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ON A CONJECTURE ABOUT THE LIMITING MINIMAL
EFFICIENCY OF SEQUENTIAL TESTS

By STURE HoLm
Chalmers University of Technology

For use in comparisons of sequential and nonsequential tests Berk (Ann.
Statist. 3 991-998) has defined the limiting relative efficiency of sequential
tests as the limiting ratio of the expected sample size under the null hy-
pothesis and the supremum over the parameter set of the expected sample
size. He has proved that for the symmetric binomial case the limiting rela-
tive efficiency of a class of SPR type tests coincides with a related quantity
for SPR tests of drift in a Wiener process. He has also conjectured that
this result applies to a more general class. In this note we prove that it
holds for exponential families satisfying some mild regularity conditions.

1. Introduction and result. Berk (1975) discusses comparisons between se-
quential and nonsequential tests. He considers random variables X, X,, - - - that
are i.i.d. copies of a random variable X having a pdf f(x|6) with respect to some
fixed measure 4, where @ is a parameter belonging to 0, a subinterval of R, and
he studies tests of the hypothesis H,: § = 6* against H,: ¢ > 6* with a prescribed
level a and a prescribed expectation v of the stopping time under H,. The locally
most powerful test in this situation has a stopping time of the form

N = inf{n: S, ¢ (—a,, a,)}

S, = N, [m{;‘%l—a):‘e:w '

H, is rejected if S, = a, and a, and a, are chosen to satisfy the constraints
Py(Sy = a,) = a’'and E,(N) = v. The asymptotic behaviour of this test (and
especially its expected stopping time in relation to the sample size of a locally
most powerful nonsequential test with the same slope at 6 = 6*) is given when
a = a, A a, tends to oo, i.e., v tends to oco.

The limiting minimal efficiency of a sequential test of the above type is defined
by 1/n(a), where

where

SUPjeo Eg[N] .

77((1) = lim,,_m
‘EpN]
Berk shows that for the symmetric binomial problem with 6 = p, 0* = }

E 7]
E7]

where E,[7] is the expectation of the hitting time r of the borders 1 — a and

7](“) = SUP,ecr
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—a of a standard Wiener process with drift . He also conjectures that this
result applies to a greater class of problems. In this note it is shown that the
conjecture is true when {f(x|6): 6 € ©} is an exponential class satisfying some
mild regularity conditions.

Suppose that { f(x|6): 6 € ©} is an exponential class, i.e., that

f(x]6) = c(8)e’ .
This means that ¢ is the natural parameter in the class. If the original parameter

is not the natural one, it is always possible to make a reparametrization and a
common factor (depending on x only) could be included in the measure 2. Now

5= [z, 28MNI0] oy oz
n i=1 80 9_o* =1 i

where

0
Z, =T(X)) —| = lnc(@ .
(=T =[Gy ne® ],
From Theorem 1 in Holm (1975) follows that a test based on the above random
sums S, with continuation region
—aM < S, < (1 — a)M
has the limiting level « as M tends to oo, i.e., satisfies
lim, ., P(Sy = (1 — a)M) = a.
Our theorem will be formulated for this type of test. For the theorem we also
need the following two conditions.
(1) To each interior point of © there exists a neighbourhood such that the
functions
n@) = inf, ., E@[Zl + r|Z < —r<Q]
and
72(0) = sup,so Eg[Z, — r|Z, =z r > 0]
are bounded in this neighbourhood. (If the conditioning event has probability

0, the expectation should be interpreted as 0.)
(2) If 6+ and 6~ are the upper and lower boundary points of © then

llm Sup0T‘9+ max (l-ér[l(Ze)];l 72(0)) < %)
0 1
and
lim sup,, ,- 22X (I—ET[IA(Ze)]] 19) « o
0 1

THEOREM. If{f(x|60): 6 € ©®}is a one parameter exponential class satisfying con-
ditions (1) and (2), then the abovementioned sequence of tests with asymptotic level
a has a limiting minimal efficiency 1/n(a), determined by
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where E,[7] is the expectation of the hitting time t of the borders 1 — a and —a of
a standard Wiener process with drift p.

The conditions (1) and (2) are satisfied for all common one parameter expo-
nential classes such as the classes of one parameter normal, exponential, gamma,
binomial, negative binomial and Poisson distributions. The main use of the
theorem is for asymptotic comparisons of the sample size of locally most power-
ful nonsequential tests and the maximal expected sample size of locally most
powerful sequential tests with the same asymptotic level and the same asymptotic
slope of the power function at the null hypothesis. It is also possible to use for
asymptotic power comparisons of locally most powerful nonsequential and se-
quential tests with the same asymptotic level and the same asymptotic maximal
expected sample size.

The function y(a) is the asymptotic ratio of the maximal expected sample size
of the locally most powerful sequential test and its expected sample size under
the null hypothesis. Numerical values of »(a) are given by Berk (1975). He
has also given numerical values of the local relative efficiency e(a) at the null
hypothesis, which is the asymptotic ratio of the sample size of a locally most
powerful nonsequential test and the expected sample size under the null hy-
pothesis of a locally most powerful sequential test with the same asymptotic
level and the same asymptotic slope. The asymptotic ratio of the sample size
of the locally most powerful nonsequential test and the maximal expected sample
size of the locally most powerful sequential test with the same asymptotic level
and the same asymptotic slope is then e(a)/n(a). Berk (1975) has given numerical
values of this ratio for « < 4. For a = 0.05 it takes the value 3.07 and it can
be shown to be greater than or equal to z/2 for « < 0.5. This indicates high
efficiency of the sequential test, although the asymptotic power functions are
not the same and slightly favor the nonsequential test.

2. Proof of the theorem. Holm (1975) studied tests with continuation region
—a M8, <a,M

where M tends to co. Theorem 1 of that paper says that

) 218 _ ]
(2.1) limy, o, Ppeyau(Sy = @y M) = ;;%*:;:;j for A=0
. = ayf(a; + a;) for A=0
an
. 1
lim,_., W Eperam(N)
. a (e2a1A —_ 1) — (1 _ e—ZazA)
(2.2) = % oS __le-zazA) for A+0
= a,a,/a, for A=0,

where ¢ = Var,, T(X), and the convergence is uniform in A on any interval
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—d < A < d if the regularity condition (1) is satisfied. Further by the proof
of Lemma 3 in the same paper

E[N] = max (a,M + 1,(6); e M + 1,(9))/E/[| Z,]]

which together with conditions (1) and (2) imply the existence of a constant ¢
such that

M
EJ[N] < - .
N = 5
Now first choose d so that
c 1 El]
— < = sUp,ep A4
d= o P g

Next by the uniformity in the convergence in (2.2) for —d < A < d we see that
for every ¢ > 0 there exists an M, > 0 such that

E,[N] — 7] < eM?

and
MZ
SUpgeo E,[N] — P SUP,e p E,l[f]
0

< eM?

for M > M, since the right member of (2.2) is in fact

1
— Ey[7].
0y

Thus for every ¢ > 0
SUPgeo Eg[N] _ sup,cp E,[r] + ay'e

lim,, ., <
E.[N] E[r] — aj’e
and
lim,, SUPyce Eg[N] > sup,.p E,[7] — gl
En[N] - E[z] + o
which proves the theorem.
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