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MINIMUM HELLINGER DISTANCE ESTIMATES
FOR PARAMETRIC MODELS!

By RubpoLF BERAN

University of California, Berkeley

This paper defines and studies for independent identically distributed
observations a new parametric estimation procedure which is asymptot-
ically efficient under a specified regular parametric family of densities and
is minimax robust in a small Hellinger metric neighborhood of the given
family. Associated with the estimator is a goodness-of-fit statistic which
assesses the adequacy of the chosen parametric model. The fitting of a
normal location-scale model by the new procedure is exhibited numerically
on clear and on contaminated data.

1. Introduction. The statistical problem which motivates this paper can be
described as follows. Random variables X, X,, - - -, X, are observed. We pos-
tulate that the {X,} are independent identically distributed with density belonging
to a specified parametric family {f,: € ©}. At the same time, we recognize
that lack of information, data contamination, and other factors beyond our
control make it virtually certain that the model is not strictly correct; we hope
that it may be close in some sense. How are we to estimate @ in order to investi-
gate the fit of the model to the data?

A good estimator of 6 would have two essential properties: it would be effi-
cient if the postulated model for the data were in fact true and its distribution
would not be greatly perturbed if the assumed model were only approximately
true. The latter property reflects our disinterest in very small deviations from
the assumed model—they are expected in any case.

It has long been known that for many parametric families of interest in appli-
cations, the maximum likelihood estimator of ¢ has full asymptotic efficiency
among regular estimators. More recently, it has been recognized that maximum
likelihood estimators do not, in general, possess the property of stability under
small perturbations in the underlying model (see Huber’s (1972) review paper
for a discussion of location models and earlier references). To remove the
instability, Hampel (1974), building upon Huber’s earlier work with location
models, suggested replacing the maximum likelihood estimator of # with a related
M-estimator whose asymptotic mean is ¢ under the model density f, and is close
to # under small changes in the underlying data distribution. Unfortunately this
procedure typically entails a loss of asymptotic efficiency under the model
density f;.
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This paper introduces a new efficient parametric estimator which is intrinsi-
cally stable under small perturbations. Apart from technicalities, the proposed
estimator of @ is that value (or values) §, in the parameter space ©® which
minimizes the Hellinger distance between f; and §,, where §, is a suitable
nonparametric estimator of the density of X;. If |||| denotes the L,-norm, the
Hellinger distance in question is defined as || f,;i AR

It is interesting to note that this estimator 6, is related heuristically to the
maximum likelihood estimator of ¢ if the data density is in fact some f, (but
not otherwise!). For with this assumption and # sufficiently large, the MLE should
be close to 6, and the density estimator §, should be close to f; . Finding the maxi-
mum likelihood estimator amounts to maximizing § log (f,(x)) dG,(x) over O,
where G, is the empirical cdf of the data. Arguing formally, we expect that this
procedure is nearly the same as maximizing over # near 6, the quantity

§ 10g (fo(x)/Ga(X))Gn(x) dx

(L.1) = 2§ log[1 + (fA(9/.4(x) — 1]g.(x) dx
= 2§ [(fAWI) — 1) — 2 (LA/0.400) — 1715.(3) dx
= —2)If} — 3.4

Thus, it is not unreasonable to suppose that the minimum Hellinger distance
estimator ¢, will be asymptotically efficient under f.

Robustness of ,, is also intuitively plausible. A moment’s reflection reveals
that if §, is a kernel density estimator whose kernel has compact support (say),
then the addition of a sufficiently distant outlier to the data will scarcely affect
the value of ¢,. Moreover, if §,! is perturbed arbitrarily (by data contami-
nation) in such a way that the new value of §,! is close to the old value as
measured by the L,-metric, then ||f,} — §,}|| viewed as a function of 6 will be
uniformly relatively unaffected; hence 6, will be relatively unchanged too.

The minimum Hellinger distance estimator (MHDE) may be regarded as a
particular minimum distance estimator that is distinguished by being asymptot-
ically efficient in regular models. As a class, minimum distance estimators have
been studied by Wolfowitz (1952, 1954, 1957), who established their strong
consistency under general assumptions and considered the use of the minimized
distance in testing goodness-of-fit. In continuous models, asymptotic distribu-
tions have been found for a few minimum distance estimators (Blackman (1955),
Rao et al. (1975)) and for a special case of the minimized distance (Kac et al.
(1955)). However, the MHDE and the corresponding minimized Hellinger dis-
tance have apparently been studied only in discrete models (Matusita (1955),
Rao (1963)), where there exists a close link with the minimum chi-square methods
of Neyman (1949).

The results in this paper are organized as follows. Section 2 establishes some
basic continuity and differentiability properties of a functional associated with
the estimator ¢,. Asymptotic distribution theory for 8, is developed in Section
3 and the sense in which 4, is a robust estimator of 6 is examined in Section 4.



MINIMUM HELLINGER DISTANCE ESTIMATES 447

Section 5 studies the natural goodness-of-fit statistic || f,; — gn¥||’ while Section
6 reports the outcome of a modest numerical experiment with 4,,.

2. Minimum Hellinger distance functionals. The approach that will be fol-
lowed in studying the properties of f, is to view it as the value at §, of a func-
tional T. Let & denote the set of all densities with respect to Lebesgue measure
on the real line. The functional T is defined on & by the requirement that for
every g e &,

(2.1) /2o — 9%l = ming, || £ — ] .

Since T(g) may be multiple-valued, we will use the notation T(g) to indicate any
one of the possible values, chosen arbitrarily. To ensure existence of 7(g), some
assumptions are needed on the parametric family {f,: 0 € 6}. For notational
convenience in the remainder of the paper, let 5, = f;}.

THEOREM 1. Suppose that © is a compact subset of R?, 0, =+ 0, implies f, + f,,
on a set of positive Lebesgue measure, and for almost every x, f,(x) is continuous in
0. Then

(i) For every ge &, there exists T(g) € © satisfying (2.1).
(ii) If T(g) is unique, the functional T is continuous at g in the Hellinger topology.

(iii) T(fy) = 0 uniquely for every 6 € ©.

Proor. (i) Existence. Let h(t) = ||s, — gt||. For any sequence {t,:t,€©,
t, — t},

(2.2) #(1,) — H(O)] = 2§ [5,,(x) — s(x)]g}(x) dx| < 2]|s,, — sl| -
By Vitali’s theorem and the pointwise continuity assumption of this theorem,
the right side of (2.2) converges to zero. Hence % is continuous and achieves a

minimum for ¢ € 0.
(ii) Continuity of T. Suppose g,! — ¢! in L, and put k,(f) = ||s, — g,}||.

Write 6, = T(g) and 0, = T,(g,) for convenience (any one of the possible values
in the latter case). By Minkowski’s inequality
(2.3) , lim, _,, sup, |4,(t) — (7)) = O

which implies that |min, ,(f) — min, 4(f)] — O or, equivalently, #,(0,) — A(0,).
Since (2.3) also implies that |4,(0,) — h(6,)] — 0, we conclude that
2.4) lim, ., 5(0,) = h(0,) -

If 6, - 6,, compactness of © ensures existence of a subsequence {0,} c {0,}
such that 6, — 6, + 6,, implying A(f,) — k(6,) by continuity of 4. By (2.4),
h(0,) = h(0,), which contradicts the assumed uniqueness of ¢, = T(g).

(iii) T(f;) = 0 uniquely. This is immediate from the identifiability assumption
on the parametrization.

Theorem 1 is also useful for parametric families {f,: 6 € ©} where © is not
compact but can be embedded within a compact set. We illustrate this point
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for a location-scale family {o='f(e='(x — ¢)): ¢ > 0, —co < pr < oo} where [ is
continuous. Write ¢ = tan (t,), ¢ = tan (t,), t = (t;, t;), © = (—=/2, /2) x (0,
7/2), and f,(x) = [tan (t,)]"'f([tan (,)]*(x — tan (#,))); the location-scale family
can thus be represented as {f,(x): 1€ ©}. Ast, — +rn/2andt, — Oor /2, h(t) =
[lf — g}|| — 2t by a simple argument. Therefore 4 can be extended to a con-
tinuous function on © = [—=/2, z/2] x [0, 7/2], which is compact, and the
extended function achieves a minimum in ©. In fact the minimum must occur
in®since 0 < A(f) < 24 forevery s e © and A(r) = 2% is impossible. Consequently
the conclusions of Theorem 1 remain valid for this location-scale model.

With further assumptions on s, = f;?, the functional 7' becomes differentiable,
a property that is fundamental for further developments in this paper. For
specified 1€ ® C R?, we will typically assume that there exist a p X 1 vector
$,(x) with components in L,and a p X p matrix §,(x) with components in L, such
that for every p X 1 real vector e of unit euclidean length and for every scalar
a in a neighborhood of zero, :

(2.5) Serae(X) = 85,(%) + a3 (x) 4+ aelu,(x)

(2.6) Sirae(X) = §(%) + as(x)e + av,(x)e,

where u,(x) is p X 1, v,(x) is p X p, and the components of #, and of v, indi-
vidually tend to zero in L, as « — 0. Some convenient sufficient conditions for
(2.5) and (2.6) are established at the end of this section. In the following theo-
rem, T(g) is viewed as a p X 1 vector.

THEOREM 2. Suppose that (2.5) and (2.6) hold for every t € int (), T(g) exists,
is unique, and lies in int (©), § 57.,,(x)g¥(x) dx is a nonsingular matrix, and the func-
tional T is continuous at g in the Hellinger topology. Then for every sequence of
densities {g,} converging to g in the Hellinger metric,

(2.7) T(9.) = T(9) + § po()[9.*(x) — g*(x)] dx
+ @, Sr(D[9.4(0) — gh()]dx,

where

(2.8) 0o(%) = —[§ 525 (x)g(x) dx]$75(%)

and a, is areal p X p matrix which tends to zero as n — oo. In particular, for g = f,,
(2.9) pfa(x) = —[§ 5,(x)85(x) dx]"54(x)

= [§ 35(x)35" (x) dx]785(x) -

ProoOF. As in the previous proof, write ¢, = T(g) and 6, = T(g,). Since
0, € int (0) maximizes § s5,(x)g}(x) dx and since from (2.5),
(210)  lim, o @ § [sa(X) — 5()]0}(x) dx = €T § 3,(x)g}(x) dx
for every unit vector e and every ¢ € int (), it follows that § 3, (x)g*(x) dx = 0.
A similar conclusion applies to §, . Hence, using also (2.6),
(2.11) 0 = § 3, (x)9.}(x) dx

= § [8,(%) + 3,(x)(0n — O0) + Vu(x)(0n — O0)]9,H(x) dx,
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where the components of the p X p matrix v,(x) converge in L, to zero as n — co
since 6, — 6,. Thus, for n sufficiently large,
0 — O = —[§ (55,(%) + V() (x) dx] § 85, (x)g,H(x) dx
—[§ 3,(x)g*(x) dx] ™" § 8, () 9u*(x) — gH(x)] dx
+ 4, § 85, ([9a1(x) — 9’(’6)] dx,

(2.12)

as was to be shown.
When g = f, 0, equals 6 and (2.10) now shows § s,,(x)s,,(x) dx = 0 for every
0 € int (@) Thus, for every sufficiently small real @ + 0 and every unit vector e,

§ &7 [804.06(X)Sp4ae(X) — $(x)3y(x)] dx

(2.13) = § aH{[prae®) — $oI50(%) F [S048) = 50(8) Boae()}
[§ 56(x)ss(x) dx + § $5(x)3,"(x) dx]e + o(1) ,

which yields (2.9).

Some relatively accessible conditions under Wthh (2.5) and (2.6) hold are
provided by the following two lemmas.

LEMMA 1. Suppose that s, = f;* has the following properties:

(i) For every x ¢ N (a Lebesgue null set) and for every 0 in some neighborhood
of t, sy(x) has first partial derivatives {5,'9(x); 1 < j < p} with respect to 6 which
are continuous in 6 at 0 = t.

(if) For every j, §,'9 € L, and ||3,'?|| is continuous in 6 at 6 = t.

Then expansion (2.5) holds for 5, = (5,, 5,®, - .., §,®)7.

Proor. For x¢ N, « sufficiently small, arbitrary unit vector e € R?, and s,
defined as above,

2.14) a7 pl(x) = s/(x) — €"8(N)] = a7t {§ €[Sy 10(X) — S(x)] de -
But for every j,
2.15) [l §5 [$e(x) = $,7(0)] dell* = a7 §F ||$e(x) — 87| e,

which converges to zero as a — 0 because as ¢ — 0, §{7,,(x) — §,?(x) for x e N
and ||${2,.]] — ||5,”||. The lemma follows.

A similar argument establishes

LEMMA 2. Suppose that s, has the following properties:

(i) For every x ¢ N (a Lebesgue null set) and for every 6 in some neighborhood
of t, sy(x) has first partial derivatives {5, (x); 1 < j < p} and second partial deriva-
tives {5,'9®(x); 1 £ j, k < p} with respect to 0; the latter are continuous in 0 at
0 =1t

(ii) For every (j, k), 5,%* e L, and ||5,'"®|| is continuous at 0 = t.

Then expansion (2.6) holds for s, = (s,, $,*, « -+, )T and 5, = {5,»}.
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3. Asymptotic distributions. The minimum Hellinger distance estimator 9n is
defined as T(g,), where T is the functional studied in the previous section and
§, is a suitable density estimator. In this section we examine the large sample
behavior of 7(g,) when g, is a kernel density estimator

(31) gn('x) = (ncnsn)—l Z?:l w[(cnsn)_l(x - Xz)] ’

{c.} being a sequence of constants converging to zero at an appropriate rate,
5, = 5,(X}, X, - -+, X,) being a robust scale estimator, and w being a smooth
density on the real line. For computational reasons it is convenient to consider
densities w that have compact support. The observed random variables {X;} are
assumed independent identically distributed, the density of each being g. Evi-
dently, g, is a location-scale invariant estimator of g.

THEOREM 3. Suppose

(i) w is absolutely continuous and has compact support; w' is bounded.
(ii) g is uniformly continuous.
(iii) lim,_, ¢, = 0, lim ntc, = co. :
(iv) Asn— oo, s, —, s a positive finite constant depending on g.
Then||§,* — g*|| —,0asn— oo. If T is a functional continuous at g in the Hellinger
metric, then T(9,) —, T(g).

Proor. LetG, denote the empirical cdf of (X;, X,, - - -, X,), which are assumed
i.i.d. with density g and cdf G. Let

(3.2) Gu(x) = (€a5,)7" § W(cps,) 7 (x — »)]dG(y) -
Integration by parts gives
(3.3) |Ga(x) — Gu(x)| < n7¥(c,s,) 7" sup, [B,(x)| - | [w'(x)] dx

where B,(x) = n}[G,(x) — G(x)]. Moreover, if a > 0 is such that the interval
[ —a, a] contains the support of w, then

(3.4) 7u(x) — 9(x)| = sUPyza l9(x — €,5,1) — g(x)| .

From (3.3) and (3.4), there exist versions of the {g,}, defined on a suitable prob-
ability space, such that sup, |§,(x) — g(x)] — O w.p. 1; hence P[lim,_., §,}(x) =
g¥(x) for all x] = 1. Since ||g,}|| = ||¢}|| = 1, lim,_.. ||§,} — ¢*|| = O w.p. 1 for
these versions and the theorem follows.

The next theorem shows, under stronger assumptions, that 7'(g,) has an asymp-
totically normal distribution about T(g). We expect that substantially weaker
assumptions would suffice, but do not have a proof in that case.

THEOREM 4. Suppose

(i) w is symmetric about O and has compact support.
(ii) w is twice absolutely continuous; w' is bounded.
(iii) T satisfies (2.7) and p, has compact support K on which it is continuous.



MINIMUM HELLINGER DISTANCE ESTIMATES 451

(iv) g > 0 on K; g is twice absolutely continuous and g'" is bounded.

(v) lim,_, ntc, = oo, lim,_,, ntc,* = 0.

(vi) There exists a positive finite constant s depending on g such that ni(s, — s)
is bounded in probability.

Then the limiting distribution of m[T(g,) — T(g)] under g as n— oo is N(O,
471§ p(x)p,7(x) dx). In particular, if g = f,, the limiting distribution of n*[T(§,) —
0] is N(O, 471§ $,4(x)$,"(x) dx]™Y).

PROOF. An argument similar to that for Theorem 3 shows ||} — g}|| —, 0.
From (2.7),

(3-5) T(@,) = T(9) + § p,(0[9.4(x) — gh(x)] dx
+ Va § $2(0[Fa2(x) — §4(x)] dx,

where ¥, —,0. Hence it suffices to prove that the limiting distribution of
nt § o(x)[J.}(x) — g}*(x)]dx, with ¢eL,, o ] g* and ¢ supported on K is
MO, 47|o|P*).

For b = 0, a > 0 we have the algebraic identity
(3.6) bt — at = (b — a)/(2a) — (b — a)*/[2a}(b? + a)’].
Thus
(3.7 nt§e()[F.Ax) — gi(x)]dx = nt { a(N)[Fu(x) — 9(x)]/(2g*(x)) dx + R,
where, for § = min,., g(x) > 0 and for §,(x) defined by (3.2),

IR,| < n* § |o(0)|[Gu(x) — 9(0)T/(29%(x)) dx
(3-8) < 074t § |o()|[Ga(x) — Fu(¥)] dx + 1t § [o(0)|[Fu(x) — 9(x)]* dx}
= oYW, + W,}, say.

With B,(x) = n[G,(x) — G(x)], the difference §,(x) — §,(x) can be expressed

as the sum of two terms, T,,(x) and T,,(x):
Ti(x) = n74(c, )7 § W[(eas)7(x — )] dBW(y) »
(3-9) To(x) = —nt §dB,(y) Sonin 17 {W[17(x — J)]
+ [T = W (x = p)ldt
= n~t {imen 172 dt § B, (x — 12)[2w'(2) + zw''(2)]dz .
Evidently,
(3.10) E[T:(x)] £ (nc, )™t § w¥(2)9(x — c,s2) dz
Squ |T2n(x)| = Op(n—lcn_l) ’

which implies that W,, —, 0. Since
(3.11)  sup, [F,(x) — g(x)| < 27 ¢, sup, |g"(x)] - § xw(x) dx,

W, —, 0 also; consequently R, —, 0.
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Let ¢(x) = a(x)/(2g*(x)) and write
nt § G(O[Ga(x) — g(x)]dx = nt § $(x)T1a(x) dx + nt § $(x) Ton(x) dx
(3.12) + nt § G(O[Fa(x) — 9(x)] dx
= 2 Ui, say.

Both U,, and U,, —, 0 as n — oo because of (3.10) and (3.11) respectively. The
first integral U,, can be expressed as { dB,(y) § ¢(y + c,sz)w(z) dz. Since

(-13)  E[Uy, — §9(») dB (N = § w(2) dz { [$(y + ¢us2) — $(0)T9(r) Y

tends to zero as n — oo, the limiting distribution of U,, is N(0, 47![|¢|[), from
which the theorem follows.

Under the model f,, the asymptotic covariance matrix of ni[T(g,) — 0] is
47§ $5(x)8,7(x) dx]~*, which is the reciprocal of the Fisher information matrix.
In general, T(§,) is a distinguished estimator of T(g) under g wherever the limit-
ing distribution of Theorem 4 is applicable. This statement is clarified by the
next theorem, which is an extension of Hajek’s (1970) representation theorem
for limiting distributions of regular estimators.

Let &1g, B) denote the set of all sequences of densities {g,} such that

(3.14) lim,_., [|n¥(g,* — ¢*) — Bl =0,

where fe L, and g ¢ % Note that (3.14) implies that g is orthogonal to g*.
Let <7g) denote the union over 8 of all sets {79, B): feL,, B L gt}. Let T,
be any estimator of the functional T which is regular at g in the sense that, under
every sequence {g,} € €1(g), the distribution of n[T, — T(g,)] converges weakly
to a distribution Z(g) that depends only on g and not on the particular sequence
{9.}. This assumption excludes superefficient estimators, for which naive asymp-
totics can be misleading.

THEOREM 5. Suppose T, is an estimator of T which is regular at g. Then 2(g)
can be represented as the convolution of a N(0, 4= § p,(x)p,7(x) dx) distribution with
2(9), a distribution depending only upon g and T,

A proof of this result can be had by modifying the argument for Theorem 6
in Beran (1977), which dealt with one dimensional functionals of a related kind.
Under the assumptions required for Theorem 4, the estimator 7(g,) is regular
because, under g,

(3.15) n[T(@,) — T(9)] = § p,(x)/g*(x) dB,(x) + 0,(1)
and the log-likelihood ratio L, = log [T]~, 9.(X;)/9(X;)] can be approximated by
(3.16) L, =207t 71, BX)g7H(X0) — 2([BI]* + 0,(1)

for every {g,} € €1y, f) (cf. Le Cam (1969) for the essential argument). In
particular, (3.16) entails contiguity of {g,} to g. Thus the estimator 7(g,) is
distinguished by having the least dispersed limiting distribution allowed regular
estimators of T by Theorem 5.
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4. Robustness properties. Robustness of the estimator §, = 7(§,) would
ideally be studied by considering what happens to the distribution of 7(g,) as
the distribution of the data is varied. Specifically, as one qualitative criterion
of robustness, Hampel (1971) proposed Prohorov continuity of the estimator
distribution under Prohorov metric perturbations of the data distribution. Since
the exact distribution of T(§,) is not available and the Prohorov topology is
too weak in this setting, we will study instead the Hellinger continuity of
the approximate distribution for 7(§,) suggested by Theorem 4, N(T(g),
(4n)* § p,(x)p,7(x)dx), as g varies within a small Hellinger neighborhood of f;.
This approach is not rigorous because uniform convergence to the approximating
normal distribution in Hellinger-metric neighborhoods of f, has not been estab-
lished. However, the choice of metric and the restriction to small Hellinger-
metric neighborhoods of f, can be supported: on the one hand, a variety of
plausible data contamination models can be expressed, exactly or approximately,
as Hellinger-metric perturbations of the data density; on the other hand, the
goodness-of-fit test developed in Section 5 of this paper helps to identify situations
where the actual g is far from any of the {f,: 6 € ©} in the Hellinger metric.

Let 2(g) = 47 { p,(x)p,”(x) dx with p, defined by (2.8). Under the assump-
tions of Theorem 2, Z(g) is positive definite because § §;,,(x)g*(x) dx is negative
definite and § §,(x)s,7(x) dx is positive definite for every ¢ € int (0). The normal
approximation to the distribution of 6, = T(9,) under g has density

@.1)  o(x; ) = n*’2x)"|Z(g)|"H exp[ —nt27N(x — T(9))"Z"Hg)(x — T(9))]

on Re. Still under the assumptions of Theorem 2, both T(g) and Z(g) are
Hellinger continuous at f,, which implies pointwise convergence of ¢i(x; g) to
o¥(x; fy) as gt — f,t in L,. Since ||pi(+; 9)|| = ||¢¥(<; f5)|| = 1 as well, the con-
vergence g* — f,t in L, entials ||p¥(+; g) — ¢¥(+; fy)|| — 0. Thus the normal ap-
proximation to the distribution of 8, is itself Hellinger continuous at f, (hence
also Prohorov continuous for Hellinger-metric perturbations). This result at
least encourages the belief that §,, is a robust estimator under data contamination
which corresponds to a small Hellinger-metric perturbation of some f;.

Another way to appreciate the robustness of 6, = T(g,) is simply to note that
a small Hellinger-metric change in §,, induced by data recording errors or other
mechanisms, will typically induce a correspondingly small change in the value
of T(g,), by virtue of the continuity of 7.

In an infinitesimal neighborhood of f,, the minimum Hellinger distance func-
tional T proves to be optimally insensitive to perturbations of its argument. To
make this precise, consider the set of all functionals U defined on & that have
the following two properties for every 6 € int (©)

(4.2) U(f) = 0
Ug) — U(fy) = § p(I0*(x) — f*(®)]dx + o(llg* — fl])

where p is a p-dimensional vector whose components belong to L, and the
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remainder term is a p-dimensional vector each of whose components.are
o(llgt — fy?||). Orthogonality of g and every component of p can be assumed
without loss of generality. For if this is not the case, p can be replaced by
p(x) = p(x) — [§ p(x)g}(x) dx]g}(x) and the difference between { o(x)[g}(x) —
fot(x)] dx and § p(x)[g}(x) — f,}(x)] dx, being O(||g* — f,*||*) componentwise, can
be absorbed into the remainder term in (4.2). Evidently, when Theorem 2 ap-
plies, the functional T belongs to this class of functionals.

The first requirement in (4.2) imposes a further constraint on p: for every
0 € int (©), § p(x)$,"(x) dx = I, the p X pidentity matrix. Indeed, for every unit
vector e € R? and for every a =+ 0,

e = a”[U(fosae) — U(/0)] .
(4.3) = a7 § p(N)[So4ael*) — so(¥)]dx + a0 (||Sp100 — Soll)
— [§ p(x)$,7(x) dx]e as a—0

provided (2.5) and (2.6) apply.

* We pose the question: which functional U within the class just described is
least affected by infinitesimal perturbations of f,? To answer this, we will ex-
amine the behavior of ¢"[U(g) — 6] for every constant vector ¢ € R?, assuming
that g is near f, in the Hellinger metric. By projection, g¢ can be represented
as follows: g#(x) = cos (7)fy}(x) + sin (7) 6(x) where 7 €[0, /2], ||d]| = 1, and
0 | fst. The second equation in (4.2) can be rewritten as
(4.4) U(g) — 0 =7 § p(x) 6(x) dx + o(y)
since the components of p are orthogonal to f;}. For y small and fixed (which
is equivalent to ||gt — f,}|| small and fixed), the behavior of |c"[U(g) — @]| is
determined primarily by the term |{ ¢”p(x) d(x) dx| = L, (o, 9).

The situation here can be described loosely as a zero-sum game between the
statistician and nature with payoff functional Lo, ). The statistician attempts
to minimize the payoff by choice of U, i.e., by choice of the function p subject
to the constraints established above: peL,, o | fp! and § o(x)$,"(x)dx = I.
Nature, pessimistically viewed, seeks to maximize the payoff by choice of per-
turbation direction 4, subject to the constraint ||d|| = 1. As proved in the next
theorem, which extends a result in Beran (1977), this game has a saddle point
in pure strategies; moreover, the statistician’s minimax strategy does not depend
on ¢ and corresponds to use of the functional T (when that belongs to the class
of functionals U being considered here).

THEOREM 6. Suppose that s, satisfies (2.5), p'e Ly, p 1 85, § 0(x)8,7(x) dx = I,
0e€L, 0 | s and||d|| = 1. Then for every c € R®,

4.5) max; min, L, (o, 6) = min, max, L,(0, 0) = L,(0y; 0y,,)
where
(4.6) po = [§ 3o(x)$5" (x) dx] 7',

doe = lIcTa0l| "0,
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Proor. It suffices to show that max, min, L (o, ) = min, max, L,(p, ) since
the reverse inequality is trivial. By the Cauchy-Schwarz inequality,
max, L,(o, 8) = ||c”p||, the maximizing choice of d being ||c”p||~*c"p. Since every
component of p can be represented as the sum of a function in the subspace
spanned by the components of §, and a function orthogonal to that subspace,
we can write p = A3, + o, each component of ¢ being orthogonal to every
component of 5, as well as to s,. The constraint § p(x)3,"(x) dx = I implies that
A = [§ $,(x)8,7(x) dx]77, so that p = p, + . Hence

“.7 min, max, L,(p, §) = min, ||c"p, + ¢"o|| = |[c"py|| .
On the other hand, for 4, , defined by (4.6),

(4.8) max, minp L,(p,0) = minp L,(o, 9,,)

= |le?pyl|* min, €7 § p(x)o,"(x) dxle = [|%q|
the last inequality using p = p, + 0. The theorem follows now from (4.7) and
(4.8).

Theorem 6 invites more speculation: since the functional T is (typically) locally
minimax robust at f, in the sense of (4.5) and since ||g,} — f4}|| —, 0 under the
assumptions of Theorem 3, it is already evident, heuristically, that the estimator
, = T(g,) should be asymptotically efficient in some sense under f,. In fact,
Theorems 4 and 5 showed this to be the case under some additional technical
assumptions. What is of particular interest, however, is a philosophical point:
local minimax robustness at f, entails asymptotic efficiency at f, but not con-
versely (as the method of maximum likelihood demonstrates).

The robustness properties considered so far have been based upon a Hellinger
metric model of data contamination. It is of interest also, though less convenient
mathematically, to examine the behavior of T under a mixture model for gross
errors; the results confirm our belief that T is robust and reveal the limitations
of Hampel’s (1974) influence curve in assessing robustness.

Let 6, denote the uniform density on the interval (z — ¢, z + ¢), where ¢ > 0
is very small, and let f; ,, = (I — a)f; + ad, for 6€©, a0, 1), and real z.
The density f, ,, models an experiment where independent observations distri-
buted according to f, are mixed with approximately 100a9, gross errors located
near z. The following theorem compares T(f, , .) with T(f;) = 6.

THEOREM 7. For every a € (0, 1), every 6 € ©, and under the assumptions of
Theorem 1, T(f; ,.,) is a continuous bounded function of z such that

(49) limz—m T(ft‘?,a,z) =0.

If f,(x) is a positive density continuous in x and if the conclusions of Theorem 2 hold
for g = fy, then

(4.10) lim, o a7 [T(fy,a.) — 0] = § [250(x)]"04,(X)0.(x) dx

for every real z, with o, defined by (2.9).
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Proor. We begin with (4.9). For simpler notation, write 0, = T(f},,..)
Stap = [l and s, =f2 Let my(f) = § 5(%)8)..(x)dx and let k() =
§ s, (X)[(1 — a)bsy(x) + atd,t(x)]dx. By calculation, using Cauchy-Schwarz,

(4.11) lim,_, sup,cq [k.(1) — m (1)) = 0.

Suppose 0, + 0 as z — co. Without loss of generality, by going to a subsequence
if necessary, we may assume that lim, ., #, = 6, # 6. Then, much as in the proof
of Theorem 1,

(4.12) lim,_, m,(6,) = lim,_, k,(0,) = (1 — a) § 55 (x)sy(x) dx
< — a)t =lim,_, m/(0).

On the other hand, since t = 6, maximizes m,(r) over @,

(4.13) lim,_, m,(0,) = lim,__, m,(0),

which contradicts (4.12). Hence lim,__, 6, = ¢ as asserted in (4.9).

Continuity of 4, in z is a consequence of Hellinger continuity of 7' (Theorem
1). Boundedness of 6, in z follows with the aid of (4.9).

Clearly lim,_, ||sy ., — $5|| = O for everyreal z. To prove (4.10), therefore,
it suffices to show that for every e e L,, 6 | s,

4.14)  lim,_ga" § o(0)[5p,0(x) — 5,(0)] dx = § [25,(x)]"0(x)3.(x) dx .
By calculation,

(4.15)  lim, a7 § s, 0(X)[8),0,(X) — $0(x)] dX = (—=2)7" §omzize 9(X)56(x) dx
and
lim, , a~* §a—zi<e o(x)[s,,,,,,z(x) — so(x)] dx
(4.16) = limy .y §1osi<e [50,,:(X) + 8o(X)] 0 (x)[0.(x) — fy(x)] dx
= Sjemsice [280(3)]70(x)0,(x) dx + (—2)7" §os<e 9(X)50(X) dx
which imply (4.14).

The limit evaluated in (4.10), viewed as a function of z, is the influence curve
of the functional T at f,. Actually, we have modified Hampel’s (1974) definition
slightly to make it suitable for functionals with domain in & ; however, the
change is otherwise unimportant. Since lim, ., 5,7'(x)o,,(x) need not be finite
for many parametric families {f,: 6 € ©} (such as the normal location-scale
family), the right side of (4.10) can be an unbounded function of z. On the
other hand, the first part of Theorem 7 shows: for every a € (0, 1), the difference
quotient (or a-influence curve) a='[T(f; ,.) — 0] is a bounded continuous func-
tion of z such that lim,_, a='[T(f;,.) — 0] = 0. Hence the functional T is robust
at f, against 100a%, contamination by gross errors at arbitrary real z; whether
or not the influence curve of T is bounded is irrelevant to the matter.

In mathematical terms, the convergence of the a-influence curves of T to the
influence curve need not be uniform in z, so that the influence curve of T can
differ dramatically in shape from each of the a-influence curves. This observa-
tion suggests two conclusions. First, to assess the robustness of a functional
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with respect to the gross-error model, it is necessary to examine the a-influence
curves rather than the influence curve, except in those cases where the latter
provides a uniform approximation to the former. Secondly, since a functional
with well-behaved a-influence curves can have an unbounded influence curve,
there is no intrinsic conflict between robustness of an estimator and asymptotic
efficiency.

That an estimator with unbounded influence curve can possess some degree
of robustness was recognized in Sections 5.3 and 8 of Hampel (1974), an example
proposed being the normal scores rank estimator of location in contaminated
normal distributions. However, Hampel’s Section 8 also observed that the
normal scores estimator is not very robust quantitatively; his Section 6 advo-
cated bounding the influence curve and compromising on asymptotic efficiency
sO as to gain quantitative robustness in parametric estimation. Our results for
the MHDE suggest that such an approach may be too pessimistic, since the
MHDE is asymptotically efficient at the parametric model and is quantitatively
robust in the local minimax sense of Theorem 6. It is noteworthy that, under
the mixture model of contamination, the breakdown point of a rank estimator is
typically fairly low whereas the breakdown point of a MHDE for location is £

5. Goodness-of-fit. Two major aims in estimation for parametric models are

(i) To fit a model which explains the bulk of the data by a procedure which
is insensitive to occasional divergent observations and is highly efficient at and
near the assumed model.

(ii) To identify as clearly as possible divergent observations for further
investigation.

The minimum Hellinger distance estimator studied in this paper provides a
method for achieving the first goal provided the specified family {f,: 0 € ©} con-
tains a density which is close in the Hellinger metric to the actual data density
g. We need a way to check the plausibility of this proviso for given data, a
way to modify the parametric family if it does not appear to fit, and a way to
identify those possibly interesting observations which are not well explained by
the fitted model.

A plot of the residual process f f;n(x) — §,X(x), 0, being the minimum Hellinger
distance estimator, is a useful starting point in considering these questions. For
fixed x, ntc, — oo, ntc,? — 0, and some regularity assumptions, the limiting dis-
tribution under f, of (nc,)}[ f 3,(x) — 9.4(x)] is N(O, 47"||w||*). Since this distri-
bution does not depend on x and since, for n large, the covariance function of
the process typically tends to zero rapidly as distance between its arguments
increases, it is possible to assess the gross features of the residual plot visually:
an occasional sharp peak marks the presence of divergent observations while an
underlying trend casts doubt upon the fit of the parametric family {f,: 6 ¢ 8}
to the data set. The nature of any systematic trend in the residual plot may
point to a more appropriate model; however, the goal is not to explain every
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observation (g, does that already) but rather to find a plausible model that fits
the bulk of the data. The suspended or hanging rootogram described by Tukey
(1971, Chapter 26) is related to the residual plot f 4,(x) — §.}(x), but differs in
several technical respects including the estimator of 6 and the den51ty estlmator

For assessing goodness-of-fit more formally, S Allk
seems particularly apt, since it estimates the Hellinger distance squared between
the actual data density g and the nearest density in the parametric family {f,: 6 €
©}. The magnitude of the latter distance affects the local minimax robustness and
asymptotic efficiency properties of d, as well as the meamngfulness of fitting an
fp to the data. It is important to note that the statistic || f 4, — 0.} does not
respond much to minor failures in fit such as a few outliers (cf Section 4). This
selective insensitivity is precisely what makes the statistic valuable in deciding
whether the bulk of the data can be reasonably fitted by an f,.

The following theorem and corollary establish an asymptotic approximation
to the distribution of the statistic when the observations are i.i.d. with density
fo- In principle the result can be used to approximate the significance level of
an observed value of || f 3, — .}|*; however, the accuracy of the approximation
is unknown. We retain the notation of Section 3.

THEOREM 8. Suppose

(i) w is symmetric about 0 and has compact support;
(ii) w is twice absolutely continuous; w"' is bounded,
(iii) g is twice absolutely continuous and g" is bounded; g is supported and positive
on a compact interval I,
(iv) lim,_, nc,? = 0, lim,_, nc,’ = oo;
(V) there exists a positive finite constant s depending on g such that ni(s, — s) =
O,(1) under g.

Let R, = max, ., X; — min,_, ., X,, let p,=4"'R||w||>, and let o, =

8-, R,||w x w||*, where « denotes convolution. Then the limiting distribution of
0,7\ (nc,||9.t — G}|® — p,) under g as n — oo is N(O, 1).

Proor. Initially we shall suppose that the scale estimator s, occurring in §,
has been replaced by its stochastic limit s; after establishing the theorem for this
case, we will show that the substitution makes no difference asymptotically.

Since g has support 7,

ne,d|g.t — gHI* = —2ne,t §1[8.4(x) — gH(x)]g*(x) dx
(5.1) = ne,t §; {—g7H()[ga(x) — 9(x)]
+ 4797 ()[Ga(x) — 9(9)T
— 87,7 X)[Gu(x) — 9(0)]}gH(x) dx
where &,(x) lies between §,(x) and g(x) and is continuous w.p. 1 for n sufficiently

large. The first integral in the last expression differs from zero by O,(nc,?).
Corollary 1 in Rosenblatt (1975) implies under the present assumptions that the
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limiting distribution of c¢,~*[nc, §; g3 (X)[F.(x) — 9(x)]' dx — p(I)||w|]*] is N(O,
2u(I)||w * w||*; here p(I) denotes the length of the interval 1. The third integral
in the last expansion (5.1) is bounded in absolute value by a constant multiple
of sup, |9,(x) — g(x)|nc,t § [G.(x) — 9(x)]’ dx; hence from (3.3), (3.10) and (3.11),
the third integral tends to zero in probability. Therefore, the limiting distribu-
tion of ¢, #[nc, 1§, — gHllF — 4=u(D)IIwlP] is N(O, 8=u()|[w 5 w][).

The substitution of R, for y(I) in the centering of ||§,! — g*||* is justified be-
cause the difference between R, and x(I) is O,(n~"). Indeed, suppose I = [a, b].
Let Uy, £ U, £ --- £ U, denote an ordered sample from the U(0, 1) distri-
bution. Then b — max,,., X, = G7'(1) — G*(U,,), which is bounded by a
constant multiple of 1 — U, = O,(n”") since g(x).= 0 > 0 on I. Similarly
min, ;. X; — a = O,(n™").

The use of s, instead of s in defining §, perturbs the value of §,(x) — g(x) by
a term whose supremum over x is O, (n~"c,™ + n~ic,’); this emerges from (3.10),
(3.11) and assumption (v). The corresponding effect on nc,} § [9,(x) — g(x)]* dx
is therefore negligible asymptotically. It follows from examination of (5.1) that
replacing s, by s does not change the limiting distribution of nc,||g,t — g*[|".

COROLLARY. Suppose the assumptions of Theorem 8 are satisfied for g = f, and,
in addition,

(vi) 8, is an estimator of 0 such that n}(0, — 0) = O,(1) under f,;
(vii) s, = f;} satisfies (2.5) for t in a neighborhood of 0; 6 ¢ int (O).

Then the limiting distribution of ¢, '[nc,||§,} — ff)ﬂ — p,] under f, as n — oo is

N(O, 1).
Proor. It suffices to show that
D, = ne(lss, — Gll" — llsy — 8. —,0  as n—oco.
From (2.5),

(5:2)  nedlsi, — 1P = nedl|(sy — §.2) + Gu — )73 + (0, — O)r,|*

where ||r,|| = 0,(1). Squaring out the right side of (5.2) yields an expression for
D, whose terms are clearly o,(1) with the possible exception of the cross product

ne, (0, — 0)7 § $y(x)[sy(X) — G.2(x)] dx .

However, a series of approximations for the integral like those used in the proof
of Theorem 4 ultimately shows that this cross product term also tends to zero
in probability.

It should be note that any sequence {c,} which satisfies assumption (v) of
Theorem 4 also satisfies assumption (iv) of Theorem 8. Thus, the corollary
proved above can be applied to the minimized Hellinger distance statistic.

6. Trial by numbers. For numerical work, it is useful to note that the mini-
mum Hellinger distance estimator 6 (we drop the subscript n for notational
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convenience here) can also be defined as that value (or values) of 1€ © which
maximizes § s,(x)§,}(x) dx, where s, = fit. If 6 denotes a reasonable initial
guess at d, Newton’s method applied to the problem yields the iterative algorithm

(6.1) Gom+n — gom _ [§ S5m(x)9,(x) dx] § Spm(X)G A (x)dx, m=0,

for s,, 5, defined by (2.5) and (2.6). Choice of a density estimator g, with com-
pact support simplifies numerical approximation of the integrals in (6.1) and is
desirable on logical grounds as well.

To check the feasibility and finite sample size behavior of 6 and its associated
goodness-of-fit statistic ||s; — §,}[|* = 2 — 2 § 55(x)d.}(x) dx, a modest numerical
experiment was performed. A pseudo-random sample of size 40 was drawn by
computer from a N(0, 1) distribution. In the first stage of the experiment, a
N(p, ¢°) distribution was fitted to this data for various choices of c,, the goal
being to identify values of ¢, suitable for normal samples of size n = 40. Initial
estimates for ¢ and ¢ were 2 =median {X,} and ¢ =(.674)' median {| X, — 4”|}.
Under normality, both of these statistics are root-n consistent estimators of their
respective parameters and both are robust under perturbations of normality.
The density estimator §,(x) = (nc,s,)™" 215, w[(¢,5,)"(x — X;)] was based upon
the Epanechnikov kernel w(x) = .75(1 — x?) for |x| < 1, with the scale statistic
s, set equal to . The derivatives required in (6.1) are §,(x) = {57,(x)} and
5)(x) = {§¢;P(x)} where, writing z = ¢7%(x — ) and 4 = 2-iz~4, we have

(6.2) 50 (x) = Ao~t zexp(—.257%)
§2(x) = Ao=¥(—1 4 %) exp(—.257")
and
SE0(x) = Ao~ (—1 + .52%) exp(—257°)
(6.3) 50P(x) = Ao~(1.5 — 42° + .5z*) exp(—.252)

SEP(x) = 53P(x) = Ao~H(—2.5z + .5z%) exp(—.257") .

Each numerical integral was evaluated by the trapezoidal rule over a grid of 100
equally spaced points on the support of §,. The test integral § g,(x) dx was ap-
proximated correctly to three decimal places by this procedure for every value
of ¢, considered in the first part of this experiment and for every case except
one treated in the second part of the experiment.

The 40 realized sample values were:

—.706781, .143266, .123015,  —.745385, 2.16105,
.654191, 1.14438, —.118696, .258899,  —.154302,
.352057, —1.28269, .885335, 2.51841, —1.09603,

2.04580, .402274, .0431284, —.456585, —2.07226,
—1.64175, —.0192038, 1.70932, 1929303, .144781,

—.885728, —.588767, —.169394, .699988, —.162130,

.0621123, 729453, 655040, 1.67987, —.194017,

1.01924, —.927988, —.524994, 133760,  —.412047.
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TABLE 1
Effects of varying ¢, on the MHDE for the observed normal sample of size 40

cn=4 ch=05ch=6 con=.7 cn=.8 ch=.9 c,=1.0

Location Sample median .0926 — — — — — —
estimates  MHDE of location .132 JA37 141 143 146 148 149
Sample mean .158 — — — — — —

Scale Rescaled sample

estimates median absolute

deviation .909 — — — — — —
MHDE of scale .962 977 992 1.007 1.023 1.039 1.056

Sample standard
deviation 1.012 — — — _ — _

For every case examined during this numerical trial, the Newton algorithm (6.1)
converged in three iterations to at least six significant figures. Examination of
the matrix § §5(x)g,}(x) dx showed that a local maximum had been attained. Some
of the results are presented in Table 1, to fewer decimals because of the numeri-
cal integrations. .

As might be expected, increasing the value of ¢, spreads out the density esti-
mate §, and therefore increases the minimum Hellinger distance estimate of a.
How should we choose ¢,? For appropriate {c,}, the minimum Hellinger dis-
tance estimator (MHDE) of (¢, ¢) is asymptotically equivalent, under normality,
to the sample mean and sample standard deviation (cf. proof of Theorem 4). It
is reasonable, therefore, to choose ¢, so that the corresponding estimates roughly
match the classical values in Table 1. On this basis, we selected ¢, = .7 as
roughly suitable for normal samples of size 40.

The second stage of the experiment examined the response of the calibrated
MHDE to outliers, essentially by calculating some points on an empirical a-
influence curve. Specifically, the observation nearest to zero in the data set listed

TABLE 2
Effects of varying X»; on the MHDE and on the classical estimates

Original X22:1 X22:2 X22:3 X22:4 X22:5 Xzz—flo Xza:15

sample
Location MHDE of loca-
estimates tion (¢, = .7) 143 0173 191 218 194 .156 .150 .151
Sample mean 158 184 209 234 259 284 .409 534
Scale MHDE of scale
estimates (cn=.7) 1.007 1.019 1.044 1.091 1.080 1.032 1.020 1.018
Sample standard
deviation 1.012 1.020 1.052 1.106 1.179 1.268 1.855  2.555

Goodness Fitted squared
of fit Hellinger distance .0176 .0134 .0198 .0219 .0322 .0401 .0418 .0424
Asymptotic upper
.)1,0 (I:)ritical \I,)me
for squared
Hellinger distance .0437 .0437 .0437 .0473 .0545 .0616 .0957 .128
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above, X,, = —.0192038, was replaced by a series of increasing positive values,
ranging from X,, = 1 to X,, = 15. The MHDE for location and scale (¢, = .7)
was computed in each case, as was the fitted squared Hellinger distance ||s; —
9.} and the asymptotic .10 critical value (upper tail) provided by the corollary
to Theorem 8; for the Epanechnikov kernel, ||w||* = 2 and ||w = w||* = 18Z. The
results of the various calculations are reported in Table 2.

For values of X,, consistent with the assumption that the entire sample is
drawn from a normal distribution, the MHDE follows the classical estimators
closely. But for X,, = 4 in Table 2, the MHDE recognizes X,, as a possible
outlier and begins to discount it smoothly. For X,, > 10, the MHDE differs
little from what it was at the original value of X,,. This behavior is in accordance
with the first part of Theorem 7 and with what we might expect from a good
robust estimator. It occurs even though, for infinitesimal amounts of gross error,
the MHDE has the same unbounded influence curve at the normal distribution
as the sample mean and standard deviation. Since only improbable values of X,,
are discounted, it is likely that the exact efficiency of the MHDE under normality
is near that of the classical estimator, at least for sample size 40 or more. (The
apparent reversal in the MHDE of location at X,, = 10 and 15 may be caused
by insufficient accuracy in the numerical integrations when X,, = 15).

The .10 upper critical values calculated from the asymptotic distribution of
[ss — §.}|* are all substantially larger than the corresponding observed values
of the statistic, suggesting that the fitted normal distribution is not unreasonable
in each case. This too is as it should be, since changing one observation out of
40 does not affect the bulk of the sample. The residual plot f;}(x) — §,}(x)
would suggest that the larger values of X,, are not consistent with the rest of
the sample under a normal model.
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