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IMPROVEMENT ON SOME KNOWN NONPARAMETRIC
UNIFORMLY CONSISTENT ESTIMATORS OF
DERIVATIVES OF A DENSITY

By R. S. SinGgH!
Indian Statistical Institute, New Delhi

Based on a random sample from a univariate distribution with density

/> this note exhibits a class of kernel estimators of the pth order derivative

[ of f,p = 0fixed. These estimators improve some known estimators of

ft® by weakening the conditions, sharpening the rates of convergence, or

both for the properties of strong consistency, asymptotic unbiasedness and
mean square consistency, each uniform on the real line.

1. Introduction. In recent years estimation of a Lebesgue density f by the
kernel method (apparently introduced by Rosenblatt (1956)) has become common
in the literature (e.g., Parzen (1962), Nadaraya (1965), Bhattacharya (1967),
Schuster (1969) and Singh (1974)). It is also known that a kernel estimator f of
Jfis (under certain conditions on the kernel and the scaling parameter involved)
asymptotically unbiased, mean square consistent, strongly consistent and asymp-
totically normally distributed at every continuity point of f. Presumably tempted
by these properties of f, Bhattacharya (1967) (and later Schuster (1969)) sug-
gested estimation of f», the pth order derivative of f, by f®), the pth order
derivative of . Intuitively one might think that this is the best way of estimating
f®' since fas an estimator of fhas the abovementioned desirable properties. This
paper, however, suggests otherwise by exhibiting kernel estimators /@ of f®
which are not necessarily pth order derivatives of f = /@, and yet f® possess
some desirable asymptotic properties under conditions weaker than those imposed
by Bhattacharya (1967) and Schuster (1969) for similar properties.

Another widely used method of nonparametric estimation of a density is the
orthogonal series method. A notable work on this is due to Schwartz (1967).
The present note shows that compared to the mean squared error (MSE) of the
orthogonal series estimator f* (of f) of Schwartz, the MSE of our kernel esti-
mator £ (of f) converges under much weaker conditions, to zero at a considerably
faster rate.

Throughout this paper, X;, ..., X, are independent real valued random vari-
ables with Lebesgue density f. For a real valued function t on the real line,
sup, |¢(x)| is denoted by ||¢||.

2. Known results. The most general form (Rosenblatt (1956), Parzen (1962),
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Nadarya (1965), Bhattacharya (1967), Schuster (1969) and Singh (1974)) of a
kernel estimator f of f is given by

(2.0) ) = by Ty k(55

where 0 < h = h(n) is the scaling parameter converging to 0 as n — co and K, is
a real valued function on the real line. Bhattacharya (1967) (and later Schuster
(1969) estimated f», the pth order derivative of f, by £, the pth order deriva-
tive of £, i.e., by

(2.1) FP(x) = (nhr 1)y Tp Ky (x—*—h X"'> :
where K'» is the pth order derivative of K.

THEOREM 2.1 (Bhattacharya (1967)). If f, fV, - .., f***V all are bounded, then
under certain conditions on K, (see [1], page 374)

(2.2) |Ef® — f@|| = O(h) .

THEOREM 2.2 (Schuster (1969)). If f, f, ..., f**V all are bounded and h =
n~Y+9  then under certain conditions on K, (see [7], page 1188) for every e > 0

(23) ||f(m ___f(p)” p— o(n—(1+£)/(21)+4)) w.p. 1 .

REMARK 2.2.1. In fact, if Schuster takes & = (n~* log log n)/**+% and in the
proof of his theoresn makes use of Theorem 2 of Kiefer (1961), he would get
lhs of (2.3) = O(n~'log log n)V/*»+¥ w.p. 1, a slight improvement in the rate of
convergence.

THEOREM 2.3 (Schwartz (1967)). Let f be of bounded variation and for an integer
r =3, f exist and for each j = 0,1, ..., r, § (xif"9(x))*dx < co. Let f* be
defined as in (3.1) of [6], (f* depends on X,, ---, X,, nand r). Then

(2.4) lECS* — [Pl = O(n=r=27r) .

Our kernel estimators (to be introduced in the following section) of f» possess
properties (2.2) and (2.3) even if only f*+V is bounded. In contrast to Theorem
2.3, if only f is bounded and for an integer r > 0 § (")’ < oo, then the lhs
of (2.4) for our kernel estimators of f is O(n=¢r=V/®"). Proofs are extremely
simple.

3. Kernel estimators of f», results and rates of convergence. Let r > p be
a fixed integer. Let 9" be the class of all real valued Borel measurable bounded
functions K vanishing outside of (0, 1) such that

1 . PN
(3.0) ]—' §yiK(y)dy =1 if j=p

=0 if _]:,&p, j:O,l,...,r_l.
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(%" contains polynomials on (0, 1) satisfying (3.0).)Let 0 < & = A(n) < 1 con-
verge to zero as n — oo. For a fixed K in 7" definite

3.0 fo) = (o K (X

It may be noted that the kernel introduced in (3.0) could be negative, thus
leading to a negative estimate for the density. But this is the price one pays for
faster rates of convergence for kernel estimates of a density.

THEOREM 3.1. If f™ is bounded, then

(3.2) IEf® — £ = O(k=).
And if forat > 1, { |f7]" < oo, then
(3.3) lhs of (3.2) = O(h"—?-7") .

Proor. Since X; are i.i.d. with density f, by a use of the transformation
theorem

(3.4) Ef®(x) = b= § K(y)f(x + hy)dy .

Since [ exists and is integrable on [x, x + %), expanding f(x 4 hy) at x in Ay
with integral form of the remainder at the rth term and then making use of the
orthogonality properties (3.0) of K, we get

(3.5)  EfP(x) = fO0)+((r— DA § KW (x+hy— 1y 0(e) di} dy .
Since K vanishes off (0, 1) and is bounded (say) by M, we get from (3.5)

(3-6) |Ef2(x) — f2(x)| < MAr=»= {2+ | 0]

Now (3.2) and (3.3) follow from (3.6), since {z** | f™| < &||f||, and by Holder’s
inequality for ¢ > 1, S:+h lf(r)l é {h(t—l) S |f('r)|t}1/t . D

The result of Theorem 2.1 (for which boundedness of all fo fO, - e, [P s
assumed) is similar to our result (3.2) with r = p + 1 (for which the boundedness
of only /™ is assumed).

THEOREM 3.2. Let K in (3.1) be continuous and of bounded variation. If (3.2)
holds, then taking h = n=Y/0r+,

(3.7 |f® — f®| = O(n=t-»/r+1 log log n)t  w.p. 1.
And if (3.3) holds, then taking h = n=*" with w = (r 4+ 1 — 1)1,
(3.8) lhs of (3.7) = O(n=*-7=t"D log log n)t w.p.1.

NotE. Since /® depend on #, f® in (3.7) are different from those in (3.8).

Proor. Denote K{(+ — x)/h} by Z,(+). Let F* be the empirical distribution
function of X, ..., X,. Let F = E(F*). Then, since h"“f""(x) =\ Z, dF*,
we have

(3.9) WH(fP()Ef?(x)) = § Z,d(F* — F) = { (F — F*)dZ,
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where the second equation follows by integration by parts together with K(f) = 0
for t ¢ (0, 1). Since K is of bounded variation with total variation of (say) k,
{|dZ,| £ k < oo, and we have from (3.9)

(3.10)  he¥||f® — Ef®|| < k||F* — F|| = O(n~*loglogn)t w.p. 1
where the equation follows from Theorem 2 of Kiefer (1961).

Since (f® — f®) = (f® — Ef®) 4 (Ef*® — f®), (3.7) and (3.8) follow
from (3.10) and their respective assumptions. []

The result of Theorem 2.2 (which assumes the boundedness of all f, /", - - -,
f*+1) is obtained from (3.7) with r = p + 1 (for which the boundedness of only
[+ is assumed).

To improve rates in (3.7) and (3.8) we have

REMARK 3.2.1. From (3.2) and (3.10), if #* = (n~* log log n)"*", then (3.7)
is strengthened to

3.7y Ihs of (3.7) = O(n~* log log n)*~»/@r+> w.p. 1.

And from (3.3) and (3.10), if #* = (n~!log log n)*, withw = (r + 1 — +=")7%, then
(3.8) is strengthened to

(3.8) lhs of (3.7) = O(n~'log log n)*"~»=*"9”2 w.p. 1.
It may be noted that rates in (3.8) and (3.8)’ increase with ¢.
THEOREM 3.3. If (3.6) holds, then
BA1)  E(f0(x) — fPx)) S MY(r=r=1 §20 | fO)) + (nho )7 (300 f
where M is a bound for |K| in (3.1).

Proor. Since X, are i.i.d. with density f,

(3.12) (nk*»+?) Variance (f®(x)) = Variance <K <X1 h— x>>

= VKX((y — /Wf(y) dy

= M f(y) dy
since |[K| < M and vanishes off (0, 1). Note that lhs of (3.11) = (lhs (3.6))* +
Var (f®(x)). Thus (3.11) follows from (3.6) and (3.12). []

The following corollaries are to Theorem 3.3, each of which gives rates for
IEGS® = fYl

CoroLLARY 3.3.1. Ifforat=1and a1, =1, §|f™|' < oo and oo > { |f|*
(:1 if t* = 1), then with h = n—s, where s = (2r — 2! + 1 + t*—l)—l,
(3.13) HE(fm — [Py = O(n~sir-r-tTYy

Proor. By Holder inequality §z**|f™| < (A" §|f™)"* for t = 1, and
fz+h f < (B2 § (f))V for 1, = 1. Now (3.11) together with these inequalities
gives (3.13). []
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Note that the larger the r and ¢, in the above corollary, the faster the rate in
(3.13). This rate is improved by each of the next three corollaries.

CoRrOLLARY 3.3.2. If forat = 1, §|f™|* < oo and f is bounded, then with h =
n=" where v = (2r + 1 — 2t7%)7,

(3.14) Ihs of (3.13) = O(n~2r=r=t71y |

ProoF. Since A~ {z** f is bounded in x, the proof of (3.14) follows from that
of (3.13). [

COROLLARY 3.3.3. If f is bounded and for a t, = 1, oo > {(f)* (=1 with
t, = 1), then with h = n=* where u = (2r + 1 4 t,7)7*,

(3.15) Ihs of (3.13) = O(n—-») .

ProoF. Since A~ {z+* | f™| is bounded in x, the proof of (3.15) follows from
that of (3.13). [

The rates in (3.14) and (3.15) increase with r and r,. Rates in (3.15) are better
than those in (3.14) for t = t, = 1. The same conclusion holds for = 2 and
t,=1ifr<2p+1, for t =1, =2iffr<3p+1; and for r=1 and ¢, =
2iffr < 5p + 3.

The rate obtained in (3.16) below is the sharpest among all those obtained in
(3.13), (3.14) and (3.15). Rates in (3.13), (3.14) and (3.15) approach to that in
(3.16) as ¢, t, there approach to infinity.

CoROLLARY 3.3.4. If f and [ are bounded, then with h = n="/2**",
(3.16) lhs of (3.13) = O(n=¥r-p/a+iny

Proor. The proof follows from (3.11) since §z** |f "] < A||f™|| and {i** f <
hIf1]- O

Note that the 7 in (3.13), (3.15) and (3.16) are not the same since the & there
are different and /» depends on .

The rate obtained in Theorem 2.3 (for which it is assumed that f is of bounded
variation (and hence necessarily bounded) and for an integer r > 3, /) exists
and for each j=0,1, -..,r, { (xif"9(x))* dx < oo) is improved significantly
(especially when higher derivatives of f do not exist) by Corollary 3.3.2 with
p = 0and 7 = 2 (for which the only assumptions are that f is bounded and for
an integer r > 0, { |f™|* < o).

4. Some final remarks. Those interested in further properties (such as asymp-
totic normality or integrated mean square consistency) of estimators (3.1) may
look at Chapter 1, Singh (1974). A generalization of the work reported here to
the independent nonidentically distributed case is considered in Singh (1975).
Kernel estimation of mixed partial derivatives of a multivariate density is treated
in Singh (1976), but unlike here, the author fails to obtain any explicit rate of
convergence for asymptotic unbiasedness or mean square consistency of the
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estimators there. The treatment in the latter two, however, cannot be expected
to be simpler than that in the present one.

Estimators of f'or /' are widely used in solving a number of statistical prob-
lems, e.g., see Bhattacharya (1967), Nadaraya (1965) and Singh (1974, Chapter

2).

Some important applications of estimators of f» for p larger than 1 can be

found in Singh and Tracy (1975).
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