &(d,) =
(1 — 1/D)o, — o,/lJ; &(8,) = a,; Var (&) = a,/lJ + a,/I; Var (¢,) = 20*(1J — J +
1)/I2J*(J — 1) + 4a,0,(I — 1)/1*] + 20,*(I — 1)/P; Var (d,) = 20,’/I(J — 1); Cov (&,
é,) = 0; Cov (8, 6,) = —20,*/1J(J — 1). Thus the estimates are consistent be-
cause each expected value converges to the true value and each variance con-
verges to zero. However, a joint asymptotic normal distribution will not be
obtained when each estimate is normalized by I*J¢. The normalized variances
of @ and é, do not converge to finite values. The correct normalizing sequences
for &, 6,, and &, are I*, I* and I*J* respectively, in which case the asymptotic
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covariance matrix is J = diag (s, 20/, 20,%). This situation illustrates the need
for normalizing sequences of different orders of magnitude. The example may
be criticized by pointing out that if J does not become infinite normalization of
all estimates by /*J* does lead to an asymptotic normal distribution. However,
there are many examples where normalizing sequences of different orders of
magnitude cannot be avoided, for instance, any crossed model that is at least
partially balanced.

Now consider the two-way balanced random effects model. y,;, = ¢ + a, +
by +cyy+ey i=1,2,..,1, j=1,2,...,J, k=1,2, ..., K, where the
observed value y,;, is the sum of g, the unknown mean and a,, b;, c,; and ¢,
all of which are independently normally distributed with mean zero and vari-
ances g,, g3, 0, and g, respectively. This may be written as y = Xa + U;b, 4
U,b, 4+ U,b, + e, whereyis IJK x 1, X is an IJK X 1 vector of ones, b, contains
the ¢;;’s, b, the a,’s, b, the 5,’s and e the e;;’s. The U’s may be written as
U =[S, e U, =[I,0e,®e] and U, = [¢; ® I, ® ex] where ® sig-
nifies left Kronecker product and I and e are identity matrices and vectors of
ones of appropriate dimension. Some correspondence between the various items
defined for the proof of Theorem 3.1 and this model are n = IJK; p, = 1; p; = 3;
p=5 m=U; m=1I m=1J, vy=n—rank(U,:U,: U, = V(K — 1);
v; = rank (U;: U,: U;) — rank (U,: U;) = (I — 1)(J — 1); v, = rank (U,: Uy) —
rank (Uy)) =71 — 155, =J —1; §, ={0}; S, = {1}; S, = {2, 3}. (See below for
relation of 7 and J.) Note that the v, correspond to the degrees of freedom of
the various sums of squares in the ANOVA table.

We shall only illustrate certain asymptotic results for this model. A complete
discussion of the asymptotics and calculations of the MLE’s is given in Miller
(1973), Sections 6.1 and 6.2. (Hartley and Rao (1967) discuss another ANOVA
model at length.) For asymptotic theory of this paper to be applicable it is
necessary that / — co and / — co. (K may or may not — co.) In setting up
the S, we have assumed that lim (//J) = p with 0 < p < oo. It then may be
shown that one choice for v, is I and that X'Z,~'X/y, = IVK/[(dy + Koy +
JKoy, + IKoy)] — (04, + pog)~", which is the only element of C,. The elements
of C, are found to depend on whether or not K — co. Suppose it does not. Then
the 0,0 term is one-half the limit of [I/(K — 1)]7[(dy + Koy + JKog, +
IKoy)™ + (I — 1)(04 + Koy + JKaw)™" + (J — 1)(0y + Koy + IKow)™ + (I —
D(J — 1)(og + Kou)™* + (K — 1)a5’] - 05 + (K — 1)7(04 + Koy)™*. The
limit of the 0, 1 term is found to be 1K(K — 1)~%(g,, + Ko,)~% the (1, 1), (2, 2),
(3, 3) terms have respective limits $K*(gy, + Ko,)~?, 405’ and o5’; all other
limits are zero. (If K — oo, C, = } diag (05, 65’ 03°, 05’).) If one then inverts
C, one obtains the asymptotic variances and covariances of the maximum likeli-
hood estimates. These are found to be identical to the asymptotic variances
and covariances that arise if the usual ANOVA estimators of the variance com-
ponents are normalized by the same sequences.

The above represents but a brief glance at the two-way model. The points
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to be noted are that the normalizing sequences are necessarily of different orders
of magnitude and that there is a close relation between the MLE and ANOVA
estimates at least asymptotically.

5. Comments on asymptotic efficiency and on likelihood ratio tests. Since
the maximum likelihood estimates are asymptotically normally distributed, it
is of interest to discover whether they are asymptotically efficient in the sense
of attaining the Cramér-Rao lower bound for the covariance matrix. This
bound, the inverse of the Fisher information matrix, cannot be defined in the
usual sense in this problem because there is not a sequence of independent ob-
servations having a common density from which to compute such a matrix.
However, if we define attaining the bound for a sequence of experiments to
mean that the difference between the covariance matrix of the estimates in a
particular experiment and the inverse of the Fisher information matrix for that
experiment converges to zero as we pass through the sequence, which seems
reasonable, then the maximum likelihood estimates attain the bound and are
thus asymptotically efficient (when properly normalized).

Likelihood ratio tests of hypotheses of the form ¢, = 0 (or «; = 0) for i (or j)
belonging to certain sets are easily calculated because the reduced model (in
either case) is another model of the same form. The test statistic is then a ratio
of determinants which can be easily computed. Unfortunately the distribution
of the test statistic cannot be easily calculated. Under the alternative hypotheses
o, # 0 Weiss’ (1975) result may be applied to yield an asymptotic »* distribution
for —2log L. However, under the null hypothesis of ¢, = 0 the asymptotic
distribution is not a y*. Consider the model of the first example of Section 4.
It is easily shown (see, for instance, Miller (1976)) that —2log L = —I{(J —
l)log [I/(I — 1)] + JlogJ + log F — Jlog[I(J — 1)/(I — 1) 4+ F]} when F >
I/(I — 1) and —2log L = 0 otherwise, where F = MS,/MS,, MS, = SS,/(I — 1)
is the usual F statistic. By the change of variable G = [(I — 1)/I]F — 1 we may
rewrite —2log L = I{Jlog (1 4+ G/J) —log (1 + G)} when G > 0and —21logL =0
when G < 0. Note that for any fixed G > 0, —2log L — oo as I — oo whether
or not J— oo. Thus we need only consider the limit as G — 0. Expanding
—2log L and keeping terms up to G* we have —2log L = IG*(J — 1)/2J. Then
for any X, > 0 we have P{—2log L > X} = P{IG*(J — 1)/2J > X,} = P{G >
[27X,/(I(J — 1))]}} because G < 0 implies —2logL =0. But P{G > G} =
P{F > F,}, where G, and F, are functions of X,, /, and J. Now by considering
the distributions of MS, and MS, derived in Section 4 and recalling that MS,
and MS, are independent it can be shown that P{F > F )} =1 — ®{[—o,(1 —
F)) — Jo,]/(2[(ay + Jo,)*/(I — 1) + (9,F,)*/I(J — 1)]})}, where @ is the standard
normal cumulative distribution function. But if ¢, > 0 the argument of ®( )
converges to —oo as / — oo again whether or not J — oo (i.e., the test is con-
sistent). If ¢, = 0 the argument of ®( ) becomes after transforming back to
F equal to a quantity which tends as 7 — oo (whether or not J— oo) to Xt.
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Thus in the limit P{—2log L > X} > 1 — ©(X}) if X, > 0and — } if X, =0
when g, = 0. Under the null hypothesis then —2 log L is asymptotically a 4, 1
mixture of a y,* and a y,* (point mass at zero) random variable. This conforms
to Chernoff’s (1954) result for the standard case. Further research may gener-
alize this finding to more complex situations.

Thus we see that although the likelihood ratio tests are easy to compute, their
usefulness is limited because the distribution under the null hypothesis is gener-
ally not known.
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APPENDIX A

Details from the proof of Theorem 3.1. The two conditions referred to in the
proof of Theorem 3.1 are straightforward; the first is a requirement that the
(9:/n;) be small and the second is a bounding requirement on the y vector.

ConpITION A.l. Let gy, n,, o,; be as in Theorem 3.1. Then (¢,,/2) > (9:/n,),
i=0,1,..-,p,. Now for each n define several matrices (as usual dependence
on n is suppressed in the notation); consider 8, and 8, to be two fixed points in
0. Define the sets S,, s = 1,2, ..., ¢ by (5). Let H, be an orthonormal basis
for LU, :---:U, ) fors=1,2,...,¢— 1, let H, be an orthonormal basis
for the part of <AU, : ... :U,) orthogonal to Z(U, :---:U,); let H, be
an orthonormal basis for the orthogonal complement of Z(U,: -..:U, ). Let
the dimension of H,ben x m,, s = 0,1, ---,c. Then P = [H,: H,: ... :H]is
an n X n orthogonal matrix. Furthermore, U/H, =0 (and hence G;H, = 0)
for i,,, <j<p», s=0,1,...,¢c, because H, spans a space orthogonal to
AWU,,,,: -1 U,). It follows that (371, b,G)H, = (2= b,G)H,.

Since X, = 3,71, 0,,G, is positive definite, there exists a lower triangular matrix
A, such that =, = A,A,. But P’Z,P is also positive definite, so there exists T
upper triangular such that T'P’Z,PT = T'P’A,A,/PT = 1. Thusthen X nmatrix
Q = A/PT is orthogonal and can be written as Q =[Q,: Q;: ---: Q] =
AH*:H*: ...t H*] where H* = i H,T,. (H* is nxm, and T,, is
m, X m,.) Then (X721, 7,G)H* = 71, 311, 7,GH,T,, = (D7 7,G,)H,* be-
cause H,* only involves H, for t < sand t < s, i > i,,, implies i = i,,, so that
G,H, = 0.

The vector z = A,y — Xa,) ~ #7,(0, I) under 8, because y ~ 4 (X&,, Z,)
under 8,. Letw = Q'zso that w ~ _#7,(0, I) and write W = (W/, W/, - -+, W)
where w, = Q,’z = Q/A,”'(y — Xa,).

ConDITION A.2. For w, defined above, (w,/'w,)/m, < 14,5s=0,1, .-, c.

LEMMA A.l. Under the conditions of Theorem 3.1, P, {Conditions A.1 and A.2
are true} — 1 as n — co.

Proor. Each w,/'w, ~ y% under 8,; each i, — oo because 7, = v, for some
ie S, (v; defined by (6)); g/n, — 0. The lemma follows.

LEMMA A.2. Given 0, an interior point of © and given 0, and 0, each in N,(0,),
if Condition A.1 is true then the following statements are true.

i) (&, — a)(a; — &) < pog’/ns.
(a2, — a)(a, —a,) = 4p,g’[n.
i) Amex(Z7'G;) < 1/0,.
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i) Zpu(EE) S 2.
Amax(Zy71Zg) < 2.

V) 250:(3,7'G)) £ 2/a,,.
Aex(Z.7Gy) £ 2/ay,.

V) max,g.o, [4[Z7H(E, — Zp)]| = g/minyg;c, (n;0,).
max [4,[Z, 4, — Z,)]| < 2g9/min (n,0,).
Vi) 2nax(Q)A,'G; ZO_IGiAZ_tQS) =£6/05, 0 =i < i,y s=0,1,..-,¢
= 0 otherwise.

ProoF. Observe that by the definition of N,(8,), |o,; — 05| < g/n; < 74,/2 bY
Condition A.1. This implies ¢,,/2 < 0,; < 30,,/2; the same is true for o,;. State-
ment (i) follows from the definition of N,(6,) for @ and from the triangle in-
equality (which also gives |0, — 0,| < 2g/n;). Consider that for matrices of
the form C = D-'E (D positive definite, E symmetric) every characteristic
root is of the form x’Ex/x'Dx for some vector x. Consider also that
(X7 a,2,)[(2012 b,2,) < max (a,/b;,) provided b, >0, z,=20,i=0,1,---,p,,
and some z, > 0. It then follows that (sup is taken over x # 0) 1,,,,(Z,7'G;) =
sup (x'G,x/x'Z x) = sup (x'G,X/3,%L,0,;X’G,X) < max (0, 1/a,) = 1/g,, because
d,; > 0, each G, is positive semidefinite, and G, is positive definite. Statements
(iii) and (iv) follow by analogous arguments. Furthermore, max |4,[Z,(Z, —
Z,)]| < sup [x"(Z, — Z,)X|/x'E X < sup [ 11 |0y — 0[X'G,X]/[ L1106 X'GX] =
max [|oy; — 0y|/0,] < max [g/n,0,] = g/min (n,0,) by the same argument.

Now observe that 2.,,(Q,’A, G, Z,7'G,; A, 'Q,) = A,,.x(Q,/A; "G, A, A/~ X
AA'GLAQ,) £ Anen(AYZE AN L (QSA, TG, A A, TIG, A, TIQ,) by elementa-
ry properties of characteristic roots. The first term is 2,,,,(Z,*Z,) and is bounded
by 3 as above. The second term equals (sup is over 7 + 0 and then over x +#
0) sup ["Q/A; G, A; A, "G, A, 'Q,7/7'7] = sup [1'Q/A, G, A, A, G A X
Q.7/7'Q.Q,7] < SUP[X'A, G, A, A, G, A, X /X'X] = Apax(Z,7'G,)’ < 4/0%,. Thus
the bound is derived as (4/03,)(3) = 6/0},. However, if i > i,,, then G;A,~'Q, =
G,H,* = 0 as was shown above. The matrix in question is then the zero matrix
and has all characteristic roots equal to zero.

LEMMA A.3. If Condition A.2 is true then (y — Xa,)F'Z'F(y — Xa,) <
L3, miit, (Q/AF Z,'FA,Q,)] for any n X n matrix F.

Proor. Observethat (y—Xe,) = A,QQ'A, (y—Xa,) = A,QwW=A,3:_Q,Ww,,
where w is defined above. This yields (y — Xa,)F'Z'F(y — Xa,) =
Tico Dico W/Q/ASFA A T'FA,Q,w,, where Z, = A)A/. But the square of
any term of the sum is bounded by (W,/Q/A/F'A;~'A;~'FA,Q,W,) X
(W/Q/AF'A A, 'FA,Q,w,) by the Cauchy-Schwarz inequality. But
w,/Q/AFA'A,FA,Q, W, < W,/W,2.,.(Q/AFZ'FA,Q,) and w,/'w, < (1),
by Condition A.2. The lemma follows immediately.

Using Lemmas A.2 and A.3 and similar lemmas we can prove the details
needed in the proof of Theorem 3.1 and also prove the following lemma which
completes the proof.
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LemMA A.4. For 6, an interior point of © and for a fixed 8,¢ N,(8,), if Con-
ditions A.1 and A.2 are true then

9°2
00, 90,

92

fﬁ_q_f_SUP,leN,,ww o 00,00
1 00;

n;n;

0y
asn— oo, forall i, j.

Proor. The proof of this lemma is quite tedious. We give an example which
illustrates the method of proof. Consider derivatives of the form 6°4/0a 9o,
defined by (13). It is sufficient to prove that for p, X 1 vector § such that
§'§ = 1, ¢*/(n;ny) times the difference §'[9°2/0@ do,|,, — 0°2/0@ do,,,] converges
to zero independent of #, provided 6, € N,(6,). The quantity in question can
be written as |[¢*/(n,n,)]§'X'[Z,7'G, Z, (Y — Xa&,)) — Z,7'G, Z,7(y — Xa,)]| <
[9*/(n.n) I X' (2,776, 207" — 2,7'G B, )(y — Xay)| + [[¢°/(nin ) §'X 72, G 2y X
X(@;, — a,)|. The square of the second term is bounded by [(¢*n/*)/n}]§'§(a, —
a,) (@y — @) 20 (X' 2y X) /1 2P A ez [A Z, 716G, 2,18, E,7G, 2, A ] by several ap-
plications of the Cauchy-Schwarz inequality and the definition of characteristic
root. But §'§ = 1; (a, — a,)(a, — a,) < 4p,q*/n;* by Lemma A.2.i; the first
characteristic root term in brackets is bounded because the matrix converges
to C,, a constant matrix, by Assumption 3.4; the last characteristic root is easily
bounded by 16/a}; by A.2.iii and A.2.iv. Thus the square of the second term
is bounded by a constant times ¢°/n,> — 0 by the definition of g.

The first term can be broken into three terms by writing Z,-' = X, +
(&, — Z,7") and observing Z,7' — Z,7' = Z,7%(Z, — Z,)Z,"'. One such term is
[4°/(rn I8 X E (B — E) B "G Ei (Y — Xa)| = [¢7)(min ) || €X' A A E,(E, —
Z)Z,'AA'G,Z, (Y — Xa,)|. Again we use the Cauchy-Schwarz inequality
and definition of characteristic root to bound the square of this term by
78 8 Amax(X' Zy7X) 1 A an (A 2y (Zy — Z)ZTAGASET(E, — Z)Z,A)(Y —
Xa,)Z,7'G,Z,7'G, Z,~(y — Xa,)/n;?. The first three terms after ¢* are bounded
as above. The last term is bounded using Lemma A.3 by (13)[X¢_, (7,/n,%)} X
4.:(Q/A,G,E'G,A,'Q,)]. But 7, /n? = /v, is bounded so long as i < i,,,.
(Both 7, and v, are of the same magnitude if i € S, and 77, is of smaller order if
i < i,.) In this case the characteristic root is bounded by 2/s}; by Lemma A.2. ii
and iv.

When i = i,,,m,/v, is not bounded but the characteristic root is zero. (This
argument illustrates the necessity of partitioning by using the Q matrix. At
crucial points in the proof, the n, term in the denominator cannot overwhelm
the numerator unless manipulations with Q are used.) Thus the last term is
bounded. The third term is bounded by 164*/min (n,0,)* using the definition
of characteristic root and A.2.v. Then the entire term is bounded by a constant
times ¢*/min (n,0,,)* — O by definition of g. Thus the lemma is true for these
terms. The complete proof of the lemma and of Theorem 3.1 is similar to argu-
ments given in Miller (1973).
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APPENDIX B

A condition sufficient for positive definiteness of C,. We first note that to
show C, is positive definite requires us to show that for any (p, + 1) X 1 vector
b#0 bCb>0. But 2bC,b= Y71, 32, b,b,lim tr £,7'G,Z,'G,/n,n; =
lim tr [Z,7%(X 7, (b;/n,)G,)]* = 0. We must prove the inequality is strict in the
limit. One condition which is sufficient to guarantee this is the following.
For each U, i = 1,2, ..., p;, let the columns of U, be represented by U, =
[w,?, w,®, ..., uP]; the sets S, are defined by (5).

ConpiTION B.1. For every i and every j€ S,, j # i, where ie S,, there exist
two nonnegative constants, R, and R,, both less than or equal to one, such that

o [(w 9, )/ (w, P, D)) < R, for all but R,m, values of k in the set
{1,2, ..., m}. Furthermore, R, and R, are such that R, + (1 — R)R, <
(N(S,y + 1)=*, where N(S,) is the number of indices in the set S,. The proof
that Condition B.1 is sufficient for the positive definiteness of C, is given in full
detail in Miller (1973; pages 180-193). We illustrate here how one proceeds.

Let B = 371, (b,/n,)G,. Suppose b, ++ 0. Then we show that lim tr (Z,7'B)* > 0
by showing that a certain number of characteristic roots of Z,'B are large enough.
In particular there is a space of dimension v, orthogonal to Z(U,: U,:..-:U,)
via (6) and hence for any vector X in this space Z,X = g, X and Bx = (b,/n,)x.
Thus there are v, (= n,’) independent characteristic vectors of Z,~'B with charac-
teristic root equal to by/(g,n,). But then tr (Z,7'B)* = n,'[b,/(0y1,)] = by’[o50 > 0.
The situation is much more complicated for b, = 0. Let s > 0 be the least
index for which b, 0 for some ie S,. Observe |b]/n, for each ie S,; one of
these must be the largest in the sense that lim [(|b,|/n;)/(|b;|/n;)] = 1 for je S,,
j # i. Consider this i fixed and bound characteristic roots of X,~'B by con-
sidering forms (7'U/BU,7)/(7’'U/Z,U,7). By placing appropriate restrictions
on 7 and by using Condition B.1 we can bound enough characteristic roots far
enough from zero for lim tr (Z,~'B)’ to be positive.

A short comment about this assumption. It does seem unwieldy (although it-
does occur naturally in the above proof) and probably is too strong. However,
most design sequences will meet this condition, which might be called “asymp-
totic near orthogonality.” Simpler conditions (for instance Assumption 3.3
above) have not been proved sufficient by this author.
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