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ASYMPTOTIC EFFICIENCIES OF SEQUENTIAL TESTS!

By RoserT H. BERK
Rutgers University

Some concepts of relative and absolute efficiency for sequential tests
are considered. These are sequential analogs of Hodges-Lehmann and
Chernoff efficiencies. Using these criteria, several sequential tests for the
mean of a normal distribution are evaluated. Among them are Wald’s
SPRT, Anderson’s triangular boundary, Bayes and APO tests and a
repeated significance test. Truncated versions of these tests are also con-
sidered. Asymptotic expressions for the (expected) stopping times and
error rates are given.

1. Introduction and summary. In this paper we study sequential tests of H, :
6 <0vs. H;: § >0 for an unknown normal mean ¢, the variance being as-
sumed known. Starting with Wald’s SPRT, many sequential tests for this
problem have been put forth. We compare some of these tests asymptotically,
letting the stopping times approach infinity in a suitable way. Inter alia, we
suggest some measures of relative and absolute efficiency for sequential tests.
These are in the spirit of Hodges-Lehmann and Chernoff efficiencies: one com-
pares the rates at which error probabilities tend to zero. To an extent, the
proposed measures allow for the added complication met in the sequential case,
that the behavior of the sample size depends on the unknown parameter.

In our considerations, we actually deal with the related problem of se-
quentially testing hypotheses about the drift of a Wiener process. In so doing,
two benefits accrue. First, we can dispense with considerations involving
“overshoot.” Such considerations are secondary to the main purpose of this
study. By combining the techniques used here for continuous time with suita-
ble methods of handling overshoot (see e.g. Berk (1973), Lorden (1970)), cor-
responding results for the discrete-time problem can be obtained. Of course,
as has been noted by Anderson (1960) and others, results for continuous time
sometimes give bounds for the corresponding discrete-time quantities. This
applies especially to the (expected) stopping times. The second benefit arises
from the fact that most of the procedures considered here have straight-line
boundaries, for which exact formulas are available; see Anderson (1960). Thus
we have a means of investigating numerically the qualitative conclusions
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892 ROBERT H. BERK

suggested by the asymptotic analyses. We hope to report on such a numerical
investigation separately.

We have chosen to consider the one-sided normal sequential testing problem,
since next to the SPRT for simple hypotheses, it has probably received more
attention than any other sequential testing problem. Our considerations do not
provide us with a single-number summary of each test. Rather, we obtain an
asymptotic profile that hopefully points to the good and bad features in each
case.

In the next section, we consider some measures of asymptotic efficiency
for sequential tests. Then, in subsequent sections, we treat various specific
sequential tests, the analysis being directed toward computing the measures of
efficiency discussed below. In the sequel, we adopt the following notation and
conventions: X(7), t = 0 denotes an observable continuous-path Wiener process
with unknown drift # and variance 1 per unit time. For a sequential test of H,
vs. H,, let = be the stopping time, 4 = (accept H;) and R = (reject H,). Let P,
denote the probability distribution of X(¢), + = 0 under ¢ and let ¢(¢) be the
corresponding probability of error. We write ¢(0) = 1 — ¢(d). Usually, ¢(0) is
the level of the test. We consider only tests for which E,z < oo for all §. This
entails P, 4 + P,R = 1. As is usual in asymptotic considerations, each test we
consider is embedded in a corresponding family of tests, indexed by a parameter
a, so that as @ — co, 7 — co w.p. 1. The embedding is done so that the family
corresponding to a given test is consistent: For § + 0, ¢(d) — 0 asa — 0. We
shall elliptically say that the test is consistent. In the sequel, lim, etc. means
as a — oo. Especially in the sequential case, the manner in which this embed-
ding is done is, to a large extent, arbitrary. This is evident from the conside-
rations in Sections 5 and 6 below.

2. Asymptotic efficiency. The problem in comparing sequential tests, asymp-
totically or otherwise, is that their operating characteristics cannot be made to
match very well. This is in contrast to the nonsequential asymptotic theory
giving rise to Pitman efficiency. There, two different tests can be made, asymp-
totically, to have the same power curve and the corresponding sample sizes
required to do this are compared. Recently, Pitman efficiency has been extended
to the sequential case; see e.g. Hall and Loynes (1974). However, as in the
nonsequential theory, the comparison dpplies to two different sequences of
statistics (normal scores and Wilcoxon, e.g.), using similar stopping boundaries
for both sequences. For the tests we consider, the basic stochastic sequence is
the same in every case; it is the stopping boundaries which differ.

A possible approach to comparing such sequential tests is suggested by the
notions of Hodges-Lehmann and Chernoff efficiencies. The former [Hodges
and Lehmann (1956)] is determined by fixing ¢(0) and considering, for § = 0,
the rate at which ¢(f) tends to zero as the sample size increases. There is a
theoretical upper bound to this rate, which often can be achieved. This provides
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then a notion of absolute as well as relative asymptotic efficiency. Chernoff’s
(1952) notion of efficiency was developed for testing one simple hypothesis
against another, —@ vs. 6 say, in our context. Chernoff’s efficiency is obtained
from the rate at which the total error y(6) = ¢(f) + ¢(—0&) tends to zero as the
sample size becomes infinite. There is also a theoretical upper bound available
here, giving again a notion of absolute as well as relative efficiency. For both
efficiencies, the basic quantity treated is a log error, divided by the sample size.
We consider analogs for the sequential case, normalizing a log error by an
appropriate expected sample size. We consider more than one expected sample
size as the normalizing factor, which affords some insight into the behavior of
the ASN function. There are theoretical upper bounds available for some of the
quantities we consider. With one exception, the examples below show that the
bounds can be attained by consistent tests.

In analogy with Hodges-Lehmann efficiency, we consider (limiting values of)
the ratio [ —log ¢(6)]/E,=. This ratio in a sense standardizes the error rate at ¢
for the amount of sampling required to achieve that error rate. We also con-
sider the ratio [—loge(6)]/E_,c, which appears to have little intuitive appeal
as a measure of efficiency at #. However (unlike the first ratio), there is a
theoretical upper bound for the limiting value of this second ratio. For sym-
metric procedures, this provides a corresponding upper bound for the first ratio.
We also consider the corresponding ratio with E,z in the denominator. This
suggests itself as a sequential analog of standardizing competing tests by match-
ing their type I error rates. (Presumably, one wants also to match values of
¢(0) here. However, for most of the tests we consider, the limiting behavior of
these ratios does not depend on ¢(0), at least if it does not degenerate (to zero
or one). For that reason, the selected value of ¢(0) is not indicated explicitly
in our expressions.) For most of the procedures discussed in this paper, E,t
is, at least asymptotically, the maximum expected stopping time. (For sym-
metric procedures, this is true nonasymptotically as well. See Anderson (1960)
and Hoeffding (1960).) This last ratio then gives a more conservative measure
of efficiency than the first. (But, of course, it is the relative behavior of the
same ratio for different procedures that is of interest.) The first ratio suffers
from the theoretical defect that its limit can assume any nonnegative value,
including +oco. Thus it does not provide an interesting notion of absolute
efficiency (except for symmetric procedures). By contrast, the ratio utilizing
E,7 has a nontrivial limiting upper bound and thus provides a notion of absolute
efficiency for all procedures. We also consider ratios with the total error y(6)
replacing ¢(¢). In this case, there are limiting upper bounds with both E,z and
E,7 in the denominator. Since () is an even function, the ratio [ —log y(¢)]/E,
gives, inter alia, a comparison between E,r and E_,z. In most cases, the ana-
lyses for # > 0 and ¢ < 0 are similar, so that one is omitted.

It appears that no one ratio gives a completely adequate profile of a sequential
test. For example, in the symmetric case, the SPRT is asymptotically optimal
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when judged by the E,r-ratio. However, with E;z in the denominator, the
corresponding limit is worst possible (zero). This reflects the fact that asymp-
totically, E,z for the SPRT is unduly large. There is, to be sure, a degree of
arbitrariness in the choice of denominators for the above ratios, reflecting the
fact that one usually cannot summarize the characteristics of a sequential test,
even asymptotically, with a single expression. One might even contemplate a
more complex profile, a two-parameter efficiency obtained by considering
[—loge(@)]/E,=. The analyses given below allow one to obtain the limit of this
ratio for all values of ¢ and v. To avoid over-burdening the discussion, we
confine attention to the cases indicated above: v = @, 0 or —@. It is hoped
that some numerical investigation will shed light on the extent to which
these measures of efficiency are useful, quantitatively and/or qualitatively, for
choosing among competing sequential tests.

In the remainder of this section we obtain some upper bounds for the limiting
values of the above ratios. The following idea is used often: Let ¢ be a stopping
time for {X(¢): ¢ = 0} which, for v and # in R, Py(c < o0) =1 = P,(¢ < o0).
Let P,° denote the distribution under 6 of the stopped process {X(¢): 0 < t < g}.
Then Py = P,° and

@.1) AP |dP,e = el0—»X01-40=2e[p, |

(cf. Freedman (1971), Theorem 159). The following two lemmas give bounds
for [—log ¢(6)]/E,z.

2.1. LEMMA. For a consistent test, provided ¢(0) does not degenerate,
(2.2) lim sup, [ —log ¢(0)]/E,r < $6*{lim sup, E|(z | A)/E,7}, 0>0.
Proor. Using (2.1), for 8 > 0,
e(0) = PyA = |, elX0-10% gp
§(0)E (e?X =102 | 4)
> £(0) exp {E(0X(r) — 6%z | A)} .

(2.3)

Il

Using Wald’s second lemma, we see that

(24 [Ef(X(x) | )] = EolX(2)|/6(0) = (Ey2)}/(0) -

Since for ¢ > 0, lim, ¢(f) = 0, it follows from (2.3) that lim, Ey(r | 4) = oo;
hence also lim, E,r = co. The lemma now follows from (2.3) and (2.4). []

Lemma I can presumably be extended generally to tests of simple null hypo-
theses. By contrast, the following bound utilizes the composite nature of H.
(On the other hand, ¢(0) is completely unrestricted.)

2.2. LeEmMA. For consistent tests,

(2.5) lim sup, [ —log ¢(0)]/E,r < $6*{lim inf, lim sup, E_, t/E, <}, 0 +0;

the limit on v being taken as v — O through nonzero values of the same sign as 6.
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Proor. For v6 > 0, Wald ((1947), equation A: 205) gave the following lower
bound for E_,z:

2.6)  E_c=2(0 + v {é(—v) log [?ﬂ} + o(—v) log [8(_”)]} .

(0) (9)
For vf = 0, both ¢(f) and ¢(—v) approach zero, so that
2.7 E_,t 2 2(0 + )" [—log(0)]{1 + o(1)}
and hence
(2.8) lim sup, [ —log ¢(0)]/E,c < 4(60 + v)*{lim sup, E_,7/E,z} .
The lemma follows on letting v — 0 in (2.8). []
REeMARk. It follows from (2.7) that
(2.9) lim sup, [—log e(A)|/E_,t < (0 + v)?, v > 0.

The bound given in Lemma 2.1 is unsatisfactory in that it involves the
intrinsic behavior of the stopping time. (The same may be said for Lemma
2.2.) A cruder bound, not suffering from this drawback, may be obtained as a
consequence:

(2.10) lim sup, [—1log ¢(8)]/E,r < 36*lim inf, £(0) , 6>0.

This follows from Lemma 2.1 on noting that E;z = &(0)E(r|4). Unlike the
previous bounds, this last bound apparently cannot be attained by a consistent
test. (However, we have no proof of this assertion to offer.) It often happens
that the LHS of (2.10) does not depend on ¢(0). Then, by taking the infimum
of the RHS over all values of ¢(0), we see that

(2.11) lim sup, [ —log ¢(0)]/E,r < 16%, 0 +0.

For the tests considered in this paper, this last bound is violated only for the
repeated significance tests considered in Section 9. Clearly (2.11) holds if the
respective terms in curly brackets of Lemmas 2.1 or 2.2 do not exceed one.
In particular, (2.11) holds for nonsequential tests. This also follows from a
general theorem of Stein (cf. Bahadur (1971) or Chernoff (1956)) and can also
be shown directly in the present case by considering the error-rates of the UMP
nonsequential tests of H, vs. H,. More generally, (2.11) holds for tests which
are, in a sense, symmetric. This is brought out in the following.

2.3. PROPOSITION. For consistent tests, if
(2.12) lim sup, Ei(7| A)/E,r £ 1 = lim sup, Ey(r | R)/E,T,
then (2.11) holds. Moreover, the same conclusion follows if
(2.13) lim, [—log ¢(0)]/E,r = lim, [—log ¢(—6)]/E,~ .

Conversely, if (2.13) holds and the common value is 30*, then provided ¢(0) does not
degenerate, necessarily (2.12) holds,
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REMARK. Since E;t = &0)E(r|A) + ¢(0)E(z|R), provided ¢(0) does not
degenerate, (2.12) is equivalent to
(2.14) lim, Ey(c | 4)/E,c = 1 = lim, Ej(c | R)/E,r or
lim inf, E(c | A)/Eyr = 1 < lim inf, Ey(z | R)/E,r .

The proof of Proposition 2.3 is given after Lemma 2.4 below.
The following special case of (2.9) is of interest: On taking» = ¢, we obtain

(2.15) lim sup, [ —log ¢(6)]/E_,r < 26°, 0+0.

This suggests that E_,z is a natural yardstick for measuring loge(@). By
contrast, there is no finite upper bound for lim sup, [ —log &(0)]/E,z; see (4.4)
and (9.8). This difficulty is cvercome by considering total error:

2.4, LeMMA. For consistent tests,

(2.16) lim sup, [ —log 7(6)]/E,r < 16%, 6 +0

and

(2.17) lim sup, [ —log y(6)]/E,r < 20*, 0 =+0.
Proor. Hoeffding ((1960), equation (1.4)) gives a lower bound for E,z,

which, on taking (in his notation) 6§, = v, §, = —6, = 0, becomes here

(2.18) E,t = {[¢* — Llog (O)] — e/,

where { = 4(|¢| + |»|)* and c is a constant not depending on a. We obtain (2.16)
on taking v = 0 and dividing across in (2.18) by E;r. (Note that (2.18) entails
E,t — oo for consistent tests.) Similarly, (2.17) follows on setting v = 6. []

The bound in (2.17) can be attained (by an SPRT, e.g.) but not by a non-
sequential test. This last fact follows from the nonsequential upper bound
given by Chernoff (1952), which in this case is 46°. Chernoff (1956) has noted
the factor 4 between the sequential and nonsequential bounds in (2.17). An
unsatisfactory feature of the ratio in (2.17) is that it loses track of the smaller
error rate, since for § = 0, [log r(6)]/(log max [¢(6), e(—6)]) — 1.

In the following sections, we evaluate various tests of H, vs. H, according
to the above criteria, beginning in Section 3 with the UMP nonsequential test.
Appended here is a proof of Proposition 2.3.

ProoF oF ProposiTION 2.3. The first assertion follows from Lemma 1; the
second, from (2.16). Finally, if the common limit in (2.13) is 62, it follows
from (2.3) and (2.4) that [the second relation in] (2.14) and hence also (2.12)
hold. []

3. UMP nonsequential test. This test being exceedingly familiar, we simply
list the formulas we require. We take r = a and 4 = (X(a) < »at), where 7 is
an appropriate fractile of the N(0, 1) distribution. In the sequel, ¢(+) and @(.)
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denote the N(0, 1) pdf and df, respectively. We have

(3.1) ¢(6) = O(nsgn f — |f|at) = e-itlato@ 6+0,
the last equality holding if || = o(a?). Thus
(3.2) lim, [ —log ¢(6)]/a = 40°, 6+0.

We then see that (2.11) holds as an equality (alternatively, that the bounds in
(2.2) and (2.5) are attained); i.e., judged against its operating characteristics
at zero, [¢(0), E,r], the UMP nonsequential test is asymptotically as powerful
as any sequential test exhibiting the symmetry conditions of Proposition 2.3.
We note too that the bound in (2.16) is attained but that those in (2.15) and
(2.17) are not.

4. SPRT. For fixed positive 2 and x, we take
t = inf {t: X(¢) ¢ (—Aa, pa)}
and 4 = (X(r) = —4a). This is an SPRT for testing —6 vs. 6 with corre-
sponding error levels ¢(—6) and ¢(@) and is LMP (locally most powerful) for
testing H, vs. H, for the given [¢(0), E,r]; see Berk (1975). The asymptotic
behavior of r is as follows.
4.1. THEOREM. Under P,, w.p. 1
tla—plf, 6>0
— /6], 6<0
and E,ta has the same limit. For § = 0, t ~ a%(l), where =(1) is the stopping
time when a = 1. In particular, E,v = Apa’.

ProoF. We consider § > 0. Let X, = inf,_, X(f). Since P,(X(f) —» ) =1,
Py(X, > —oo) = 1. In turn, this entails P,(1, — 1) = 1. We have
4.1) X(r) = paly, — 2al, .
We divide across by = and let a — co. Clearly Py(lim, r = co) = 1, so that
P,(lim, X(z)/r = 6) = 1. It follows that P,(lim, pa/r = §) = 1. The corre-
sponding convergence of E,;r/a follows from Wald’s first lemma: E;r =
E, X(r) = &(@)pa — (f)2a; note that ¢(0).— 0 as a — co (see (4.2) below). The
result for § = 0 follows on replacing X(¢) by aX(t/a*), which has the same dis-
tribution when ¢ = 0. ]

Wald’s formula for the error rate of an SPRT, which is exact in this case, is

4.2) () = (e—:ma _ e—2t‘7(1+,u)a)/(1 — W+ wa)

— e—Miallto) >0,
so that
4.3) lim, [ —log ¢(f)]/a = 246 , 0=0.

It follows that the bound in (2.15) is attained, as is (2.17) if 2 < x. (Note that
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e(0) = 2/(A + p)so that 2 < p = ¢(0) < §.) Also,
4.4) lim, [ —log e(0)]/E,t = 240%/p , 6=0.

All ratios involving E,r tend to zero, as E,z = o(E,r). Thus the SPRT is very
inefficient when judged by E,r, a phenomenon that is well known (cf. Bechhofer
(1960) and Berk (1973)). This suggests that if sequential tests are matched by
their operating characteristics at zero, the SPRT will not be as powerful as
other sequential tests. In particular, the SPRT should not compare favorably
in this way with the UMP nonsequential test. Limited numerieal studies (not
reported here) bear out this contention: The nonsequential test is more powerful,
except for 6 near zero (recall that the SPRT is LMP).

5. TPRT: Truncated SPRT. We consider here a truncated SPRT; the effect
of the truncation being, inter alia, to make E,r grow at the same rate as E,r,
6 + 0. For fixed positive 2 and ¢ and fixed 7, let

o = inf {t: X(1) ¢ (—2a, pa)},

t =0 Aa and 4 = (X(zr) < nat). The subsequent analysis shows that ¢(0)
converges to Py(X(a) = nat) = 1 — ®(»). Hence » may be chosen to yield the
desired level. (In particular, for the “natural” choice » = 0, ¢(0) — 4, even if
2 # p.) Following is the asymptotic behavior of .

5.1. THEOREM. Under P,, w.p. 1

tla—pl0, 0 >p,
-1, 120y,
— 6], 6< —2.

The corresponding limit for E,t[a is the same.

Proof. For # = 0, the pointwise results follow from corresponding results
for ¢, which are given in Theorem 4.1. For 6 = 0, the pointwise result follows
from (4.1) which, on dividing across by ¢, entails P(aj/c — 0) = 1. The corre-
sponding results for E,r/a follow by dominated convergence, since r/a < 1. []

The corresponding behavior of ¢(6) is given by

(5.1) lim, [—log e(f)]/a = 16*, 0< 6 <41,
=220, 0>42.

We establish (5.1) with the aid of Lemmas 2 and 3 below. We begin by noting
that

(5-2) (0) = P,A(c < a) + P,A(s = a), 0>0

and that A(s = a) is an event determined by {X(7): 0 <t < a}. Then using
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(2.1) with » = 0, we have
(5_3) 8(0) — SA(U(a) eﬂX(a)—w% dPo + SA(aga) e0X(a)—§02a dPo

— e—*fa SA(a<a)e—§020 dPo + e—40% SA(aga,) eoX(a)dPO R /] > 0.
We study the behavior of these last two integrals in the following lemmas.

5.2. LEMMA. We have

(5'4) SA(0<¢1.) eif% dPo = e40e, 6 >0.
Moreover,

(5.5) lim, e° § ., <o) €1 dPy = 1, 0> 2
and

(5.6) § acoca) €142 dPy = e~Ha+o@ |

Proor. Take ¢ > 0. Using (2.1) we have that 1= P_,4A(c < a)=
et § 4 o<ay €°"* dP,, which gives (5.4). We note next that

P_,A(c = a) < P_,(X(a) > —2a)
(5.7) =%, 0=2
< emta0-1? 6 >2 and a large.

Moreover, since for § > 0, ¢(—6) — 1, we see from the above that
(5.8) lim inf, e*% {, , ., e ¥ dP, =L, 6 =2,
1, 0>2,

[\

Together, (5.8) and (5.4) entail (5.5) and (5.6). [
5.3. LEMMA. {5, €@ dPy= e, 0 > 0.
ProoF. We note that
(5.9) 0 < §(xtar<yat) €5V APy — § 41024, €7@ dPy < e"°*P (0 < a) .
We estimate the RHS of (5.9). Suppose 2 < p. Then
Py(o < a) = Py(SUPocica | X(9)] = 40)
(5.10) — PysUPocres [X()| = Aat) < 4P(X(1) = iab)
< etda for a‘ large.
It follows by an elementary calculation that
(5.11) § xar<qgat) €7@ dPy = et?[1 — D(fat — 7)] = e”@ .
The lemma follows from (5.9)—(5.11). []

Equation (5.1) now follows from (5.3) and Lemmas 5.2 and 5.3.
Combining Theorem 5.1 and (5.1), we find

(5.12) lim, [—log &(8)]/E,c = 16*, 0 <0 <44,
=210, 41<0;
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and (2.11) holds for —4x < 6 < 42. This result appears somewhat anomalous in
that one would expect the TPRT to behave asymptotically like a nonsequential
test for —2 < 6 < p. Presumably, the behavior of vanishingly small error
probabilities is not easily assessed by the intuition. We have further
(5.13) lim, [—log e(0)]/E,z = 307, 0<60 < pA 42,
=210%p, pv4arso.
If 42 + p, the limit for u A 42 < 6 < p Vv 42 depends on whether 44 < p or
vice versa. At any rate, for the symmetric case # = 4, the best possible rate is
attained in (5.13) for |f| = 44; cf. (2.15). Also,
lim, [—log ¢(0)]/E_;t = 46*, 060 L2,
(5.14) =622, 2<6<4i,
=20, 4256,
so the bound in (2.15) is attained for § ¢ (—4y, 42). If 1 = g, the RHS of (5.14)
gives also lim, [ —log 7(6)]/E,t (for 6 = 0), showing that the bound in (2.17) is
also attained in that case, for |§| = 44. By contrast, if 44 < p,
lim, [—log y(6)]/E;t = 26*, 6 < —4iu,

= |0)}24, —4u<b< -1,
(5.15) =430, —1560=<4,

=210, <0<y,

=20p, p=<9,
so that the bound in (2.17) is attained only for § < —4p.

6. TPRT II. It may be objected that in Section 5, the truncation point is
arbitrarily allowed to increase at the same rate as the horizontal boundaries.
(This reflects the presumably practical objective of not wanting to have unduly
large stopping times for certain parameter values.) Embeddings for which the
truncation point grows at a different rate are also possible. Presumably, if the
truncation point increases more slowly, one obtains, asymptotically, a non-
sequential test. If it grows more quickly, one obtains an SPRT. We show
here that this last statement is essentially correct. The particular rates are
chosen to facilitate comparison with the repeated significance test treated in
Section 9. We let

¢ = inf {t: X(t) ¢ (—2a, pa)},
t =0 Aa’and 4 = (X(r) < 0). The asymptotic behavior of r is given by
6.1. THEOREM. Under P,, w.p. 1
tla—plf, 6 >0,
— /18], 6<O0.

Eqt/a has the same limit. When § = 0, © ~ a’t(1). In particular, E,r = a’E,z(1).
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We remark that E;z(1) < 1, since 7(1) < 1 and Py(r(1) < 1) > 0.

Proor. For @ = 0, the pointwise results follow from corresponding results
for o, which are given in Theorem 4.1. To get the expectation, we have Eyr/a <
E,o/a; as the latter converges to the desired limit, we have half of the result.
To get the other half, apply Fatou’s lemma to E,r/a. The result for 6 =0
follows as in Theorem 4.1. []

6.2. THEOREM. For § > 0, lim,[—log ¢(f)]/a = 226.

ProOF. The decomposition (5.3) becomes here
(6.1) e(0) = e § yocar, €71 dPy 4 €T 0n) €77 dP,
In this case, the second term on the RHS is negligible compared with the first:
We again note that é(—6) — 1 and since (for a large), P_,A(c = a*) <
P_y(X(a®) > —Aa) < exp{—34(0a — 2)*} -0, P_,A(c < a*) — 1. That is,
(6.2) lim, €% { , <oz €% dP, = 1, 0 >0
(cf. (5.5)). Since X(a*) < 0 on A(s = a*), the second term on the RHS of (6.1)

is manifestly of smaller order than the first. The theorem now follows from
(6.1) and (6.2). [J

It follows that all the ratios considered in Section 4 have the same limits
here. The only effect of truncation, asymptotically, is to reduce E,z, but it is
still of larger order than E,z, 6 = 0.

7. Anderson’s triangular boundary. For fixed positive 4 and p, we let
r = inf {r: X(¢) ¢ (A(t — a), p(a — 1))}
and 4 = (X(r) < 0). Note that = < a. Such boundaries were considered by
Anderson (1960), who gives exact formulas for ¢(@) and E,r. Anderson’s

expressions appear somewhat unwieldy and we obtain asymptotic expressions
using other methods.

7.1. THEOREM. Under P,, w.p. 1
tla— p/(p+60), 6=0,
— A2+ 160), 6<0.
The corresponding limit for E,t[a is the same.
Proor. We consider # > 0, the argument for § < 0 being similar. We have
7.1) X(r) =@ — 1)l 4+ A(r —a)l,.
As in Theorem 4.1, Py(1, — 1) = 1. The pointwise result follows on dividing
across in (7.1) by ¢ and letting a — oo, noting that X(r)/r — 0[P,]. For the
case = 0, we note first that r/a < 1, hence P(lim sup, r/a < 1) = 1. Suppose
2 < p, so that |X(r)| = A(a — 7). On dividing by = and noting that X(z)/r —

O[P,], we find also that lim sup, a/zr < 1[P,] or lim inf, z/a = 1[P,]. The results
for the expectations follow by dominated convergence. []
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The corresponding behavior of the error rate is given by

(7.2) [—loge(f)]/a— 6%, 0<6 <22,
—22(00 —2), 22<8.

This follows from Lemmas 7.2 and 7.4 below and the following representation:
Using (2.1) and (7.1), we see that
(7.3) PyA = (, efX-40% P — g=d0a | e03-400r gp all 4.
Of course for § > 0, P, A4 = ¢(f). The following lemmas give the behavior of
the last integral in (7.3).

7.2. LEMMA. For p = 0, lim, {§, " dP,}V* = e*.

To prove this, we need the following:

7.3. LEMMA. Let Y, be a sequence of random variables so that for some constant
y, Y,Ja—pyasa— co. Let B, be any sequence of events for which lim inf, PB, >
0. Then,

§ 5, eXp{Y,} dP = evto@ .

Proor. We drop the subscript a for convenience. Choose d > 0. {,e" dP >
§ Br>ay—as AP = €~**PB(Y > ay — ad). Since PB = ¢’V and P(Y > ay — ad) —
1, also PB(Y > ay — ad) = e°V, hence {, e’ dP > e=**+°"_ Since 9 is arbi-
trary, the lemma follows. []

Proor oF LEMMA 7.2. One half of the result is immediate, since {, e’* dP, <

e’*. For the other half, we use (2.1) to write
(4" dPy = §, errerX O+l gp_
— e—%v SA e(p+1u+§u3)r dP_y .
Since P_,(r/a — 2/(A + v)) = 1 and P_,4 — 1 forv > 0, it follows from Lemma
7.3 that
lim inf, (§, e*" dP)V* = exp{—2Av + A(p + Av + PN/(A 4+ v)}, all » >0,
hence that
lim inf, ({, ef* dP)"* = e . 0

REMARK. The preceding proof could presumably be shortened by applying
Lemma 7.3 directly to {, e*dP,. To do this, one must demonstrate that P, 4
remains bounded away from zero. In fact, it may be shown (using Anderson’s
(1960) formulas, e.g.) that for all positive 2 and y, P,4 — 4. To achieve a test
whose level is asymptotically less than %, one can modify 4 (as done for the
TPRT in Section 5) letting, for example, 4 = (X(r) < nat) for some » > 0.

7.4. LEMMA. For 8 > 24,
lim,, eA0-3la S‘ e(ol-wﬂ)r dPO = 1.

Proor. Choose § > 21. We note that the quadratic 62 — 16* = £6(24 — 0)
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is unchanged if @ is replaced by 22 — 6. From (7.3) we have that

(7.4) Py_gA = 00§ e03-4007 gp

The proof is concluded by noting that P,; , 4 — 1 for 6 > 24. []
REMARK. Combining (7.3) and (7.4), we obtain

(7.5) Py A = e0-bep, 4,

a relation that has been previously noted by Lawing and David (1966). In
particular ¢(22) = fe~?* in the symmetric case.
From Theorem 7.1 and (7.2) we find that

lim, [—log e(8)]/Ey = 2u(I6] — ), 6 < 2p,
(1.6) = 16", —2u<6<22,
=216 — ), 21<80,

hence that the bound in (2.11) is attained for —2x < § < 24. This result seems
surprising at first, since the test in no way appears to resemble a nonsequential
test. However, it accords with the findings of Lai (1973) that the boundaries
minimizing E,r for given ¢(f) = ¢(—0) and fixed # are asymptotically (as ¢(f) —
0) triangular.

Other limiting ratios can be obtained similarly. For example, we have

lim, [—log &(8))/E, = 2u(lf] + p)(6] — D3, 6 < 24,

(7.7) = 6|0 + )22, —2up<6<0,
=00 + w2y, 06022,
=220 + )@ — /e, 22<L86.

In particular, the bound in (2.15) is not attained in the symmetric case
A = p, although it is approached as 6 increases. A similar examination of
lim, [ —log y(8)]/E,* shows that the bound in (2.17) is also not attained.

8. A square-root boundary. We consider here a number of tests, arising out
of proposals due to various authors, that have similar asymptotic properties.
A prototype of these tests is given by the stopping time

o = inf{t: X(¢) ¢ (—A[a(t + D], pla(r + 1)]D)},

where 1 and x4 are fixed positive constants. For all tests in this section, the
terminal decision is to accept H, iff the stopped process is negative. We will
study the truncated test 7 = ¢ A a, but as seen below, there is also theoretical
interest in the behavior of the test using o.

A version of the untruncated test ¢ arises from the theory of APO tests
developed by Bickel and Yahav (1967a). For this, one utilizes a Bayesian
formulation, introducing a prior distribution for 6, a regret function (), re-
presenting the loss incurred on taking the wrong decision when # obtains and
a cost of sampling c. An APO test (i.e., stopping time) T asymptotically (as
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¢ — 0) minimizes the posterior risk Y, + ¢T, where Y, is the posterior expected
loss for making a terminal decision, having observed [X(s): 0 < s < ¢]. Under
certain conditions, satisfied in the present case, Bickel and Yahav showed that
the stopping time

8.1) T=inf{r:Y, <c}

is APO. For prior pdf ¢(f) and the usual 0-1 testing loss structure (r(f) = 1),
it is straightforward to calculate that Y, = ®(— (¢t + 1)~#|X(¢)|). If we take
a = [@(c)]* [so that a ~ —2logc for small ¢] and A = ¢ =1, then T = o.
In this case = is not APO; the truncation destroys the APO property. (How-
ever, if ¢ is truncated at s,, where @ = o(s,), the APO property is preserved.)
Nevertheless, we will see that ¢, = and the other stopping times considered in
this section share interesting asymptotic properties and that, if anything, r seems
better (although not necessarily good), judged by our criteria.

Naturally closed APO rules for the above specifications are contained in the
following class of rules. For m > 0, let

8.2) T, = inf {t: |X(?)| = (at — mtlog)}},

where a = —2logc. Note that T, < e*™. If one replaces Y, above by the
(large r) approximation Z, = t~te~¥%®/% the corresponding rule, inf {¢: Z, < ¢},
is just T;. It may be verified that for 0 < m < 2, T, is APO for the problem
with 0-1 loss. If the regret function is changed to 7(#) = ||, one obtains from
(8.1) the rule T}; see Bickel and Yahav (1967b).

Taking a fully Bayesian approach, Chernoff considered Bayes rules for r(6) =
|¢] and normal priors; see Chernoff (1965) for references. We consider here
the Bayes test corresponding to a Lebesgue prior. This is only a technical con-
venience and our results hold for proper normal priors as well. The Bayes rule
is of the form

o, = inf {£: | X()| = h(t, @)} ,

where again @ = —2logc. Unlike the corresponding APO rule T, ¢, is not
closed (although it is also APO). It does not seem possible to give an explicit
expression for A(t, a). However, Chernoff (1965) showed that

(8.3) h(t, a) = (at — 3tlogt + O(1))}, t = o(e*?).

(In utilizing Chernoff’s results, one must keep in mind that he considers a
rescaled problem in which time is measured in units of ¢} = ¢=%3.) The simi-
larity between o, and T, is apparent and in fact, (8.3) suffices to show that ¢,
and the APO rules all behave the same, asymptotically, judged by our criteria.
We note that ¢ (and r) differ from the other rules discussed in that their
boundaries lack a logarithmic term. The presence (or absence) of this term has
no effect, asymptotically, in our considerations.

The test based on ¢ is also a modification of a test suggested by Darling and
Robbins; see Robbins (1970), pages 1404-1405. They obtained tests having
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uniformly small rates for testing H,’: § < 0 (§ = O being excluded). One of
their stopping times (adapted to continuous time) is of the form

o* = inf {t: | X()| = [a(t + 1) + (¢ + 1) log (¢ + 1)]#} .

The presence of the logarithmic term assures that the error rates are uniformly
small, but it also entails Py(c* = oo) > 0. This latter property seems undesira-
ble for our problem. Of course a truncation of ¢* avoids this difficulty. The
interested reader can check that the asymptotics developed below for the test
based on z apply as well to the procedure based on t* = o* A 4. It can also
be shown that ¢* is APO for the 0-1 loss structure discussed above.

We note one other context in which ¢ arises. Wald (1947) suggested a method
of weight-functions for obtaining sequential tests of composite hypotheses. By
taking the weight-function to be ¢(+) on (—o0, 0) and (0, o), it is straight-
forward to verify that the stopping time of the resulting test is o.

We turn now to asymptotic considerations, beginning with the behavior of
o and r. Results for ¢ are included, not necessarily because there is inherent
interest in the untruncated test, but because the results apply as well to the
other tests mentioned above. Results are given for # > 0, the case § < 0 being
analogous.

8.1. THEOREM. W.p. 1,
gla— p20*, 6 >0,

— 00, 0=0.

For 8 > 0, E,o/a has the same limit, while for large a Ejc = co. Consequently,
w.p. 1,
tla—1, 060,

- [0, p< 0
and E,t/a has the same limit.
Proor. Choose # > 0. We have
(8.4) X(0) = pla(e + D1, — Aa@ + D},

and, as in Theorem 4.1, Py(1; — 1) = 1. On dividing across by ¢ and letting
a — oo, We see that p(a/o)t — 6 w.p. 1. To do E,c/a, we note first that by Fatou,
liminf, Eyo/a = p[6*. Also, X(¢) < p[a(s+1)], so that by the version of Wald’s
lemma due to Robbins and Samuel (1966), E,X(¢) = 0E,0 < p[a(Eo + 1)]t,
which entails lim sup, (E,0/a)! < p/6.

Now consider § = 0. Suppose 2 < p. Then |X(s)| = A[a(s + 1)]}, so on
dividing by ¢ and letting @ — oo, we find a/oc — 0 w.p. 1. That E,¢ = o for
large a follows from Shepp (1967). The pointwise results for = follow from
those for ¢. Convergence of E,z/a then follows by dominated convergence. []

REMARK. The first part of the theorem remains true with o replaced by T,,
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oy or 6*. When § = 0, on replacing X(7) by e**"X(te-*™), one sees that T,, ~
e*™T,(0) and similarly, from Chernoff’s results, that ¢, ~ e*?s4(0).

The following lemma enables us to estimate the error rates for ¢ and z. An
examination of the proof shows that it holds as well for T, ¢, and o*.

8.2. LEMMA. For 6 = 0 and fixed r = 1, PyA, (6 < a’) = e~t¥+®_ Here
4, = (X(9) < 0).

Proor. Clearly PyA,(c < a") < Py(X(f) < Aa(t + 1]}, some 0 <t < a") <
3¢ pi» Where p, = Py(X(1) < —A[a(t 4+ 1)]}, some k < t < k 4 1). Since X(7)
has independent increments, inf {X(¢#): k < ¢t < k + 1} ~ X(k) 4 A, where A ~
inf{X(f): 0 < ¢ < 1} and is independent of X(k). It is well known that for
x>0, P(A < —x) = 2P(X(1) < —x), so by a simple convolution argument,
Py(X(k)+ A < —x) < 2P(X(k + 1) < —x). Thus p, <2P(X(k + 1) < —A[a(k +
1)]¥) < e#* for large a and
(8.5) PyA,(0c < a’) £ a’e~tie large a,

which provides half of the result.
To obtain the other half, we use (2.1) with —v < 0 to obtain
PyA(o < @) = {ayiocan Xp[— A + O)a(@ + DIt + 32 — )] dP_,
(8.6) = 4y e-1<o<ar) SXP[—A(v + O)[ac(l + ¢)]?
+ 1(* — 6%o)dP_,, e>0

= exp[—42%a(l + ¢)(v + O)/(v — O)]P_, A (s < 6 < a"),
the exponential term in the last expression being the minimum value of the
second integrand (for ¢ ranging in (0, o)), provided v > 4. Also, for v > 2,
lim, P_,4,(c* < ¢ < @) = 1. Since v in (8.6) can be taken arbitrarily large
and e, arbitrarily small, this, together with (8.5), establishes the lemma. []

The behavior of the error rates is given in the following theorems. The error
probability for ¢ is denoted by ¢,(0).

8.3. THEOREM. For 6 > 0, lim,[—loge,(f)]/a = 12*.
Proor. For 6 > 0, ¢,(0) = P,A,(0 < @) + P,A, (0 = a?). The behavior of
the first term is given in Lemma 8.2, so it remains to dispose of the second:
PyA,(0 = @) < Py(inf; . (X(1) + 07) < 0)
= Py(X(@) + inf,s, (X() + 07) < —0a?)
= Py(X(@)) < —340a%) + P((inf,,, (X(1) + 01) < —10a?)
— (I)(_%aa) + e—02a2 é 2e—02a2/8 s a large .
The theorem then follows from Lemma 8.2. []

We again remark that the above proof and result applies as well to T,,, ¢,
and ¢*. We note that the limit given in Theorem 8.3 does not depend on 6.

(For the other tests considered in this paper, the corresponding limit increases
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with #.) This seems to suggest that the power-function of the test based on ¢
(or T,, o, or %) increases relatively slowly to 1 as # — co. Some numerical
evidence might help in providing a more definitive interpretation of this phe-
nomenon. The corresponding behavior of ¢(f), the error probability for z, is
given in the next theorem.

8.4. THEOREM.

lim, [—log e(6)]/a = 46*, 0<0 <2,
, =42, 1<4.

Proor. For § > 0, we havee(f) = P,A(s < a) + P,A(s = a). Again because
of Lemma 8.2, we need only analyze the behavior of the second term. Using
(2.1),

(8.7) PyA(0 = a) = e~ {, . efX@ dp
Since A(¢ = a) = (X(a) < 0,0 = a),
Sixiwr<o €% APy — § 4oz0) €% dPy < Py(0 < a) < 2aemitirmie
by (8.5). As in (5.11) with » = 0, § 4.,)<o €’*® dP, = €°®, hence by Lemma
8.2 and the preceding,
6(0) — e—iﬂa+o(a) + e—§02a+o(a) ,
from which the theorem follows. []

As contrasted with Theorem 8.3, the limit has some dependence on #. This
arises from the truncation, since for 0 < # < 2, the test behaves, asymptotically,
like a nonsequential test. If the truncation were to increase at a rate faster
than a, we would obtain the limit given in Theorem 8.3.

Combining Theorems 8.1 and 8.4, we find
(8.8) lim, [ —log (0)]/E,r = 30, 0<60 <2,

=i, 1<9,
confirming that for —u < 6 < 2, the test based on r behaves asymptotically
like a nonsequential test. Also, for 1 < g,
lim, [ —log y(0)]/E,z = 6*, 0<60 <2,
(8.9) =32, 120,
= 20*2pr, p<@,
and we see that the bound in (2.17) is missed by at least a factor of 4. For ¢
we have, correspondingly,
(8.10) lim, [ —log ¢,(0)]/E,0 = 0 and
lim, [—log 7,(0))/E,0 = 2%6%/2p2, all @.

Judging by these last relations, the tests based on z, s, T,, 6, and o* have

poor asymptotic performance; this despite the fact that o, is an “optimal” test.
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It can only be concluded that the Bayes criterion of optimality is unrelated to
the measures of performance we consider here. In this connection, we remark
that often the components of the total risk, ¥, and ¢T (or their expectations),
tend to zero at different rates (as ¢ — 0). As the latter term is usually dominant,
the Bayes criterion loses sight of the error probabilities, so to speak. This sug-
gests exercising caution in embracing the Bayes critierion as an overall measure
of performance of sequential tests.

9. Repeated significance test. Samuel-Cahn (1974) discusses repeated signifi-
cance tests for a normal mean. The continuous-time version of one of these
procedures is the following: For a fixed positive y, let ¢ = inf {#: X(¢) = pat},
v =0 Aaand 4 = (X(r) < pat). Here pisanappropriate fractile of the standard
normal distribution, chosen to give a desired ¢(0). The relation between p and
¢(0) is given in (9.1) below; see also Samuel-Cahn (1974). This test may be
described informally as follows. A total observation time a is chosen in advance.
If, at any time prior to a, X(¢) is significant, as judged by the critical value
appropriate for time @, sampling is terminated and H, rejected. Only if X(r)
fails to be significant for any 0 < ¢ < a is H, accepted.

Following are some asymptotic properties of the test. It is natural here that
the (upper) boundary and the truncation point increase at different rates; cf.
Section 6.

9.1. THEOREM. For 6 > 0,
t/at — p/0[Py] and
t/a — 1[P_,] .

The corresponding expectations have the same limits. When 6 = 0, t© ~ ar(1). In
particular, Eytr = aEyz(1) < a.

Proor. For positive drift, the pointwise result follows from the fact that
X(0) = pat and that X(¢)/o — 6[P,]. Thus Py(s/at — p/0) = 1 and similarly for
t. For the expectation, using the version of Wald’s lemma due to Robbins and
Samuel (1966), E, X(¢) = 0E,0 = pat, hence E,c/a* = p/6 and E,c/at < pf6.
Also, by Fatou, lim inf, E,;z/a? = #/6.

For negative drift, P_y(¢ < a, some a > x) < Py(SUPyc;co [X() — O8] > pxt)—0
as x — co. Hence P_y(r/a— 1) = 1. Convegence of the expectation follows
by dominated convergence. For 6 = 0, replacing X(¢) by atX(t/a) gives the
desired result. []

REMARK. Replacing X(¢) by aX(t/a) similarly yields
(9.1) €(0) = Py(Supyc,; X(1) = p) = 2[1 — D(p)] -

We note another consequenée of Theorem 9.1. Clearly Ey(r | 4) = a, so that
lim, E(z | A)/E,x = 1/E,z(1) > 1. Since E,r = &0)E,(r|A) + ¢(0)E,(r|R), it
follows that lim, E(r|R)/E,r < 1. Hence by Lemma 2.1, for 6 >0,
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[—log e(—0)]/E,z cannot, in the limit, attain the value 46%. That it does not is
also evident from the evaluations given below.
From Samuel-Cahn (1974), we have that

9-2) Ey(1) = [20(z) — 1] + w1 — O()] + 2p0(x)
and
(93)  Py(SUPcrcs X(1) < pat) = D — fat) — e0ebD(— pu — Gt
= e~#flato@ if 6>0.
For 6 > 0, (9.3) is ¢(@), thus
(9.4) lim, [ —log ¢(8)]/E,c = 6*/2E,z(1) > 467, >0,

so that (2.11) is not valid for this test. In fact, the bound given by Lemma
2.1 is attained in this case, although, as can be seen from (9.1) and (9.2), that
of (2.10) is not; the bound there being 62/2[2®(x) — 1] in this case.

For —6 < 0, (9.3) gives

(9:5) o(—0) = exp[—2p0a[1 + o(1)]],
hence
(9.6) lim, [ —log ¢(—6)]/Ey;c = O, 6>0.

The contrast between (9.4) and (9.6) reflects the markedly asymmetric nature
of this test. On the other hand, from (9.5) and Theorem 9.1, we see that

(9.7) lim, [ —log &(—6)]/E,t = 26*, 6>0,

so that the bound in (2.15) is attained. This last result just indicates that, as
far as hitting the upper boundary is concerned, this test behaves asymptotically
like the SPRT of Section 4. Further indication of the asymmetric nature of the
test is given by

(9.8) lim, [ —log ¢(0)]/Eyt = o0, 6 >0,
=0, 0<0.
Finally, we have
9.9) lim, [ —log 7(6)]/E,z = 0 = lim, [ —log 7(6)]/E_,7 , >0
and
(9.10) lim, [ —log y(0)]/E,= = 26°, 6>0.

10. Some comparisons. As a partial synthesis of the foregoing, we collect
here, for purposes of comparison, results for the symmetric versions of the pro-
cedures considered above. Naturally, the repeated significance test of Section 9
must be excluded from such a comparison. Thus, for the procedures considered
in Sections 3-8, we take 2 = x and (where relevant) » = 0. For symmetric
procedures, many of the ratios discussed in Section 2 coalesce. In particular,
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7(6) = 2¢(0) and the corresponding ratios based on these quantities have the
same limits. Also, (2.11) necessarily holds for symmetric procedure (cf. Pro-
position 2.3). Inthe table below, the number(s) in parenthesis after (the abbrevi-
ated name for) a procedure gives the relevant section(s).

TABLE 1
limit of
Procedure
[—log &(0)]/Eot [—log &(0)]/Esz
NS (3) 162 162
TPRT (5) 102, 0l <2, 162
302, A0 £42, 6322
226, 6] > 42, 262
SPRT and TPRT II (4, 6) 0 262
AND (7) 302, 9] <22, [(6+ 2)/22]6%
220 — ), 6] > 22, 2(6% — 22)
TAPO (8) 302, <2, 302
e, 6] > 2, 167
APO, Bayes and Darling-Robbins (8) 0 162
Upper bound (2.16, 2.17) 302, 262

From the table, it appears that the untruncated procedures having a square
root boundary (the APO, Bayes and Darling-Robbins procedures) fare poorly,
asymptotically. The limiting values are dominated by those for the SPRT and
TPRT. Truncating does not help either; the TAPO is also dominated by the
TPRT. (To effect this comparison, if 1 is chosen for the TAPO, the same
value should be chosen for the TPRT.) Although the SPRT itself is not
dominated in this way, and is in fact optimal when judged by the criterion
lim, [ —log ¢(f)]/E,7, one may wish to exclude it from consideration for other
reasons: The fact that ¢ is unbounded and/or that E,r is unduly large for ¢
near zero. In choosing among these procedures, the author’s inclination is to
restrict attention to the nonsequential test, the TPRT and Anderson’s boundaries.
(None of these three procedures dominates the others.) Of course these con-
clusions should, at best, be viewed as tentative, pending corroborative finite-
sample information.

11. Acknowledgment. The author is grateful to Professor J. Yahav for
patiently listening as the present work developed and for providing helpful
comments and discussion.
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