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ASYMPTOTIC DISTRIBUTIONS OF MULTIVARIATE
RANK ORDER STATISTICS

By LUDGER RUSCHENDORF

Technische Hochschule, Aachen

By means of a general weak convergence theorem some invariance
principles are proven for the multivariate sequential empirical process and
for the multivariate rank order process w.r.t. stronger metrics than the
generalized Skorohod metric. The underlying random variables are neither
assumed to be independent nor to be stationary. These results are then
applied to derive convergence of the weighted empirical cumulatives and
for the weighted rank order process. Finally by a new representation as-
ymptotic normality is proven for a general class of linear multivariate rank
order statistics.

1. Introduction. In the literature, asymptotic results for multivariate rank
order statistics are derived in several papers for independent, stationary random
variables and under contiguous alternatives. For the case of testing the inde-
pendence hypothesis cf. e.g., Ruymgaart, Shorack, van Zwet [10], Ruymgaart
[11] and Behnen [1].

The aim of this paper is to develop an approach which under comparable
weak boundedness assumptions concerning the scores functions and under weak
boundedness conditions for the regression constants yields asymptotic normality
of linear rank order statistics also for nonstationary and dependent random vari-
ables (including e.g., outlier models).

To that purpose we prove in Section 2 a theorem which allows us to obtain
weak convergence for processes with values in the generalized Skorohod space
w.r.t. stronger metrics than the generalized Skorohod metric. By a generaliza-
tion of the Birnbaum-Marshall inequality and by a theorem of Garsia [5] it can
be shown, that the assumption of this theorem is fulfilled in many interesting
situations.

In Section 3 we apply this method to the multivariate sequential empirical
process and obtain in the special case of i.i.d. random variables weak convergence
w.r.t. functions r(s, t, - - -, t,) of the type (s T[%, t,(1 — [k, ¢,))}~ which is for
k = 1 essentially the result of Wellner [1‘3]. By means of a Pyke-Shorack type
representation of the multivariate sequential rank order process as function of
the random time transformed empirical process we obtain further weak con-
vergence results for the rank order process under stronger metrics.

In Section 4 we apply these results to the weighted empirical cumulatives and
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to a weighted rank order process which has been treated in the one-dimensional
case by Hijek, Sidak [6] and Koul, Stoudte [7].

Finally in Section 5 we derive asymptotic normality of general linear rank
order statistics; we do not assume only a finite number of discontinuities or a
product form of the scores functions as, for example, in [10], but we do need
a differentiability condition for the df’s. For the proof we use a new representa-
tion of multivariate rank order statistics, which allows application of results
for the sequential rank order process.

2. Weak convergence in stronger metrics. Let (D,, d,) denote the generalized
Skorohod space of ‘left side’ continuous functions with discontinuities only of
the first kind (for definition cf. [2]). The following lemma is the main tool for
proving weak convergence for a D,-valued process (X,),cy, W-I.t. stronger met-
rics than d,. It generalizes Theorem 2 of Chentsov [3] and weakens his assump-
tions a bit. For r: [0, 1]* — R,, r continuous, define the measurable set

2.1) Ur)={geD,lgl < r}.

LEMMA 2.1. Let r: [0, 1]* — R, be continuous, let X, = X, on (D,, d;) (weak
convergence) and let X, have continuous finite dimensional distributions, then

2.2) lim, .. P(X, € U(r)) = P(X,e U(r)) -

Proor. The proof of Theorem 2 of Chentsov [3] can be generalized to the
present situation to yield (2.2), observing that Chentsov’s condition (17) can
be weakened to the tightness of (X,),.y, (cf. relation (36) of Chentsov [3]) and
further that Chentsov’s condition (18) can be replaced by the assumption of
continuous finite dimensional distributions since in this case, relation (29) of
Chentsov is fulfilled, while relation (32) of Chentsov is fulfilled automatically
by the new definition of U(r) and the monotonicity of probability measures. 0

THEOREM 2.2. Let r: [0, 1]* — R, be continuous, r > 0 on (0, 1]* and let fur-
ther X, = X,on (D,, d,), where X, isa.s. continuous, has continuous finite dimensional
distributions and is such that for 6 > 0

. X(t
(2.3) llms_,o'woP(supoétss l ‘E(t))| = > =0, then
(2.4) X, = X, on (D, d,), where d.(f, g) = d.(f]r, g]r) .

ProoF. According to Skorohod’s theorem (cf. [4], Theorem 3), there are a.s.
converging versions of (X,),cy, W.r.t. the uniform metric p on [0, 1]¥. Working
with these versions and using that r(f) = ¢’ > 0 for 1 ¢ [0, §) we get

(2.5) oY Xy =p (2=, 22

r r

< supug.y Kl :rt)nxmn L xy.
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By assumption the second term converges to 0 a.s. Further (2.2) applied to
U(er/2) implies for n = n,.

(26) P<Sl,lp‘,S M)L‘*ZM = e> < 2P<sup°§t§sm > _e_) + 9

r(t) iy ~ 2

which can be made small by (2.3) for suitable 9. (2.5) and (2.6) imply weak
convergence of X, to X, on (D,, d,). []

The following two lemmas supply conditions under which (2.3) is satisfied.
The first lemma generalizes the Birnbaum-Marshall inequality and is concerned
with martingales (MG) or positive submartingales (SMG) with multidimensional
time. The proof of this lemma is based essentially on a recent inequality derived
by Shorack and Smythe [12]. In this connection (Y(f)),c( ¢ is called a SMG
(MG) if

2.7) E(Y(H)|,) = Y(t A ) (‘=" in the MG case)

for all ¢, s € [0, 1]¥, where the infimum ¢ A s is to be understood coordinatewise
and where

U, = W(Y(u);uecl0, 1%, u < 5).

We assume that 11, has a product representation for all s. Let A denote the
multidimensional difference operator and let ¥, denote the class of all separable
MG’s or SMG’s Y with k-dimensional time [0, 1]¥, such that EY(f) = 0 and
[(t) = EY?*(1) is of bounded variation. By induction in k it can be shown, that

(2.8) AT = E(QAY)*=0 if Y isa SMG  and
AT = EAY)* if Y isa MG.
Therefore for Y e &, with I'(f) = EY¥(f) the following definition is meaningful.
(2.9) Rp = {r: [0, 1]* > R,; r continuous, Ar = 0 and
Sto,u6 7(1) dT(f) < o0} .
LEMMA 2.3. For Y e, with I'(t) = EY*(t) and for re R;

@10 P(supeun I 2 1) S S0 a0 < oo
Proor. For! = (I, ---, 1) e N¥, ce R, define ¢/ = (cl,, - - -, cl,) and further
e, = (1, -.-,1)eR,. Continuity of » and separability of Y imply
@.11) P(supte[o,ﬂk YOl > 1)
r(1)
. | Y (12"
= lim,_,, P <max,eN,,,l§2,,,k ((l//2"))| )
|Z1.Sl (z ek)/Zh' YI > 1>

= lim,_, P (max,ézﬁ,k

r(l/2%)
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According to (8) in Shorack-Smythe [12] we get
@12 P(sup B’% 2 1) < lim, o Digor, 1 () B ¥

= S r7%(1) dT(r) by (2.8). 0
The second lemma concerning condition (2.3) is useful when X, has a Gaussian
distribution. Let (Y(?)),cp0,11+ be @ Gaussian process with mean 0 and continuous
covariance function K and let p = p, be defined by
(2.13) p(u) = max,,_, ... EHY(t) — Y(5))?,
= max,_,<..3 (K(t, 1) + K(s, 5) — 2K(s, 1))}, 0<ucxgt,

where |t — 5| = max |t, — s,|.

The proof of the following lemma is immediate from Theorem 1 of Garsia [4].

Lemma 2.4. If () (log 1/u)t dp(u) < oo, then for a version (X(1)),cpo.x Of the
process (Y(1))reroe

(2.14)  sup_ua, 1X() — X(9)| = 16(log B)p(:) + 16(2K) 5 (log L)' dp(a)
where EB < 4(2)}, B = 0.

3. The sequential empirical process and the multivariate rank order process.
For every n > 1 let X,; = (Xi,, ---, X},), | £j < n be k-dimensional random
variables with continuous df’s F,7, Fi, of X, ;, Xi, respectively. Let F,; denote
the empirical df of (X2, ---, X%,), F,, = n=' 3}%_, F}, and let further R}, =
nF,(Xji,) be the rank of X/, in the corresponding n-tuple. Then we define the
multivariate rank order process L,(s, f) for se [0, 1]and t = (t,, - - -, t,) € [0, 1]*
by

(3.1) Ly(s, f) = n~4 YU (IR, < nty, -+, R, < nt) — H, (1)}

nl =

where I(A,, ---, 4,) is 1 if 4, --., A4, are fulfilled and O else, and where
Hnj(t) = Fnj(F;ll(tl)’ R | F;It(tk)) .
In order to prove weak convergence results of the D,,,-valued process L, we

apply in the first part of this section the results of Section 2 to the multivariate
sequential empirical process V, defined by

(3-2) Va(s, ) = n=4 Bl {I(Fu(X0) < 1, -+, Fu(Xh) < 1) — Hyi(0}

The following theorem is immediate from an obvious modification of Theorem
2.2 and from Lemma 2.4.

THEOREM 3.1. If V, converges weakly to an a.s. continuous Gaussian process V,
with continuous covariance function K, K(t, t) # 0 for t in the interior of [0, 1]k+,
if further r: [0, 1]¥** — R is continuous, r > 0 in the interior of [0, 1]* (cf. Remark
3.1c) and if

(3.3) 53 (1og )’ dpu(s) < oo,
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where M(s, t) = K(s, t)[r(s)r(t), then
(3-4) Vo=V, on (Dk+1’ dr) .

REMARK 3.1.

a) Weak convergence of V, w.r.t. (D,, d,) has been proved under general
conditions in the literature. If for example, K, denotes the covariance function
of V,, and if K, is pointwise convergent to K, and if further there exists a meas-
ure defining function I of bounded variation such that AH,; < AT, then V, =V,

on (D,,,, d,,,) by Theorem 1 of Riischendorf [9] in the ¢-mixing case. In the
special case of independent random variables, where

1
Kn((sl’ [1)’ (Sz, 1‘2)) = *n— 25‘7:181“2)] (Hnj(tl A tZ) - Hnj(tl)Hnj(t2)) ’

the assumption K, — K is also necessary by a result of Neuhaus [8]; this is true
since

lim K, ((5y, 1)), (83 1)) = Ko((S1 11)5 (825 1))
if and only if lim,_, K,((1, &), (1, 8,)) = K,((1, t,), (1, ¢,)), and in this case
Ko((515 1) (59 1)) = (51 A 8)Ko((1, 1), (1, 1,)).
b) In the independent stationary case we have
(3.5) Ko((5y5 1)5 (855 0)) = (83 A STk (1, A 0) — TTk, 05}
With r(sy, £, -+, ) = [s T, (1 — TTho )]0 9%and s = (s, 1y, -+, 1), £ =
Sy + by -y b+ Ry), M(s, 1) = Ki(s, H)/r(s)r(s)
M(t, t) + M(s, 5) — 2M(s, 1)
(3.6) = (5 ) ITE (4 + B — s TTE, 8
S (s k) Tl (4 k) — s [T t)° < Kmaxgg A

Therefore,

Pu(u) = K'u? which implies  {jlog (iy dp,(u) < oo .
u

This example generalizes a recent result of Wellner [13] for the case k = 1. It
shows, that in this case both methods lead to results of about equal strength.

c) Define B = {(t), - - -, t,41); 3i, t; = 0} and define the interior of [0, 1]¥+
by [0, 1]*+' — (B U e,,,). [ '

In the one-dimensional independent case we can also use Lemma 2.3 to obtain
weak convergence w.r.t. stronger metrics. Let v denote the df of the one di-
mensional Lebesgue measure on [0, 1]. For monotone increasing functions I'
on [0, 1] of bounded variation define

Qr ={r:[0,1*—> R*, r continuous, Ar, =0,i=1,2
3.7 where r(t, ;) = r(t, 1), r(t, t,) = r(t, 1 — t)
for 1, < 1,6, < 3§, Spoae () dvI(1) < oo} .
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THEOREM 3.2. Let (X,;)i<;<n be independent, one-dimensional and let K, be
pointwise convergent to K,. If there exists a 6 > 0 and a monotone increasing con-
tinuous function I' on [0, 1] of bounded variation such that

(3.8) H,0) <%, H,1-9=4%, Y, n
(3.9) H,(t) — H,;(t;) = T'(t,) — I'(t) vV, 14,
then there exists an a.s. continuous Gaussian process V, such that

(3.10) V,=V, on (D,,d,) for reQ..

Proor. By Theorem 1 in [9], there exists an a.s. continuous Gaussian process
Vs such that V, = V, on (D,, d,). Now

— - ns I{Fnl(Xgol) é t) - Hnj(t)}
W =t m Al =0 =

is a martingale. Therefore, by (3.7) and Lemma 2.3 for 9, < ¢

V.(s, t W.(s, t A
(311) P(supoétégz’ogsggl L;'('E—f[—)—)-l- z 2> é P(Supo§¢§32,0§8§81 '—r(—s(,t—)—)—' g '2’_>

< %g Sroap2 773(s, £) dvl(s, 1) .

(3.11) implies (3.10) similarly to the proof of Wellner [13] in the stationary
case. []

REMARK 3.2.

a) The technique of the proof of Theorem 2.6—which is essentially the same
as those of Wellner—does not generalize to the k-dimensional case, since the
MG (or SMG) property is not fulfilled for £k > 1.

b) If 1/n 3i%_, H,;(f) converges to H(r) for all ¢, the result of Theorem 2.6
can be sharpened using Theorem 2.2 to yield convergence for re Q, D Q.. For
the proof observe, that under this additional assumption W, converges weakly
to an a.s. continuous martingale. []

To apply the results to the multivariate rank order process L,, we need the
following two assumptions.

AssuMPTION A. The reduced empirical process V, converges weakly on
(D415 dy4,) to an a.s. continuous Gaussian process V, with continuous covari-
ance function K,, such that K(t, f) # 0 for ¢ in the interior of [0, 1]**.

AssUMPTION B. There exist partial derivatives I;, 1 < i< k for H,;, 1 <
J < nsuch that with [[» = 1/n 33", I%;
(3.12) lim, ., ["(x) = I(u) 1<i<k

uniformly in « € [0, 1]* and /; is continuous on [0, 1]*.

THEOREM 3.3. If conditions A, B are satisfied, then the multivariate rank order
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process L, converges in distribution to the a.s. continuous Gaussian process
(3.13) Lys, 0) = Vs, ) — s 2, LWL, 1, ooyt -+ o, 1)
on (D, d,) for r: [0, 11*+* — R, r continuous such that r > 0 in the interior of
[0, 17¥+* and
ELy(u)Lo(v)

r(@r(v)

Proor. L, has with probability 1 the following representation
(-15)  Ly(s, ) = Va(s, Foyo Fii(t), -+, Fop 0 Fii(1))

+ 7 BEHEAFL ), - - -5 Fil(t) — Hay(0)

where F.}is defined by

(3.14) P Sfulfills (3.3), where M(u, v) =

F{t) = —oo  for tie[o, i)
n
(3.16) = Xi for tie[i, k + 1)
n n

= Xi., for ¢, =1
Xi.. denotes the kth order statistic of {X},, - .., X¥].
According to the Skorohod theorem there exist a.s. converging versions of
(Va)new, W-r.t. p which lead to versions of F,; and (in virtue of (3.15)) of L,
with this property. Working with these constructions, we get by Taylor ap-
proximation of first order
DEHFIFL®), - - -5 FRi(t) — Hy;(0)}
(3.17) = ZP{HI(F,y 0 Fo1), -+, Foy 0 FRi(1)) — H,i(0)}
= X (Fuio FiN1) — 1) 272 ()
where g, lies in the closed interval
[(min {Fyy o Fi(t), 1), -+, min {F,y o F3(5), 1)),
(max {F,, o FA(t,), t}}, - - -, max {F,, o F;X(1,), t,})] .
We further have with probability 1 the following relation
”%(Fm‘ ° F;il(ti) )
(3.18) = n}(F, o F7}(t) — F,; 0 FL(1)) + nd(Fo; 0 Fi(t) — )
=~V (L, 1, .-, F o FXt), -+, 1) + o(n}).
Now lim,_, o(F,; o F;}, 1) = 0 a.s. and continuity of ¥, w.r.t. p imply

nid

(3.19) [Vo(s, Fryo Frly oo Fopo FaN1)) — Vs, )l = p(V,, Vo) + o(1) .
Further limn—»oo an(l’ ] Fni ° F;il(ti)7 B 1) - V0(19 ] tt, ] l)l = 0 uni-
formly in ¢, and (3.12) imply
(3.20) lim, ., [V,(1, -+, F, 0 F;Xt), -+, DI*1,)

— V1, -yt oo, DL =0
uniformly in s, 7,.
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(3.15)—(3.20) imply L, = L, on (D,,,, d,,,)-

Now Theorem 2.2 and Lemma 2.4 can be applied to yield the result. []

REMARK 3.3.

a) Assumption B is satisfied in the stationary case for k = 1 with /() =1
and in the independent stationary case for k > 1 with [,(t) = [];,.t;. Fork =2
it is e.g. satisfied in the stationary case, when F is a bivariate normal distribution.

b) In the independent stationary case, k = 1, (3.14) is fulfilled for

r(s, by o cos ) = (5 TTky (1 — TThoi )i (cf. Remark 3.1b).

4. The weighted empirical cumulatives and the weighted rank order process.
The weighted empirical cumulative function U,° is defined by

4.1) U, () = n=t 30, ¢ {I( X3, < Fri(), -+ -, Xiy < Foi(t) — H,; (0} .

Defining discrete signed measures z, on [0, 1]8' by

(4.2) ()= et l<i<n,
n

where ¢}, are obtained inductively from c,, = >%_; c¥,, we get the following
representation of U, °

4.3) U, (1) = Spo,01 V(55 1) dp(s)
Defining for r: [0, 1] > R and for a signed measure g,
(4.4) po—epy O lim, . § frdp, = § frdp,

for all fe C[0, 1] and if further § rd|p,| £ M < oo for all ne N,, where |y,
denotes the measure of total variation, we get the following theorem.

THEOREM 4.1. If Assumption A is fulfilled and if there exists a signed measure
Yo Such that p, —, p,, then the weighted empirical cumulative process U, converges
weakly to the a.s. continuous Gaussian process

4.5) Uy'() = S1o,01 Vo(S5 1) dpeo(s) on (D, d,z)
forr,: [0, 11* > R, r, > 0 in the interior of [0, 11* and such that r = rr, fulfills
(3.4).

Proor. By Assumption A, V, converges weakly to V, on (D,,,, d, ). Using
a.s. converging versions w.r.t. p, ., Theorem 10 follows from the condition
U —r, Mo, the a.s. continuity of ¥, w.r.t. p, , (cf. Lemma 2.4) and the follow-
ing inequality

V,
(46) S Vn dﬁn - S VO d.uo é prl(Vm VO) S rn dlnunl + S r—orl d(/’en - /“O) ‘ D
1

As further application we consider the asymptotic behaviour of the following
weighted rank order statistic

47 T =n? T (R S nty, -, RY < onty) — Ho(1))
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The one dimensional case T,°(t,) (with a different normalization) has been treated
by Hajek and Sidk [6] in the i.i.d. case and by Koul and Stoudte [7] in the
nonstationary, independent case. Using the a.s. representation

(4.8) T,5(1) = Sto,11 La(s, 1) dpr(s)
and Theorem 3.3, the proof of the following theorem is analogously to that
of Theorem 4.1.

THEOREM 4.2. If Assumptions A, B are fulfilled and if there exists a signed
measure p, such that p, —, 1, and (3.4) is fulfilled for r = r,r, then T,° converges
weakly to the a.s. continuous Gaussian process
(4.9) Te(t) = (o1 Lo(S, 1) dpg(s) on (D, d,).

REMARK 4. Let under the conditions of Theorem 4.2 the covariance function
K, of V, converge pointwise to K,, where K, is of the type Ky((s;, #,), (55, 1)) =
(s A 5)T(1y, 1), Then T(7) has a N(0, ¢®) distribution with

0% = (Sto,11 Sto,01 # dpto() dpo(S))T(1, 1) + (Sro,11 # dpag(w))?
(4.10) XAX i LOLOT, sty -, 1), (4, ooy 1y, - 00, 1))
-2 Zz li(t)]-‘(t’ (1’ ) ti’ M) l))} .
Using (4.4), (3.3)

2 §io11 S1o,01 % dpeo(u) dpe(s) = o,y S5 A S5 d#o(sl) dp(s,)

= S0 Sto —2 . ( 1) y ( 2) —2= ri(s)r(Sz) dpeo(s:) dpeo(sy)

= C(Srou7(s) dlpo()])* < o0
In the same way
(o # dpt())* < o0

and, therefore, 0% < co.

5. A direct approach to convergence results. The aim of this section is to
treat rank order statistics of the type

(5.1) S = X%y (Rf»l e &i&)
n

n

with regression constants c,; and scores functions ¢,. For the proof of con-
vergence we use the following representation

Ri, Rﬁk)
9D”( n’ " n

l l .
(5'2) = Z(tl.m,zk)gmk Pn (71 (IR >I(R v =1hL, -, Ri, =1)
bk <1
= Z(zl ..... lk)Smk'zn 7’ I(Rnl— s RS 1),
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with
l ] n n
(5'3) Ay (';:— [ 7") = Ai%i+1)/n e Ai%u)/n Pn for (Iv A | lk) F €,
e
= 9%("’"‘) for (I, .- L) =e,
n

where in the right hand side expression each one-dimensional A-operator with
upper index n/n is omitted. The last equality in (5.2) can be shown by induction
in k. Define

(5‘4) S’ = n‘*(S‘,f - an)
with

l l
@, = 2%a1Cnj Datgeenty) Hag (—nl—a Ty 7")

For r: [0, 1]* —» R and for a signed measure 4, define 4, —, 4, similarly to (4.4);
then

THEOREM S5.1. If Assumptions A, B are fulfilled and if there exist signed
measures po, A, such that p, —, po, A, —,, 4, and (3.14) is fulfilled for r = r,r,
then

(5.5) S,* — N(0, o%

with
0 = E(§po, 101 Lo(5, 1) dAy(1) dpo(s))’ -

Proor. The proof follows from Theorem 3.3, using the a.s. representation
(5.6) S,° = Spoare+s Lo(8, 1) d2,(1) dp,(s) . 0

ExAMPLE 1.
a) Consider the simple linear rank statistic for k = 1 with ¢,(x) = x for
x €0, 1], then

61 () () () ks

:gD,”(l) ‘ k=n
=l 1<k<n—1

n
=1 k=n.

Therefore, |4,| < 2,ne Ny, and § fdi, — § fdA, fe C[0, 1], with 2, = — 24, + o,
where 2, is the restriction of the Lebesgue measure on [0, 1], and where o, is
the one dimensional one point measure in 1.

b) In the case k = 2 we define a Spearman type rank correlation statistic by
letting ¢,(t,, ;) = t,,. In this case
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k1 k l k 1 1
A D)o ) (5 L
n n n n n n

k 1+1 k+1 14+1
-§Dn<—’ + >+§Dn< + ’ + )

n n n n

if k, I<n—1

(5.8) .—_gpn<l,_l_>—§pn<,l_+_l_> if k=n, I<n—1
n n

=¢n<£,1>_¢”("+1,1> if k<n—1, I=n

n
= o,(1, 1) if k=I=n.

=liksn—tisn—1—- Lgk=ni<n—1
n? n

+Ik=n—1,l=n}+Kk=nl=n).

Therefore, |4,|] < 4 for all ne N, and

Stoa2f d2y — Spo f A2y — A + 041,) for feC[O, 1],

where 1, is the restriction of the 2-dimensional Lebesgue measure on [0, 172, 2,!
is the 1-dimensional Lebesgue measure restricted on {1} x [0, 1] U [0, 1] x {1}
and ¢, ,, is the one point P-measure concentrated in (1, 1).
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