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A LAW OF THE ITERATED LOGARITHM FOR
FUNCTIONS OF ORDER STATISTICS

By JoN A. WELLNER!
University of Washington

A general law of the iterated logarithm for linear combinations of
order statistics is proved. The key tools are (1) iterated logarithm con-
vergence of the uniform empirical process U, in p,metrics due to B. R.
James and (2) almost sure ‘‘nearly linear”” bounds for the empirical distri-
bution function. A law of the iterated logarithm for the quantile process
is also established.

1. Introduction. In [16] Shorack proved general central limit theorems for
linear combinations of order statistics. Our purpose here is to establish a law of
the iterated logarithm for order statistics (Theorem 4) which parallels Shorack’s
Theorem 1. Our proof relies upon (1) the iterated logarithm convergence of
the uniform empirical process with respect to p,-metrics due to James [11] (or
Theorem 2 of [20] with a simpler proof), and (2) almost sure “nearly linear”
bounds for the uniform empirical df. These bounds are proved in Section 2.

We adopt the notation of [16]: &, - - -, &, are i.i.d. uniform (0, 1) rv’s with
empirical df I', and 0 < §,, < - .. < §,, < 1 denote the order statistics of the
sample. The uniform empirical process U, is the process on [0, 1] defined by
U, = n¥(T', — I) where I denotes the identity function, /() = ¢; the uniform
quantile process V, on [0, 1] is defined by V, = n¥T',"* — I) where I',~* is the
left continuous inverse of I',. Theorem 4 below presents a law of the iterated
logarithm for

(1) Tn = n_l Z?:l cmgn({:m) + ZZ:I dnk gn(gn,[npk]+l)

where, for n > 1, ¢,;, - -+, ¢,, are known constants, and g,, for each n, is in
the class & of left continuous functions on (0, 1) that are of bounded variation
on (6,1 — @) for all 6 > 0. Here d,,, ---,d,, for n > 1 are known constants
associated with the points 0 < p, < --- < p, < 1. For emphasis we repeat
Remark 1 of [16]:

ReMaARrk 1. If g, = A(F,™") for some sequence of df’s F, in the class & of
all df’s, then T, has the same distribution as does n~! > 7c, A(X,;) +
225 Ao P( X np141) where X, < ... < X, are the order statistics of a random
sample of size n from F,.
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482 JON A. WELLNER

As mentioned above, our approach in Section 4 to a log-log law for T, is by
way of a log-log law for the process U,. A law of the iterated logarithm for
T, could also be approached by the projection method used by Stigler [17], but
our method has advantages for unbounded score functions J. In the case of
bounded J, £ = 0, and fixed continuousdf F (g, = g = F~*for all n = 1 in our
notation), Ghosh [8] has established a law of the iterated logarithm for T, using
the methods of Moore [14]. Theorem 4 gives additional information even in
this special case.

2. Almost sure “nearly linear” bounds for the empirical df. We begin by
establishing almost sure “nearly linear” bounds (Theorem 1) for the empirical
df T, and its left continuous inverse I',*. These bounds play an important
role in our proofs in Sections 3 and 4 and are the appropriate analogue, for our
purposes, of the linear bounds of Lemma A3 of [16]. We obtain one set of
these nearly linear bounds by use of the techniques of Theorem 1 of [20]. The
other set of bounds is established via exponential inequalities for the tail proba-
bilities of centered beta rv’s due to Albers, Bickel and van Zwet [1], and Wellner
[19]. The exponential inequalities for probabilities then yield bounds for the
central absolute moments of the same beta rv’s. These inequalities improve on
moment inequalities for beta rv’s established by Bickel [3], Blom [5], and van
Zwet [22].

Let0 < ¢, < -+ - £§,, < 1denote the order statistics of the sample &,, - - -, &,
of uniform (0, 1) rv’s. Then &, has a beta (i, n — i + 1) distribution with mean
p:=i/(n+ 1) =1 — g, and variance p,q,/(n + 2).

Lemma 1. Forallnz 1,1 <i<n,and2 =1
) P(nt€, — pil 2 (Piga)*A) < 2e77°.
Proor. Lemma A2.1 of [1] (page 148) gives the inequality
P(n€,; — P 2 (Piq:)!2) = 2 exp(=32/(62 4 8))

for 2 = 0; since 32*/(64 + 8) = 2/5 for 2 > §, (2) holds. Essentially the same
inequality was established independently in [19]. The proofs in both [1] and
[19] involve rewriting the probability of (2) in terms of binomial rv’s and then
using exponential inequalities due to Hoeffding [10]. []

LEMMA 2. Forallrealr >0, n>1,and1 <i<n
&) ElE,; — pil" = CApiqi/m)” < C,(i[n*)"
where C,. =1+ 2.5".T'(r + 1).

Proor. Let # = L. The exponential inequality (2) implies that

1 — F(s) = P(|§,; — pi| = 5) < 2 exp(—hs/s,)
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for s = s, = (p:9:/n)t. Hence
E|,, —pl = \¢tmdF(t) = r {¢ (1 — F(s))s""" ds
< r§sosmtds 4 2r {3 exp(—hs/s,)s"" ds
< (1 4 2rT(ryh=")sy
= C,.SOT . D

Before proceeding to the application of (3) in Theorem 1, we compare it with
known inequalities for the central moments of beta rv’s. Blom [5] obtains
E|é,; — p|” £ M,n~"” with M, independent of i and n. This inequality follows
easily from (3), but is insufficient for our purposes in Theorem 1. The results
of Bickel [3] and van Zwet [22] apply when n — co and i/n — a with 0 < a < 1.
Bickel obtains E(£,; — p,)" = C,/(p:q,/n)"* + o(n~"?) and van Zwet gives
E(E,; — p)" = C,”(p:q:/n)”* + O(n~"~"). These results will not suffice to prove
our Theorem 1 since we require the inequality for 1 < i < n. Now we use (3)
to establish almost sure “nearly linear” bounds for I', and I",~".

THEOREM 1. Let 7, v, > 1 be fixed. Then there exists 0 < B = p(zy, 7)) < %
and a set A C Q with P(A) = 1 having the following properties: for all ® € A there
is an N = N(w, 1y, T,) for which n > N implies

(4) I- (1 Et)%z < T, () < (fy for 05t=1,
%) Btr < T (r) forall t suchthat 0 < T'.(1),

(6) T()<1—B(1 =10ty forall t suchthat T,(t) <1,
™ pri< T <1 — Bl — o for 01,
8) T,-'(f) < () for t= _’11_ and

9) 1_(1;’>l’”§1‘n—l(z) for zgl__};.

Proor. (Braun [6] established (5) for z; > 8 by an argument involving direct
computation of eighth moments.) Note that it suffices to prove only the upper
bound of (4) and (8): by replacing &, by 1 — §;, by interchanging 7, and 7,, and
by use of symmetry about the identity function or 45 degree line, the upper
bound of (4) implies the remaining inequalities in (4) and (7); similarly, (8)
implies the remaining inequalities (5), (6) and (9).

To prove (8), let p = 7,7, ¢ > 0, &} = £,; — p;, and define

%
An = {maxléisn Igml = 1} B

e(ifnye —

Choose an integer k > 2 so large that (2k — 1)/2k > p. Then by the Birnbaum-
Marshall inequality [4] and the fact that {{X/(n —i41),1<i<n}is a
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martingale,
P(4,) = Lt (@ — @l )E|E5/(n — i + 1)
where a,; = [(n — i + 1)/c](n/i)*, 1 < i < n, and a,,,, = 0. Hence, using (3)
to obtain the second inequality and choosing 0 < ¢ < (2k — 1 — 2kp) A (K — 2),
we have
P(4,) = Zt @i EES/(n — i + 1)
= Gy 1 (nfiye(ijnty*
é c—2kC2k Z’]’.L (1/n2+e)(i/n)2k—2—e(i/n)—2kp
< c*Cyntme (LsTr ds
with y = 2kp — 2k 4 2 + ¢ < 1. Therefore 3= P(4,) < oo and P(4,i.0.) = 0.
Hence, for n = N(w, p) we have
€3] = e(ifmye

for 1 < i < n which implies that
(i . .
o (L) = 6w ifn 4 1) + c(inye
n
< (1 + oifny
for 1 < i < n, and this in turn yields
r,-! <%> < 201 + ¢)((i — 1)/n)e

for2<i<nnz= N, p)and all v in a set with probability one. This proves
(8) with 8 = 27%(1 + ¢)~7.

To prove the upper bound of (4), again let p = 7,7, ¢ > 0, but now define
I''*=T, — I'and

LNOTIT

B, = {su =
n ‘{ Po<t<1 oy =

Application of the methods of Theorem 1 of [20] (with the inequality of Lemma
2 there replaced by a moment inequality) yields, for any 1 < r < 1/p <2,
P(B,) < (2/c)'E|D, |
where D, = (1/n) 37 Y,, and, with A(s) = s,
Yi=hE) — $§i(1 — I)hdl
are i.i.d. with mean zero and E|Y,|" < co. Hence, using an inequality due to
von Bahr and Esseen [2], we find that
P(B,) < 2(2/c) E|Y,|/n";

this implies that }}=_, P(B,,) < oo where y satisfies p > (r — 1)71 > p/(1 — p).
Finally, (the Banach space version of) Skorohod’s inequality may be applied to
gain control for sample sizes between points of the subsequence 7, yielding
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P(B, i.0.) = 0 (with ¢ replaced by ¢’ = 27*'c). Hence for n = N(w, p),

T *()| < 't 01
or,
L, =14 ), (U -

This implies that for n = N(w, p) and all @ in a set with probability one
T.(1) < (1B o<1
where 0 < 8 = 27Y(1 + ¢’)=* < }, proving the upper bound of (4). []

Observe that neither r, nor z, may be taken equal to one in Theorem 1: the
results of Kiefer [13] and Robbins and Siegmund [15] imply that both

t

lim sup, ., SUPy<;<:

and

Lo _ o

hm Supn-wo Supl/nﬁtsl

with probability one. In [20a] we have obtained an integral test for upper
almost sure bounding curves (the upper bound of (4)).

3. A law of the iterated logarithm for the quantile process. To handle the
term

Zf dnlc gn(£ﬂ,[nm]+l)

of T, or to establish a log-log version of Theorem 2 of [16] we need a law of
the iterated logarithm for the uniform quantile process V,, = n¥(I',~* — I). For
our purposes in Theorem 4 of the following section, convergence with respect
to the supremum metric o more than suffices. This conclusion follows easily
from the results of Finkelstein [7] concerning the log-log convergence of
U, = n¥(T', — I) with respect to p together with Theorem 2 of Kiefer [12], or
Lemma 1 of Vervaat [18], or the identity (10) below. Convergence with respect
to the metric o will not, however, suffice for a log-log version of Theorem 2 of
[16]; this type of result requires the convergence of V, with respect to stronger
p,-metrics. ~ This convergence is established in Theorem 3; our proof makes
use of the nearly linear bounds of Theorem 1.
Let b, = (2 loglog n)? and let

B ={feC[0,1]: f(0) = 0 = f(1), f = \; f"dl, s (/") dl < 1} .

Let & denote the set of positive continuous functions on [0, 1] which are
nondecreasing on [0, 1], symmetric about 1, and have (}¢~*dl < co. For
0 > 0, let &; denote the subset of & having {}¢=*-°dl < co. The functions
q(t) = [t(1 — 0)]F7, 6/2(2 + 0) < r < &, are all in &; the functions ¢(r) =
[«(1 — ][ —log (¢(1 — 1))]¥*" with y > O are in & but are not in &, for any
0>0.
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The following theorem has been proved by James [11] for a class of functions
slightly larger than €. For g € &, for some d > 0 another proof is given in [20].

THEOREM 2 (James). If q e &, then with probability one the sequence {U,[b,,
n = 1} is relatively compact with respect to p, with limit set B.

If f is a function on [0, 1] and » = 1 let f* denote the function which equals
fon[l/n, 1 — (1/n)] and equals zero elsewhere (when n = 1 set f* = 0).

THEOREM 3. If qe &, for some 6 > O then with probability one the sequence
{V.*[b,, n = 1} is relatively compact with respect to p, with limit set B. Moreover,
if fe B and {n'} is a subsequence such that

0,Uy /by, f)—0 as n — o
then ,
0Vulby, —f)—0 as n —oo.

PRrROOF. Suppose g € &7;. Note that
(10) Vo= =017 4+ ndT,(T,7) = 1)

Since (n/b,)o (T (T',™), I) = {ntq(1/n)b,}~* — 0 as n — co it suffices to show
that with probability one —U,(I',~*)*/b,, is relatively compact with respect to
p, with limit set B. Let S= {feD[0, 1]: p,(f,0) < oo}. For fe S define
fo=(bu/nt)f + Tand f,~(x) = inf{t: [, (1) = x}, 0 < x < 1, f,(x) = 1 if the
" set is empty. Now define functions R,, » = 1, and R from (S, p,) to (S, p,) by

R() =L R(H=T.
The fact that f(f,”)* is zero on [0, 1/n) and (1 — (1/n), 1] implies that
e (f(fo7)*, 0) < oo for all fe S and hence R, is well defined. Note that
R, (U,/b,) = UL, )*/b,. Also the p-compactness of B in S and the inequality
If()] = [t(1 — )]t for all fe B ([7], Lemma 1) imply that B is p,-compact in
S. (If (f,) is a sequence in B, then there is a subsequence (f,,,) which p-converges
to a function fe B. Using |f(#)] < [#(1 — #)]* to handle the supremum over
(0,0] and [1 — 6, 1) we find that (f, ) p,-converges to f.) Hence by Lemma
2.1 of [21] it suffices to show that o (U, (I';")/b,., f) — 0 whenever fe B, n’ — oo,
and pq(Un'/b'n” f) — 0.
But
0l UL by ) S 00(Unlbs, ) + 0,(f T f)

and therefore, by Theorem 2, it remains only to show that o (f(I',”"*, /) —> 0
a.s.asn— oco. Now o(I',~', I) - O a.s. and f is continuous so o(f(I',), f) — 0
a.s.; thus it suffices to show that with probability one

lim,_, lim sup,_, supo<.<o [/ (T(1))*|/9() = 0.

Let ¢ > 0; choose 7, =t in Theorem 1 so that = < 1+ 6/2 where
§6g7>°dl < co. Note that the finiteness of this integral implies that
0V [g(0) — 0 as § — 0. Choose 6 so small that g~/220V*+% /g(f) < ¢ and fix
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o in the set 4 of Theorem 1. Then for n = N(w, 7),

SUPocigo | (L7 (1)*1/9(2) = SUPymcrzo (Ta™(1)*/9(1)
< SUPoci=o (1/8)7*[9()
< B9 supye g 1V q(1)
<Le
where the second inequality follows from (8) of Theorem 1. []

4. A law of the iterated logarithm for linear combinations of order statistics.
Now we are prepared to use Theorem 2 in conjunction with Theorems 1 and 3
to establish a law of the iterated logarithm for the statistic 7, defined in (1).
Theorem 4 here parallels Theorem 1 of [16]; a thedrem parallel to Theorem 2
of [16] may be proved using our Theorem 3. Throughout this and the following
section b, = (2 log log n)t.

Set

o= $sgntudl + 315 dig.(Pi)
where J,(f) equals c,; for (i — 1)/n <t <ifn, 1 £ i< n, J,(0) = ¢, and [ is

Lebesgue measure. Hered,, - - -, d, are finite nonzero constants.
For fixed b,, b, and M > 0 define a “scores bounding function” B by
B(t) = Mt=(1 — )", o<1,
For fixed 6 > 0 define
D(t) = Mi=4+0rto(1 — f)=dthatd o<1,
and
q(t) = [1(1 — )]~ o<t 1.

Let g denote a fixed function in & and let J denote a fixed measurable function
on (0, ).

AssumpTION 1 (Boundedness). Let|g| < D, all |g,| < D, |[J| < B, all |J,| = B
on (0, 1), and suppose {; Bg d|g| < oo.

AsSUMPTION 2 (Smoothness). Except on a set of #’s of |g|-measure 0 we have
both J is continuous at 7 and J, — J uniformly in some small neighborhood of
tas n— oo.

AssuMPTION 3 (Convergence). {;Bgd|g, — g| — 0 as n— oo.

AssUMPTION 4 (¢ > 0). For1 < k < « we haveni(d,, — d,)/b, — 0asn — co.
In some small neighborhood of each of p,, - .-, p, the functions g, forn=1
form an equiuniformly continuous family and g,(p) — 9(px) and g,/(p.) — 9'(ps)
asn— oo foreach 1 < k < k. (If g, = gfor all n we require ateach of p;, - - -, p,
only that g’(p,) exist.)

Define

o* = 5§ (s At — st)J(s)J(1) dg(s) dg(7)
+ 2 D1 dpg'(p) S5 (0 A p — 1,)0(0) dg(?)
+ Xt X5d;di g (p)9' (p)(Pi N Pi — PiPi) -
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THEOREM 4. If Assumptions 1,2, 3 and 4 hold, then with probability one the
sequence

(1) {n{(T, — p2)[byy n = 1}

is relatively compact with limit set

(12) L ={-\Jfdg — Xid.g'(p.)f(p:): f€ B}
=[—o, +0].

Moreover, sup I, = o is achieved at the function f, in B with
1
fu() = — {$o (s At — s1)J(s)dg(s) + X5d;9'(p;)(p; Nt —p;n)}-

Proor. Consider the case x = 0; we will later extend to # > 0 by use of
Theorem 3. From [16]
n&(Tn - #’n) = _(Sn + Tm Vet 77&3) a.s.

where
= Sgﬁ'f' A,U,dg, = 3 4,*U, g, ,

14g,(Ea)(Wa(0) — V(1))
Tuz = 10,(E) Wal€an) 5
Tns = 1* Stepnme Indn al,
V() =-\J.dl,
A, = [V, (T,) — ¥.(D)T, — 1),
and where we now set 4,* equal to 4, for r¢[£,,, &,,] and zero otherwise. Let

7(1) = 91 — )" = q(9).
We first show that S,/b, is relatively compact with limit set —I,. Define
functions R,, n > 1, and R from (S, p,.) (with S defined as in the proof of Theo-

rem 3) to (R, | |) by
R.(f) = Ve AN)f 49, R(f) = Vi Jfdg
where A4,(f) is 4, with ', replaced by f, = (b,/n})f + I, a,, = f,~(1/n), a,, =
fo~(1 — 1/n), and f,~(x) = inf {t: f,(f) = x} as in Section 3. With this definition
of R,, R,(U,/b,) = S,[b,, and R, is well defined, at least for large n, for all f in
S. Note that withx = 0, R(B) = —L. Now, by the continuous mapping Lemma
2.1 of [21], it suffices to show that S, /b, — (;Jfdg = R(f) whenever fe B,
n; — oo, and p,(U, /b, , f) — 0. We have
IS'n/b% - R(f)l é Tna + 7 ns + 7 n6
= Sé lAn*Un/bnl dlgn - gl + Sé IA'n* - JI IU'n/b'nl dlgl
+ S I Uafby — fld]g] -
Also, by Assumption 1, when b,, b, > 0,
IA'nl é |S§” Jnd]/(]'-‘n - I)l
<\ BdI|(T, — I) < BV B(T,).

R
2
2
il

n
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Now Theorem 1 comes into play. Fix @€ 4 of Theorem 1 and choose 7y, 7,
there so that bz, = b, + d/4and b,7, = b, + d/4. Then, withn = N, of Theorem
1, (5) and (6) imply
(13) [4,%] < M, ,MI-*y(1 — I)="%

/ = M, ,B{I(1 — I)]"**
for some constant M, , depending on 8 of Theorem 1. Clearly, (13) also holds
if either b, or b, equals zero. In the case b, or b, < 0, use (4) of Theorem 1 in
place of (5) and (7) and an argument similar to that given for b,, b, > 0. Using
(13), Theorem 2, and Assumption 3

Tos < 0o (U, /by, OM, , §5 Bgd|g, — 9| >0  as. as n—oo.

To handle y,, write

7 ns = pq'(U'n/bn’ 0) Stl) |A'n* - qu, dlgl .
Use (13) again to find |4,* — J|¢’ dominated by the |g|-integrable function
(M, , + 1)Bq. Since A,(r) — J(?) a.e. |g| by Assumption 2, Theorem 2 and domi-
nated convergence show that y,, — 0 a.s. Now

e é pq'(Un/b'm f) S(lqu dlgl ’

and hence 7,, — 0 a.s. whenever n; — oo and p,(U, /b, , f)—0.

Thus S,/b, is a.s. relatively compact with limit set —L. To complete the
proof in the case # = 0, it remains only to show that }}37,,/b, — 0 a.s. From
[16] it suffices to show that

Y, = n*f,ﬁf&/bn —0 a.s. n—oo.
But with
a, = (nk/bn)(z 10g ”/n)%ﬂ —0 as n— oo,
and 4, = {Y, = a}, P(4, i.0.) = 0 since

P(A,) = P(Ep Z (bya,/n)/+?)
= (1 — 2 log n/n)
<n?

which converges when summed on n. Hence Y, — 0 a.s. and Y%7,:/b, — 0 a.s.
as n — oo, completing the proof in the case £ = 0.

Now suppose £ > 0. Without loss set v = 1, d,, = d,, d, = d, and p, = p.
In addition to the term considered above, (11) contributes

F% = né[d%gn(én,[nplﬂ) - dgn(P)]/bn ;

it remains only to show that F, is relatively compact with limit set F =
{—dg'(p)f(p), f€ B}. This follows easily from Assumption 4 and Theorem 3.

To complete the proof we must show that sup I = ¢ and that the function f
in B attaining the supremum is f,,, as claimed. To evaluate

sup L = sup{— 3 Jfdg — X5d,.g'(pu) f(pe): f€B},
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break the integral in the first term at } (assuming that } is a continuity point
of g; if not, break the integration at a continuity point in a neighborhood of )
and write

—$5Jfdg = —§3J(1) §§ f'(s) ds dg(t) + §3J(2) §; f'(s) ds dg(?)
= — {3 S0 f'(s) dg(r)ds + §} §5 J() f'(s) dg(t) ds

= §5 ['(s)P(s) ds
where
P(s)= — (2 J(ndg(t) 0<s< 3
= +§J(ndg(r) }=s=<1.

Here the interchanges of order of integration are justified by Fubini’s theorem
since, using {5 (f")’dI < 1 and Cauchy-Schwarz,

§8 §8 [J(OTo,0(5) f1(9)] ds d|g|() < §§ (1)t dlg|(7)
<2{iBgdlg| < .
In the same way, but with less difficulty (now there is no problem in inter-

changing the summation and integration and no need to work with two regions),
rewrite the second term as

— 2549 (P f(Pe) = 5 f'(5)Py(s) ds
where
Pys) = — X2f dkg,(Pk)I[O,pk]<s) .
Therefore, with P = P, + P, and L(f) denoting an element of the set I, for all
fin B,
L(f) =} f'Pdl.
Also, all f in B satisfy {; /" dI = 0, and hence, for any real « and all fe B,

LA = 156 f/(P — a)dl]|

= (') dl 3 (P — a)dl)

< (1 (P — ay dIy}
where the first inequality is Cauchy-Schwarz and the second inequality follows
from {5 (f")*dl < 1 for all fin B. Equality holds in the first case if fr=
B(P — a) for some constant $, and equality holds in the second case if {} (f")?
dl = 1. Define f,/(s) = B(P(s) — a) and f, (1) = {}f)/(s)ds. We want f,, ¢ B,
so choose a to make f,(1) = O:
0 = fu(1)

= B(— 10,11 Ston J(0) dg(t) ds + § 411 S13,0) I(2) (1) ds — F5d o' (PP — @)

Interchanging the order of integration and solving for a yields

a = =S t/1)dg(r) + Sy (1 — 0J(1) dg(t) — X dig'(Plpi -
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Therefore, for0 < s < 1,
P(s) — a = —§3 (I () — DJ(1) dg(t) — 15 dug'(Pe)Tt0,5,1(5) — Pi)
and hence
W (fu)ydl = B §5 (P(r) — a)*dr
= B(§3 33 §3 (Tr.a(8) — $)Tgp,(?) — 0J(5)J(0) dy(s) dg(r) dr
+ 2 5383 (T(1) — 0J(1) dg(1) Zf d g’ (Pi)Tt0,,(r) — pi) A
+ 4 2§ 25 d;di g (P9 (P i0,p(r) — Pi)Tr0,0,(r) — Pe) AT
= (55 §b (s A 1 — s)J(s)J(1) dg(s) dg()
+ 2 Drd,g'(p) i (8 A pe — 1p)J(1) dy(1)
+ 2t X5 d;deg'(p)9' (Pe)(Ps A P — PiPr))

= fp’
since
§ (I 1(8) — ) i(2) — O)dr = s At — st
§5 (Tr (1) — OJro,p, (1) — Pi) dr =1 A Py — 1ps
and

§8 o,,(r) — P)Ito,pia(r) — Pi) 4r = P; N Py — PP -
Hence, by defining 8 = 1/0, we have f,,’ = 0™(P — a), /(1) = 0, {5 (fu')dl =1,
andsupl, = 0. [I

5. Examples. The following examples parallel those of [16].

ExampLE 1. Let Xj, ---X, be a random sample from an arbitrary df F for
which E|X|” < oo for some r > 0. Let

T, =n"20J(t,)X,

where max, <, |t,; — i/n| — 0 as n — oo and where for some a > 0

a[LA<1—L>]§tm§1_a[LA<1—L>], l<i<n.
n n n n

Suppose J is continuous except at a finite number of points at which F~* is
continuous, and suppose
| )| < ML(1 = O], 0<i<1
for some & > 0. Then, with probability one, the sequence
(n(T, — SEJ P dl) by, n 2 1)
is relatively compact with limit set |

(=S8 JfdF, fe B} = [—0, +0]
where
o = (L5 (s At — st)J(s)J(t) dF ~Y(s) dF (1) .

ProoF. Analogous to the proof of Example 1 of [16]. []
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ExAMPLE la. Let X, ---X, bearandom sample from a df having E[X|" < oo
for some r > 2 and let ¢* = Var (X). Then with probability one the sequence
{"(X — E(X))/b,, n = 1}

is relatively compact with limit set

{—=VfdF, feB} =[—a, +d].
This example shows that the Hartmann-Wintner law of the iterated logarithm
[9] “just fails” to be a corollary to Theorem 4.

ExAMPLE 1b. Let X, ..., X, be a random sample from the N(0, 1) df @.

For integral r > 0 let .

Ty = n7 B [@7Y(i(n + 1) X
and let ¢, = Var (X"*'). Then, with probability one the sequence

{n{(T,, — E(X™7)[b,, n = 1}
is relatively compact with limit set .
(= S [@-T7dD, fe B} = [—0,, +0,].

ExAMPLE 2 (The linearly trimmed mean). Let 0 < a < 1 be fixed, and let
a, = [na]. Let X, ..., X, be a random sample from F, = F(. —@) where F is
any df symmetric about 0. For n even, define

To= 322, 126 — @) = (X + Xowi) 2 (5 = a)
Then with probability one the sequence
{n{(T, — 0)/by, n = 1}
is relatively compact with limit set
{=%JfdF, fe B}

where J(1) =0, 0 <t <a, J(t) =4t — a))(1 —2¢%), a<t< L, and J(f) =
Jl -0, <t< 1.

ExAMPLE 3. Let X, - .-, X, be independent Bernoulli (¢) rv’s. Letg = F~.
Thus g(f) = —o00,0,1fort =0,0< ¢t <1—-0,1—0<t<1. LetJ(r) equal
0,1 for0<r< 4,4 <¢t<1and let ¢,, = J(i/n). Then T, equals } if more
than half of the X;’s are positive; while T, equals the proportion of positive X,’s
if less than half of the X,’s are positive.

(a) Suppose 6 = }. Then n¥T, — p,)/b, = n¥(T, — })/b, has lim sup 0 and
lim inf —4 with probability one. J is not continuous a.e. |g| and hence the
hypotheses of Theorem 4 fail.

(b) Suppose 6 > §. Then n¥(T, — p,)/b, = n¥T, — 1)/b, has both lim sup
and lim inf 0 with probability one by Theorem 4.

(c) Suppose ¢ < § and set ¢,/ = (1 — ). Then with probability one “the
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sequence n¥(T, — ,)/b, = n¥(T, — 0)/b, has limit set[ —o,, +0,] by Theorem 4.

Acknowledgment. This paper is based on part of the author’s 1975 Ph. D.
dissertation prepared at the University of Washington under the direction of
Galen R. Shorack.
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