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ASYMPTOTIC SOLUTIONS TO THE TWO STATE COMPONENT
COMPOUND DECISION PROBLEM, BAYES VERSUS
DIFFUSE PRIORS ON PROPORTIONS!

By DENNIS C. GILLILAND, JAMES HANNAN
AND J. S. HuaNG

Michigan State University and University of Guelph

Gilliland and Hannan (1974, Section 3) consider a general finite state
compact risk component and reduce the problem of treating the asymptotic
excess compound risk of Bayes compound rules to the question of L; con-
sistency of certain induced estimators. This present paper considers the
two state case and for several classes of diffuse symmetric priors on propor-
tions establishes the L; consistency with rate. The rate O(n—t) uniform in
state sequences is shown for the uniform prior giving strong affirmation to
the asymptotic form of a conjecture by Robbins (1951). The same or loga-
rithmically weakened rate is shown for symmetric priors which are A-
mixtures for several classes of A. A corollary shows a nonnull consistency,
without regularity conditions, of a maximum likelihood estimator.

1. Introduction, notations and summary. Robbins (1951, page 140) introduced
the compound decision problem and, in a featured example witn component
problem discrimination between N(—1, 1) and N(1, 1), suggested that the Bayes
compound rule versus the symmetric prior uniform on proportions might be
superior, exactly or asymptotically, to his bootstrap rule. Gilliland and Hannan
((1974), Section 3) consider a general finite state compact risk component and
reduce the problem of treating the asymptotic excess compound risk of Bayes
compound rules to the question of consistency of certain induced estimators.

The present paper treats the consistency question in the two state case and,
for several classes of symmetric priors including the Robbins prior, establishes
L, consistency with rate.

In the last example of Section 3, Gilliland and Hannan (1974) show that a
Bayes compound rule versus a symmetric prior 8 is provided by an equivariant
delete bootstrap rule s* with w an estimator induced by 8. In their Theorems
3 and 4, the N-component compound risk excess over the simple envelope,
R(N, s) — ¢(N), is bounded by finite sums of L, estimation errors of kw (where
k is a normalizing factor) plus terms O(N*) uniformly in empirical state distribu-
tions N. Thus, s* is an asymptotic solution to the compound problem.

(1) R(N, s*) — ¢(N) = o(N) uniformly in N,
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1102 DENNIS C. GILLILAND, JAMES HANNAN AND J. S. HUANG

provided the L, estimation errors are no larger. We treat estimation on the
(usual) relative frequency scale and obtain rates which carry over to near O(N?)
in (1).

The following notations will be used throughout the paper. For states &=
{F,, F,}, where F, = F, are probability measures on (27, &%), let p = F, + F,
and z = dF,/dpy with0 < z < 1. Let P = X P,e & and || || denote the norm
in L(P). For each n, let

(2) P:n_I#[illéién’Pi:Fd

and let B be a probability distribution on &+ symmetric under permutation of
coordinates. @ is identified henceforth with the distribution on orbits 8,, ;, - - -,
Bn41. Foreachi=1,2,...,n, let z; = z(x;) and for each K = 0,1, ..., n let
sz denote the symmetrization of the measure F"~* x F/* on (27, &Z)".

With the induced estimator (40) of Gilliland and Hannan (1974) with N =
n 4+ 1 and m = 1, we will use the normalizing factor & = n(w, + w;)~* and let

3) P(B) = wi/(W, +. W)

denote the induced estimator of the proportion p of states F;. To show the L,
consistency of the estimators p(8) and 1 — p(B), it suffices to treat the common
norm || p(8) — pll-

Theorems 1-4 establish rates of uniform L, consistency for the estimator (3)
for various classes of 8. Theorem 1 (Section 2) establishes O(n~*) for Robbins’
B and Theorem 2 (Section 3) establishes O((n/log n)~t) for 8 which are Beta-
mixtures of Bernoulli distributions. Section 4 considers A-mixtures of Bernoulli
distributions and, in Theorems 3 and 4, obtains consistency results for two classes
of A. The proofs are carried by analyses (Lemmas 2 and 3) of the concentration
of a posterior distribution about a maximum likelihood estimator and triangula-
tion about the estimator of Theorem 1. A nonnull consistency of that MLE,
without regularity conditions, is a corollary to Lemma 2 and Theorem 1. Lemmas
A and B of the appendix establish that log concave discrete and Lebesgue densities
possess increasing hazard rates from which follow tail probability bounds used
in the proofs of Lemmas 1 and 2. Lemma C and its corollary are results from
Hoeffding (1963), reshaped for direct application in the proofs of Lemmas 1 and 2.

In his example, Robbins (1951) demonstrated a bootstrap rule satisfying (1)
and suggested that the Bayes compound rule versus the symmetric prior uniform
on proportions (Example 2, page 137) might have lower compound risk across
N components. Huang (1972) has shown otherwise for N = 2 components.
However, Theorems 1-4 of this paper together with Theorems 3 and 4 of Gil-
liland and Hannan (1974) establish classes of Bayes rules in a more general com-
pound problem which satisfy (1) with strengthened rates near O(N*). One very
special case has been treated earlier: with the component problem discrimination
between a true coin and a 2-headed one, Samuel ((1967), Section 4) has indicated
an inductive proof of (1) for the Bayes compound rule versus the Robbins’ prior.
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2. Consistency of p(8) when B is the uniform prior. For n > 1 and K =
0,1, ..., n,let

(4) L = () 2, 2,0 0 2 (U — Zggn) o (1 — Zymy)

where the sum is over all n! permutations g and let L, = 0 otherwise. Note
that L, is a density of s, with respect to ¢* and (%)L is a generalized binomial
probability of K successes in n independent trials. (The L, notation was used
by Hannan and Robbins (1955) following their (6.5).) The induced estimators,
(40) of Gilliland and Hannan (1974) with N = n 4 1, are

(5) Wo=2,(n— K+ 1)BgLyg, W= 2 KBgLyg .
Before treating p(B) defined in (3), we find it convenient to treat a somewhat
different symmetric estimator. Fory = (75,71, *+*» 1)y 72 > 0, K = 0,1, - - -, n,
let
KyeL

© (CEPES

n3rely
Note that
(7 A=zdF, — (zdF,=2\22dp — 1 >0

by the Schwarz inequality and the linear independence in L,(y) of 1 and z neces-
sitated by F, = F,.

LemMma 1. With 1 =1log (V rx/ A 7x)s
(8) $Ant|lo(r) — pll = & + (87)t .

Proor. From (6) it follows that for integer M, 0 < M < n, (np(y) — M), is
bounded by

9) 2 (K= M), 1oLy DN DN 3022 < Z%+1<el 2x L, A 1)
2 rxLlg 2 relx a xL
where the last inequality follows from bounding out the ratio of y’s. For each

z, the sequence {L,} is known to be log concave (see Definition A of the appendix
and, e.g., Samuels (1965), (5)) so that by Lemma A of the appendix,

D% Ly>w L; < Lg/Ly, forall K>=M and L,>0.
Since Ly = ds,/dp", it follows that RHS (9) is a.e. s, bounded by

(10 Sia(et e 1),
LM
Since the minimum is less than (or equal to) every convex combination, for every

test function T

(11 §<e’%Al>dsM§e’§TdsK+§(l—T)dsM.

M
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Consider the test T = [} 2, < cx] and let

(12) e =\ z,dsy (= K§ zdF, + (n — K) § zdF,) .
With g, < cx < g, applications of the corollary in the Appendix give
(13) § Tds < exp — 207 (g — €)'
(14) § (1 — T)dsy < exp — 2n7(cx — )™
When X is so large that
(15) eexp —n e — py)' =1,
there is a ¢, between g, and g, such that ¢! RHS (13) = RHS (14), namely
_ Mkt nl
(o) L S M — )
For this choice, .
— nl - AK— M
w CK_#MZ#K2#M<1—‘2(ﬂK—#M)”>gﬂK4#M= ( 4 ;
and
(18) RHS (11) < 2 exp — (8n)7'AYK — M)*.

For K not satisfying (15), namely K < M + A~(nl)}, we use the bound 1 for
LHS (11) and, henceforth taking M = np, obtain

(19) Ant § (o(7) — p)s dsy — I} < 2An~% 3127 exp — (8n)7'AY? < (87)t.

Since, with / denoting thie F, <> F, interchange and the changes thereby in-
duced, s, = 8! _y> Lo-x = L/, A=A, 7o =7l _x, | =1I'and

— 2 (n= K)TK Z Kre'Ly'

M— =—(n—M —(n— M),
np(7) (n ) + Sl I (n )
we see that

(20) ‘ Ant § (o(7) = p)- dsy < RHS (8)

completing the proof of Lemma 1. []

Lemma 1 will later be used for the proof of L, consistency when g is a Beta
mixture of Bernoulli in Section 3. The following theorem is a rather immediate
corollary to it.

THEOREM 1. For the uniform prior Bz = (n +2)", K=0,1, .-+, n + 1,
@1 lp(B) — pll < (4A7'Q2an)t + 1)/(n + 2) -

ProoF. It follows from (3), (5) and (6) that; for uniform 8 and 7,
22 ="
(22) pB) = —— o) + - + 5

An application of the triangle 1nequa11ty and the / = 0 case of Lemma 1 complete
the proof of (21). [I
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As remarked in the introduction, the rate O(n~%) in Theorem 1 carries over
to O(N?) in (1), providing strong affirmation of Robbins’ conjecture concerning
his Bayes compound procedure. In subsequent sections we establish bounds for
[|p(B) — p|| for several classes of symmetric priors. To close this section, we
remark on the L, error of finite mixtures of symmetric priors.

ReMark 1. If B is a convex combination Y] ¢, 8,, then

(23) [1p(B) — pll = V lIp(B) — Pl -

ProoF. Letp, = p(B)and p,S, = > KB;xLg_;. Thenp(B) = X ¢, p,Si/ > ¢,S;
and therefore

PB) —p= X (pi— p):Si| X &Ss
from which (23) is immediate. []

3. Consistency of p(8) when S is a Beta mixture of Bernoulli. The Bayesian
approach of Shapiro (1972) (cf. also (1974)) to a two state classification com-
ponent empirical Bayes problem first prompted the authors to examine 8 = B(A)
which are mixtures of Bernoulli distributions with respect to a probability meas-
ure A on[0, 1]. Asseen in Remark 2 of Gilliland and Hannan ((1974), Section 4)
equivariant Bayes rules versus A in the empirical Bayes problem are Bayes rules
versus 8 = B(A) in the corresponding compound problem. Section 4 treats rather
general A-mixtures whereas this section treats the Beta mixture with parameters
a,b>0,

< T@+8) . .
24 — n+1 Kl_ n+l-K ~\7* T %) 11_ la'w
@) Be= (RN — oy (] — a)
for K =0,1, ..-,n + 1. This mixture is sufficiently smooth in K to permit the

use of Lemma 1 in treating ||p(8) — p|| and specializes to Robbins’ prior when
a=>b=1.

THEOREM 2. For B defined by (24)
(25) lp(B) — pll < 287 {n* + Bm)}}n~t 4 (a Vv b)n™

when
0" 1 .
26) p=0(1+2)(14+ —+logn) with o=la—1/V]o—1].
(26) 7 + ) (1 logn) i ja =1 v 16— 1]
Proor. Substituting the evaluation of (24) into (3) and (5) shows that

@7 ~ PB) = ey 0l7) + ).

+a
where p is defined by (6) and

_TK+aTm—K+8) o,

29) Tx X (n — K)!
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Weakening the result of the triangle inequality applied to (27),

(29) nllp(B) — pll < nlle@@) — pll +aVb.
The bound (25) will then follow from the application of Lemma 1 upon showing
that

(30) log (Vrx/Are) =7-

Lety, =V rxand y, = A rx and suppose t = 5. With rp = 7,7, K=
0,1, .- e,n— 1, 7,7, =TI re < TIo7 ' (rx Vv 1). Sincelog, ry < |ry — 1] and
re— 1= (@—DHn+1) (b—l)(n+a+b—-1),

n+b6)K+1) (+bn—K+b—1)

appropriate use of the telescoping bounds, (z + 1)~ < {z*! x~*dx, shows LHS (30)
is bounded by
n

Gl Ja— 1 ni}‘)(l + log n)

b_1_____”+”+b—1<_1_ L 4o - 1).
L el e T A )
Interchanging K with n — K and a with b in (28) shows that, if + < s, LHS (30)
is bounded by (31) with @ and b interchanged. Thus LHS (30) is always bounded
by 7. 0
REMARK 2. If @ = b = 1, then » = 0 and the bound RHS (25) is only slightly
weaker than the bound RHS (21) developed directly in the Robbins’ prior case.

4. Consistency of p(f) in the mixture case. When B is a mixture of Bernoulli
distributions, p(g) is the mean of a posterior distribution. This distribution is
shown to concentrate about a maximum likelihood estimator which is itself shown
to be consistent for p.

For given z, let
(33) 9(@) = 2 logfwz; + (1 — o)(1 — z)], UK
where here, and henceforth, all sums on i are from 1 to n. Since L, defined in
(4) is given by

(34) Ly = (%) 2 IIF Z; [k (1 - z;;)

where the sum is over all (%) partitions of {1, 2, - - ., n} into subsets {i;, - - -, ix},
{igi1s ++ s Iy}, it follows that

(35) e = 3 (o(1 — @) KLy .

When S is a mixture,

(36) Bx = § ("FHo*(l — w)*X+1dA K=0,1,....,n+1,

we write p(8) = p(A) and note that
(7)) N KBgLg,={werdh, Y (n— K+ 1)Ly =1(1 — w)esdA .
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Hence, by (3) and (5),

(38) pA) = fwd0,

where Q is the (posterior) probability measure on [0, 1] with density
(39) e?/§ e? dA with respect to A .

Let @ = @(z) be a maximizer with respect to w of the concave g defined in (33)
(9" < 0 except for z;, = -.. =z, = %) and record for later use the bound and

Fubini representation
(40) lp(A) — 8] = §|o — 0] dQ = [; Ol — & > 1] dt.
To bound the integrand in RHS (40), we will use the Taylor expansion about
@ for w €[0, 1] with g(w) > — oo,
(41) o) = 9(@) + (0 — O)g'(®)
o — oy (27, — 1y
R P (D ()
for some w* between w and @. Since (cb — @)9'(®) £ 0 and 0 < w*z, + (1 —
o*)(1 —z)< 1,

(42) 9(@) — 9(@) £ —$(w — @)*S forall wel0,1],
where
(43) S =73 2z, — 1.
Note that A defined by (7) is given by § (2z — 1) dF, = § (1 — 2z) dF, so that
(44) §(2z — 1*dFy A §(2z — 1)*dF, = A* >0,
and, therefore,
(45) IS]} = na?
LEMMA 2. For A = U, the uniform measure on [0, 1], and Q defined by (39),
(46) I§ o — @] dQ|| < At 4 o=t

ProoF. Lemma B of the appendix shows that for 0 < t < 1 — @,
Olo > & + 1] < Q[w > @] exp{g(® + 1) — g(@)}
and, applied to 1 — w, shows that for 0 < ¢t < @,
o < & — 1] < Qlo < 6] exp{g(@ — 1) — g(@)} -
Using (42) it follows that
(47) Olle —d| >1]se ™  for 0<r<1.

Applying Lemma C of the Appendix to centered —4*(2z, — 1)’ and using (45)
gives
(48) log ||le~#"S|| < —LnA%* + nrt/32.
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For # < 8A%, RHS (48) < —nA**/4. Since LHS (48) decreases with respect to %,
RHS (48) evaluated at 1* = 8A?, namely —2nA*, = LHS (48) for * > 8A’. There-
fore, partitioning the integration indicated in RHS (40) at 8!A A 1 and applying
(47), the Fubini theorem, and the above bounds, we obtain

(49) IS o — O] 4Ol < [t dr 4 (1 — §) e,
completing the proof. []

CoROLLARY 1. The MLE & is L, consistent for p at a rate O(n~%) uniformly in P.
Specifically,
(50) [|& — p|| < RHS (46) + RHS (21).

Proor. By Lemma 2 and (40), ||p(U) — &|| < RHS (46). Since p(B) of Theo-
rem 1 is p(U), (50) follows from the triangle inequality about p(U). []

THEOREM 3. If A has a density A with respect to U with (ess sup 4)/(ess inf 1) =
¢ < oo, then p(N\) is L, consistent for p at a rate O(n~%) uniformly in P. Specifically,
(1) Ip(A) — pll = (¢ + 1) RHS (46) + RHS (21) .

Proor. Displaying the dependence of Q of (39) on A, we see that 0, < ¢Q,.

Hence, by (40) and Lemma 2, it follows that [|p(A) — &|| < ¢ RHS (46) and the
proof follows from Corollary 1 and the triangle inequality about @. []

The key to the proof of Lemma 2 is the bound (47) for the posterior probability
Q|0 — @] > r]. An analysis of Q, leads to a bound which can be used to es-
tablish the L, consistency of p(A) for a larger class of A than covered by Theorem
3 but with some loss of rate. For 0 <t < 1 — @, the line g(®) + s(w — @)
where

(52) st = g(é + 1) — g(a),
is below the concave g on (@&, @ + ] and above it on (& + ¢, 1] so that by (39)
(53) Qo >d +1 _  §[o>d+ tlew®dA

Olo < 0w £ + 1] = S[‘?’<O)<@+t/2]e“w“7”dA
etAd + 1, 1]
= e\ @, & + 12)

With
(54) L2v)=inf{Aab)|0<aat+v=b<1} for 0<v<1,

(52) and (42) show that RHS (53) < (L(#))~' exp —4#*S and, since (1 + x7")~" is
increasing in x > 0,

(55) Qo > & + 1] < Qo > &](1 + L(f) exp £2S)~".
Treating the left tail by symmetry and combining the result with (55) gives
(56) Oflo — @] > 1] < (1 + L(¢) exp 3£28)™* for 0<r<1.

Partitioning the integration indicated in RHS (40) at ¢ and using weakened (56)
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on each part,
(57) (o —@|dQ < e + (L(s)) ' exp —1&*S for 0<e<1.

LeEMMA 3. If A'is such that L(¢) = ce” for 0 < ¢ < 1 for some c,r > 0, then,
with A abbreviating 2(r + 1)A~2,

(58) [|§ |0 — @] dQ|| < n~¥(Alogn)t + c~*(Alog n)~"? exp A%¢~2/32} .

, PROOF. Weakening (57) by the hypothesis, the triangle inequality and the
bound (48) with #* = }é* give

(59) [|§ |0 — @] dQ|| < ¢ + c7'e " exp{—nA’s’/4 4 net[128} .
Specifying ¢ = An~'log n and using n~*(log n)* < 4e completes the proof. []

For sufficiently diffuse prior, we obtain the L, consistency with a logarithmi-
cally weakened rate as an immediate consequence of Lemma 3 together with
Corollary 1.

THEOREM 4. If A satisfies the hypothesis of Lemma 3, then p(A) is L, consistent
for p at the rate O((nflog n)=t) uniformly in P. Specifically,

(60) lIp(A) — pll < RHS (58) + RHS (50) .

Proor. The proof follows from (40), Lemma 3, Corollary 1 and the triangle
inequality about @. []

We conclude with the following remarks about the function L.

REMARK 3. If A satisfies the hypothesis of Lemma 3, then ¢ < 1 < r. The
left inequality follows from the fact ¢ < L(1 —) < 1. The right inequality fol-
lows from the fact that, for every integer J, 1 = L(1) = 2/L(277) = 27¢c2-".

REMARK 4. If A is the Beta distribution with parameters a, b > 0, then L(e) =
cemforc>0and r =a Vv bV 1. In case either a = 1 or b 1, then RHS (26)
is ratewise the same as RHS (60) whereas if a = b = 1, RHS (26) is O(n~%).

APPENDIX

Lemmas A and B to follow establish that log concave discrete and Lebesgue
densities have increasing hazard rate (IHR). Bounds on tail probabilities follow
from THR and are used in the proofs of Lemma 1 (discrete case) and Lemma 2
(Lebesgue case). Barlow and Prochan (1965) have indicated following their
Definition 3, page 24, the equivalence of log concavity and Polya frequency
function of order 2 for Lebesgue densities and, in their Theorem 1 (Appendix,
page 229) have a result implying that PF, densities have IHR. Karlin (1968) in
his Proposition 1.2, page 332, establishes that PF, implies log concavity but
doesn’t include the converse. ,

Lemma C and its corollary are results from Hoeffding (1963) in forms which
readily apply in the proofs of Lemma 1 and Lemma 2.
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DEFINITION A. A sequence L, > 0 is log concave if [i| L, > 0] is an interval
of integers and L,,,/L; | on that interval.

LeMMA A. Let L; = 0 be log concave with[i|L, > 0] = I. Then L,,/(X.= L)) 1
with respect to m ¢ 1.

Proof. If k = m then L,,;L, < L,L,,; for all j = 0 by the log-concavity.
Adding these inequalities gives L,, Y12 L, < L, 12 L,. []

DerINITION B. A function f > 0 on the reals is log concave if I = {x| f(x) > 0}
is an interval and log f is concave on I.

LeEMMA B. Let f be log concave and integrable and let J(v) = {7 f(x)dx forvel
Then f|J 1 on I.

ProoF. Letg = log fandlet’denote the right derivative. On the right interior
of 1, (log (e°/J)) = ¢’ + e?/J = 0 since g(x) < g(v) + (x — v)g'(v) forv < xel
so that, if g’(v) < 0, e=?™J(v) < {2 "' dx = |g’(v)|%. []

The following lemma is a useful combmatlon of Lemma 1 of Hoeffding (1963)
and the proof of his Theorem 2.

Lemma C. If Zisarandomvariable with EZ = 0 and R = esssup Z — ess inf Z,
then
Ee” < pe=t% | ger® < e

withp =1 — ¢ = R esssup Z.
ProoF. By convexity of exp, Re” < (pR — Z)e™*® + (Z + gR)e?® and expec-

tation then gives the first inequality. Letting L = —gR 4 log (p + ge®) denote
the log of the middle term and ’ denote d/dR,
R R
L=—q4+ 9 - _P¢ 1
T e (P + g = *
and thus L < 0 4 0 - R 4 1R?/2! by the Taylor theorem. []
CoroLLARY (Theorem 2, Hoeffding (1963)). If X,, - - -, X, are independent ran-

dom variables with zero means and finite ranges, then VT > 0

P[Y X, = T] < exp{—2T*/3 R}}.
Proor. For 0 < &, LHS < Eexph(}, X; — T). By independence and the ap-
plication of Lemma C to each AX;, these bounds do not exceed exp {h* 3% R?/8 —
hT}. Minimization with respect to 4 completes the proof. []

Addendum. The results (Theorems 2 and 5) of Inglis (1973) on uniform a.s.
convergence to 0 of p(A) — p came to our attention after our results were com-
plete. (Our proof of Theorem 1 was done in 1971; some aspects of its natural
generalization were the objects of abortive interim efforts.) In the following
remarks, we (I) record a simplified version of his proof, (II) indicate how such
results follow from our work and (III) reinterpret our simplified version for
nonfinite states.
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(I) With F, = oF, + (1 — 0)F,and Z, = 0z + (1 — 0)(1 — 2) for 0 €[0, 1],
let

(i) %, ={w|\log(Z,/Z,) dF, < 5} .

From well-known properties of Kullback-Liebler information (cf. Lemma 1 of
Hannan (1960)) '

(ii) (pe’s 1 = =—peYc %, cZuc(p—np+0)

for » > 0 and 80 = 7*({ d|F, — F,|)*. Abbreviating V,|n"'g(w) — § log Z,, dF |
to 7, crude bounds based on the above inclusions give

(i) Ap —mp+ 1 < e .

Qp —mp+m) — LR — e7)e™”
It is easily shown that L is positive if A is positive on every nondegenerate sub-
interval of [0, 1]. The above bound then shows that, as n — co, Q concentrates
near p provided 77" converges to 0.

The uniform a.s. form of the latter is furnished by the Wald-Le Cam SLLN,
slightly upgraded to treat this independent nonidentically distributed case and to
establish the uniformity in P. The upgrading to finitely many possible distribu-
tions and establishment of uniformity are standard in the compound problem.
They result from application to norms of sums of i.i.d. random variables of the
trivial fact that, if ” denotes a map of the positive integers into the nonnegative
integers withn’ < nand 0 = §,, S, - - - is a sequence of numbers, then uniformly
over the class of such maps S, is o(n) if S, is.

(I) The uniform a.s. convergence to 0 of p(A) — p is a roundabout corollary
to our work. It follows from adding the bounds of the corollary of the appendix
(and (45)) that

(iv) o P[% > 2A-ﬂ] < 2A~* exp—}mAt .

Thus, § — oo a.s. uniformly in P and, from (57), p(A) — & — 0 a.s. uniformly
in P provided L is positive. The difference @ — p is treated by first noting that
Corollary 1 gives a constant C such that for every r,

) PV (|6 — plnefr, (r + 1) -} = €] < Ceirb
By analyzing ¢ it can be shown that for all integers 1 < m < o,

() Voo {100 = 0] V[0, = 0} < 3(2 = 1) Vi -

This together with (iv) gives the uniform stability of @ between cubes and since
p is uniformly stable between cubes, it follows that @ — p — 0 a.s. uniformly
in P.

(IIT) Some of (I) applies to compact dominated &= {F, |0 € 0} with z(f) =
dF,/dp replacing z, 1 — z. Reinterpreting » as a probability on © belonging to
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a class Q including all those with finite support, Z, as § zdw and p as the empiric
distribution of 6,, - - -, @, the leftmost inclusion of (ii) is not available but a
more basic form of (iii) is immediate:

(iii)’ Q(%ga) é e_2n6+n% .
Q(7;) MNZ)e o=

If Vo > 0, A(%Z;) is bounded away from 0 uniformly in p, (iii)’ then shows that,
as n — oo, Q concentrates “near” p again provided 2" converges to 0.
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