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GAUSS-MARKOYV ESTIMATION FOR MULTIVARIATE
LINEAR MODELS WITH MISSING
OBSERVATIONS!

By HiLMAR DRYGAS
Johann Wolfgang Goethe-Universitit

In this note we discuss multivariate linear models from the coordinate-
free point of view, as earlier done by Eaton (1970). We generalize the result
of Eaton by allowing for missing observations. This leads to models of the
kind EY e L, Cov Ye{P(I® X)P’} where P is a diaganal mapping. The
paper starts by deriving the conditions for existence of Gauss-Markov es-
timators (GME) of EY in models where the covariance-mappings are not
necessarily nonsingular. These conditions are then applied to the above
models if ¥ runs either over all PSD-mappings or over all diagonal PSD-
mappings. In the latter case L must be of the form L =Ly x --- x L,
while in the general case some further conditions on the L; must be met.
(If P = I, then L; = L; must hold for all 4, j; this is equivalent to the result
obtained by Eaton). Examples show that these conditions are satisfied only
under rather exceptional conditions.

1. Introduction and notation. Consider a multivariate linear model with n
uncorrelated observations on a p-dimensional random vector y with common
covariance-matrix X. An interesting question concerns the conditions under
which a Gauss-Markov estimator (GME) of the mathematical expectation of
the y’s is independent of X. This problem has already been investigated in a
recent paper by Eaton [3]. Eaton’s result can equivalently be formulated as
follows: If Y is the n X p-matrix of the observations of the y’sand EY e L,
then a GME exists iff the following holds: There exists a linear subspace
L, < R*such that L = Ly x --- x L,, where a n X p-matrix A4 is an element of
Ly x -+ x L, if and only if the ith column of 4 belongsto L,,i = 1,2, ..., p.
Since L, can be represented in the form L, = X,R* = {X,9: 9 € R*} for some
integer k < n and some n X k-matrix X,, it is clear that L can be represented
in the form L = {X,II: I a matrix order k X p}, which is exactly Eaton’s
result. A generalization of Eaton’s result is required for the following problem:
Consider the situation that not at all points of observations (belonging to dif-
ferent rows) have all variables (belonging to different columns) been observed.
In the univariate case, e.g., this means that instead of 7, ---, 7, - - -, 7, only
N>+ s Yy is Observed, so instead of y = (y,, ---%,) only Py = = (y,, -- -,
Om> 0,0, -+, 0) is known, where P = (p,;;i,j=1,2,-..,n) and p,; = 9,; if
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i,j < mand p,;; = 0 otherwise. Pisa symmetric, idempotent matrix (mapping)
and, moreover, if Eye L, then Ey ¢ PL.

In extending this example to the multivariate case, let ¥ = (y,--- y,) be a
random n X p-matrix such that EY € L, where L is a linear subspace of the
vector-space V of all n X p-matrices. If we assume that not all vectors y, are
observed at any point of observation we are led to the consideration of pro-
jections P, (i = 1,2, - - -, p) such that with

(1.1) PY = diag (P,, - - -, P,)Y = (Pyy, -+, P, y,)

only ¥ = PY is observed. Moreover, assuming that observations at different
points are uncorrelated we have that

EYePL=Lc PV, Cov?e{PIR®Z)P},

i.e., in view of that fact that (/ ® Z)4 is defined to be equal to 4Z, we have
(Cov )4 = P((P'4)X) for some positive semidefinite (PSD) matrix X of order
pPXp- : )

Again, the question arises under what conditions on L and hence L a GME
which is independent of X exists. To answer this question, in Section 3 it is
first assumed that X runs over all PSD-matrices which are diagonal. In this
case it turns out that necessary and sufficient for the existence of a GME is that
L is of the form (see Theorem 3.2)

(1.2) PVvnl=Lx..-xL,,

where the L, are well-defined linear subspaces of R*and again Ae L, x --- x L,
holds if and only if the ith column of 4 belongs to L; and this should be true
for all indices i = 1,2, ..., p. If ¥ is allowed to run over all PSD-matrices,
then some additional conditions must be added to (1.2), namely (see Theorem
3.3 and Remark 3.4):

(1.3) P,P(L;) < L,

fori,j=1,2,.--,p.

In the sequel we will make use of the following notation: If M,, ae 4 are
subsets of the Euclidian vector space V' then };,., M, denotes the smallest
linear subspace ¥, & V such that M, C V, for all ¢ A. We denote by N* the
orthogonal complement of a subset N of a given vector space. The relations
(Daea M)t = Naea Mt and (Naes M)t = Yoes M,* are then easy to prove
if all M, are linear subspaces of the Euclidian vector space V. If X: © — Vis
a linear mapping, O, V being Euclidian vector spaces, then we will several times
in this paper use the Farkas’ theorem (see, e.g., Drygas[1, page 288]) (XO,)* =
X'1(0,%) and (X-'(V,))* = X'V,* valid for linear subspaces V, Z V, 0, < 0.

2. The existence of Gauss—Markoy estimators. Let 7 be an Euclidian vector-

space, endowed with the inner product { , ) and let (Q, F, P) be a probability-
space. Consider moreover a linear subspace L £ V and a set © of symmetric
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PSD mappings from ¥ to V. We assume that (Q, F, P) is so large that to any
Q € O there exists a V-valued random vector y such that Covy = Q. By the
model M(L, ©) we will then mean the set of all -valued random vectors y such
that Eye L, Covye®. Let G: ¥V — V be a linear mapping, then Gy is called
Gauss-Markov estimator (GME) of Ey in the model M(L, 0) if Gy is a best
linear unbiased estimator (BLUE) of Ey in the model M(L, {Q}) for all Q € ©.
For a more detailed discussion of these concepts see Eaton [3, 4], Drygas[1, 2].

Eaton [3] has solved the problem of the existence of a GME in the model
M(L, ©) provided all Q € @ are positive definite. In a recent but still unpublished
paper [4], Eaton has extended his results to the case where singular covariance
matrices are allowed, too. He so follows Kruskal [5] who already had admitted
the case of a singular covariance matrix.

In Drygas [2, pages 309-310] it has been shown that Gy is GME in the model
M(L, {Q)) if and only if (i) Ga =aVaeL and (ii) GQa =0 VYaec L*. Since
0= QL' n L for any PSD Q, the existence of a GME is granted if © is a one
element-set. Consequently if © is an arbitrary set of symmetric PSD-mappings,
Gy is GME in the model M(L, ®) if and only if (i) Ga = a Vae L and (ii)
Ga=0Vae Y, QL This proves part (a) of the following theorem:

2.1 THEOREM. Let the model M(L, ®) be given. Then the following is true:

(a) A GME for this model exists if and only if

@.1) L0 (SqenQLY) =0.
(b) If a GME for the model M(L, ©,), ©, < O exists, and moreover,
(2.2) QL' C Yo, QV+ L VQe0O,
then there exists a GME for the model M(L, ©) if and only if
(2.3) Nees, @7H(L) S QL) VQeO.

Proor. By the Farkas theorem, (2.3) is equivalent to QL+ & ZQeeo QL+ for
all Qe 0. Let a GME for the model M(L, ©) exist and ze QL+, Q€©. Then
by assumption (2.2) Z = Z, + Z,;; Z,e L, Z,€ Y 4cq, QoV. But 2igee, AV S
L + Ylgce, QL* since this by again using Farkas’ theorem turns out to be
equivalent to Ngeq, Q7'(L) N L+ & MNgee, @7'(0) which is trivially true. So
Z,€ Y geo, QL' can be assumed without any qualification. ButZ, = Z — Z,¢
L 0 (Yo QL*) = 0 since a GME for the model M(L, ©) is assumed to exist.
This implies Z = Z, € Y gco, @QL*. If on the other hand (2.3) is met and a GME
for the model M(L, ©,) exists and, moreover, Z € (3 4.6 QL) N L, then by (2.3)
Z € (Xigee, QL) N L = 0 by part (a) of the theorem. So, again, by part (a) of
the theorem, a GME for the model M(L, O) exists, too. []

2.2 ExAMPLE. Let y be a random vector of order n X 1 such that Ey = 0,
Covy =oa?W,+ .-+ + 0,’W,, the W, being PSD-matrices of order n X n.
This is a simple example of a variance-component model as, e.g., considered
by Seely [7], [8]. In the context of estimating the ¢, it has turned out to be
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convenient to consider the random n X n matrix Y. = yy’ whose expectation is
equal to 3™, ¢,2W, and whose covariance-mapping under assumptions of nor-
mality (at least as far as the moments up to fourth order are concerned) is
equal to

(2.4) CovY =237, _ o2 (W, QW,), ie.,

(2.4a)  Var (tr (4-Y)) = tr (Cov Y- A)- A)

=23r _olcitr (W, AW;A), A oforder n X n.
So here L is the linear space generated by W,, - .-, W, while @ is the set of all
mappings on the set ¥ of n X n-matrices which are of the form (2.4). Again
the question may arise when a GME of EY (which of course is a quadratic
estimator of y) exists. We show that W, W, W, + W, W, W,e L for i,j, k =
1,2, ..., m, is a sufficient condition for the existence of a GME. Again this
condition is met if We L implies W*¢ L or if the W, are idempotent and pair-
wise orthogonal, i.e., W,W; = 0,;W,,i=1,2, ..., m. Indeed W, Ve L then

34

implies (W + V) — V2 — W? = VW 4+ WV e L and thus
W, W W, + W W, W,
=4{W,(W, W, + W, W) + (W, W, + W, W)W,
+ W(W; W, + W, W) + (W; W, + W, WHW,
— W(W W, + W, W) — (W, W; + W, WyW,]eL.
The proof of our assertion runs as follows: Let
ZeLnN Yo QL, ) i.e.,

(2.5) Z =31 b (W, QWA= 271 by W AW, = Z0, W

where Ae Lt ie., tr (AW,) =0,i=1,2, ..., m. Then, as b,; = b;, without
restricting generality,

(2.6) tr (Z%) = 24t (b W AW 7, W)
= Yipigi T tr (W, W, W, + W W, W)A) =0,
since W, W, W, + W, W, W;e L and A¢ L+, so Z must vanish. ]

2.3 ExaMPLE. Let us consider the model M(L, PO, P'ywhere LC V,P: V>V
is a linear mapping and O, is a set of symmetric PSD mappings on V' such that
Ie©,. Since always (PQ,P')(V) < PV = PP'V, Theorem 2.1 can be applied
with ®, = {PIP'} = {PP'}. By Theorem 2.1, (2.3) a GME for the model M(L, ©)
exists if and only if

(2.7) Ngeo, Q71(L) = (PP')"(L) € QL) = (PQ,P") (L) VY Q,€06,.
This again is the case if and only if

(2.8) (PP')=(L n PV) < (PQ,P") (L n PV) V Q,€6,



GAUSS—MARKOV ESTIMATION 783

for (PQ,P')"Y(L) = (PQ,P")~*(L n PV). Since the relation (2.8) is linear Q, itis
enough to have the relation for a set of mappings Q, which generate ©,.

3. Multivariate linear models with missing observations. In order to treat
the problem of the existence of a GME in a multivariate linear model with
missing observations we will introduce some technical concepts. Let V; and V,
be finite-dimensional Euclidian vector spaces with inner products ( , ), and
( 5 )s» respectively and let V' = L(V,, V,) be the set of all linear mappings from
Vyto V,. Visa vector space which becomes Euclidian by introducing the inner
product (A4, B = tr (4B’). '

Let B={x, ---, x,} be a basis of the vector_ space V, and let M,, i =
1,2, ..., p be subsets of ;. We define the Cartesian product M of the sets M,
with respect to the basis B, in symbols M = (M, x --- x M), as the set of

all AeV such that Ax,e M, for i=1,2,.--,p. If 0eM, i=1,2,...,p
and B is an orthonormal basis (ON-basis), then it is readily verified that
(M % - x M))p)t = (M*x --- x M,*),. The property that an element

AeV belongs to the Cartesian product (M, x --- x M,), depends in general
on the choice of the basis B of V,. If, however, M, = M, and M, is a linear
subspace of ¥, then the statement 4 (M, x --- x M), is independent of the

choice of the basis B of V.

Let P, (i=1,2, ..., p) be linear mappings from V, to ¥V, and let B =
{xs1 i< p} be a basis of V,. If AeV, we define the mapping P =
diag (P;; 1 < i < p) or more briefly P = diag (P,), from V' to V' by reference to
PAx; = P;Ax;;i=1,2, ..., p. Pissaid to be a diagonal mapping. If P, = P,
fori=1,2, ..., p, then evidently diag (P;) = P,® I, where I is the identity
mapping of V,. If B is an ON-basic of V,, then (diag (P,))’ = diag (P,'). More-
over, the relation (diag (P,))(M, x - -+ x M), = (P,M, x --- x P,M,), holds.

Let us now consider the models M(L, P(:)1 P"), and M(L, PO, P'), where L is
a linear subspace of V, P = diag (P,) is a diaganal mapping with respect to some
fixed ON-basis B = {x;; i < i < p} of V,. Before defining the sets ©, and 0, let
us call a mapping X: V, — V, diagonal with respect to (w.r.t.) B if Ix, = 4, x,
for some 4, e R,i=1,2, ..., p. Then define:

(3.1 6,={0, =1, ®Z: X PSD, I diagonal w.r.t. B};

(3.2) 0,={0,=1,®L:X:V,—V, PSD}.

The consideration of the models M(L, PO, P’y and M(L, PO, P') is motivated by
the problem of missing observations in multivariate linear models. In this case
B = {l,,1 £i < p} where [, is the ith unit-vector of R? and P has same addi-
tional properties. These properties, however, are not relevent at this stage of
investigation, and they are not necessary to establish the general result. They
will be introduced and used at a later stage of the paper.

The following remarks will be useful in the sequel: Let A,; be linear map-
pings from V to ¥, which are defined by reference to:

3.3) A Ax, = 0y, Ax; + 0, Ax; .
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In other words, if we represent V" as matrices of order n X p, then A;; 4 is the
matrix which doubles the ith column of 4, while all other columns are annihi-
lated. Moreover, for i  j A;; A, is the matrix obtained from A by interchanging
the ith and the jth column and by annihilating all other columns.

It is obvious that A,;: ¥ — V is a symmetric mapping. Moreover, A, is PSD.
Ifi # j, A;; is in general not, but A;; = (I, ® I,)) + D) — Ay, ® 1), 2 > 1,
which means that A,; can be represented as the difference of two PSD-mappings
belonging to ®,. Moreover, the A;; (i = 1,2, - .-, p) do not only belong to ©,,
they also form a generating system of 0,, since $(2;7_, 4,4, = I, ® A, if 4 is
diagonal and "Ax, = 2,x,. A similar result holds for ©,, ©, is generated by A,;,
i,j=1,2,...,since {(5?;-10,;0;) = IR Z, if Zx;, =0,%, + -+ + 0,,%,.

3.1 LemMMA. PA;;P' = A,;PP ifi=].

Proor.

PA;;P'Ax, = 0, P, P/ Ax; + 0,, PP/ Ax,,
while Ay; PP Ax, = 0, P, P/ Ax; + 0, P, P/ Ax, .
If k + i, j both expressions vanish and if i = k and j = k the two expressions
are obviously identical. Note however that this in general is not true if k =i
ork=jandi=j. [

Let us now define
(3.4 Li={leV,:3AeLn PV A Ax;, = 1}.

Evidently the L, are linear subspaces (of V,) because L is such and, moreover,

LnPVc(Lyx --- x L), After having defined L, we can formulate our
first theorem:

3.2 THEOREM. A GME for the model M(L, ) exists if and only if
3.5) LNnPV=(Lx- -+ xL,);.

ProoF. Since /¢ O, we can apply the results of Example 2.3. By (2.8) a GME
for the model in consideration exists if and only if

(3.6) (PPY-Y(L n PV) < (PQ,P')"(L n PV) VQ,e,.
Since {A;;; i = 1,2, - .-, p} is a generating system of ©,, (3.6) is equivalent to
(3.7 (PP")"L n PV) < (PA,P) (L n PV) = (A, PP")"}(L n PV)

for i=1,2,...,p. From this we want to infer that (L, x ... x L)), &
LnPV. Ifde(Lyx --- x L,),, then Ax, = A,x,; for some 4, e L n PV. Let

;= PP'B;,, B,eV. Then B,e(PP)" (L n PV). Consequently by (3.7) B, e
(A PPYY(L n PV), i.e., A;PP'B, = A, A, e Ln PV. But evidently A ;A4 =
A A;and A=A, A+ --- + A ,AdeLn PV.

If on the otherhand L n PV = (L, x - .- x L,);, thenlet 4 e (PP')"}(L n PV),
ie., A= PP'Ayje L n PVand AyAe(Lyx -+ x L), =L n PV for A; Ax;, =
2Ax, e L,. This shows A4, e (4;,PP")"(L n PV). []
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3.3 THEOREM. A GME for the model M(L, ©) exists if and only if

@ LNnPV=(ULyx - -+ xL,),
and
(b) P,P/((P;P/) (L) S Li;i=1,2,.--,p.

ProOF. Since /¢ 0, again example 2.3 applies. Since {A,;(i,j =1, -+, p)}
is a generating system of ©,, we get by (2.8)

(3.8) V.,: (PP"Y(L n PV) < (PA,;P)(L n PV)

as a necessary and sufficient condition for the existence of a GME. By a pre-
ceding theorem this is equivalent to

(3.9)  V.;i (PP)y(Lyx +++ x L,);) S (PA;P)Y (Lyx --- x L),

and
LnPV=(Lx - -+ xL,)s.

This is still to be shown to be equivalent to condition (b) of the theorem. There-
fore, first let (b) hold and A4 e (PP’)"}(L n PV). Since (a) already holds then
PP'Ax,e L,, i.e., Ax,e(P,P/)'(L,) holds for all k. Then PA,;P'Ax, =
04 P, P/ Ax; + 0, P; P, Ax, € L, has to be shown. If k = i, j this is trivial, since
0eK,. If k=i or k=j this means P;P’Ax,e L; and P,P/Ax; e L, respec-
tively. But in view of (b) both conditions are true.

On the other hand if [; e (P;P;)"}(L;) let Ae V be arbitrary but such that
PP'Ae L and Ax; = I; and so P;P/Ax; = P;P;'l;e L; e.g., A can be defined by
reference to Ax, = d,,/;. Then (3.9) implies PA,;;P’Ac L n PV, in particular
PA;P'Ax, = PP/ Ax; e L, i.e., (b). []

T

3.4 ReMark. The condition (b) of the preceding theorem is considerably
simplified if P/ = P,*, i.e., P,P/P, = P, and L C PV, i.e., L; C P;(V,), j =
1,2, -.., p. This condition is met for the model of missing observations, since
then P? = P/ = P,. Inthis case P,P;/ = P,P/P;P; and it is easy to prove that
P,P/((P;P;/)*(L;)) = P,P;/L;. Thus condition (b) of the preceding theorem
then simplifies to P,P;/L; < L, for i,j, =1,2, ---, p.

3.5 RemaRk. Theorem 3.2 and 3.3 give necessary and sufficient conditions
for the existence of a GME. Moreover, however, the question arises how a
GME can be actually determined if the conditions of the theorems are satisfied.
It is the purpose of this remark to show how this actually can be done. Let us
make the additional assumptions P' = P¥, L= (L, x --- x L)), S PV —~ L, =
P, V.V, These assumptions are satisfied in the case of missing observations
because then L appearing in our theorem has to be replaced by PL & PV. If
PP/L,C L;, i,j=1,2,...,p, determine linear mappings G,: V;, — V,; such
that G, y; is GME of Ey, in the model M(L;, {I, }) or in the model M(L;, {P,P.'}).
A simple choice of G; may be P, the orthogonal projection on L;,. Then
(diag (G,))Y = GY, Ye V is GME of EY in the model M((L, x --- x L,)5, 0)
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and by Drygas [2, page 309].

(3.10) Cov (GY) = G Cov (Y) = (diag (G, P,))(I ® 2)P"), i.e.,
(3.10a) (Cov GY)Ax; = 0,,G;P,P/Ax, + - -- 0,,G,P,P Ax, ,

i=1,2,...,p. The GME-property is easy to prove since (L, x - -+ x L,);)* =
(Lt x +-- x LYY, and P,P/L; < L; implies that P, P/L,> < L;*. This result
means that the multivariate model is decomposed into p univariate models. A
similar result can also be obtained without the assumptions L £ PV, P' = P*.

3.6 ExampLE. The conditions (a) and (b) practically reduce the problem to
the case p = 2 since condition (b) of Theorem 3.4 is a condition on pairs of
“coordinates.” So let us consider this case. If we have two variables we have
four kinds of points of observations: points at which both variables are ob-
served, points at which exactly one variable is observed and finally points where
both variables are not observed. The latter is uninteresting and can be neglected.
By suitably arranging the observations the matrices P, and P, will be of the
following form: '

I, 0 0 I, 0 0
(3.11) P=10 1, 0], P,=10 0 0],
0 0 0 0 0 I,
where the 7, are unit matrices of appropriate orders. Then
' I, 00
(3.12) PP,=PP =|0 0 0].
0 00
Let us represent L, and L, in the form
le ZZI
(3.13) L=\Z,6,, L=|01]6,,
0 Zy,

where Z;; is a matrix of order n; X k, and 6, = R¥; j=1,2,3 and i = 1, 2.
Then there exists a GME for the model M(L, x L,, ©) iff

le . Z21 Z2’l le\
(3.14) 0|6,c|{0]6 and 006, Zm)é)l,
0 Zs 0 0

i.e., to any v, € 6, there must be a v, € , such that Z,,v, = Z, v, and Z,v, = 0,
and similarly for the second inclusion. If, moreover, k, = k, and Z, = Z,
(i.e., if a GME for the common observations of the two “endogeneous” vari-
ables exists), this is equivalent to Z, R n Zj;R™ = Z; R n Z},R" = 0 by the
complementarity conditions, see [6, page 101]. If, e.g., Z,, has full column
rank then (3.14) implies that Z,, = 0 (and similarly if Z, has full column rank
then Z,; = 0). In this case Gauss-Markov estimation is possible but the common



GAUSS—MARKOV ESTIMATION 787

observations are treated as if they were not made. In particular if there is no
common observation, GM-estimation is always possible. ‘

3.7 ExampPLE. Letk, =k, =1and Z; = (z¥); k = 1,2, ---, n;. By con-
dition (3.14) we have to investigate the relation z{¥'v, = 0 for all kK which implies
that either Z,; = 0 or Z,, = 0. Similarly from z{#'V, = 0 it follows that either
Z, = 0or Z,, = 0. SoaGME exists iff either the common observations or the
observations belonging to one of the “endogeneous” variables are irrelevant.

4. Conclusion. If not all components of a multivariate random vector in a
linear model are observed simultaneously then there is little hope that a GME
of the expectation exists. Only in very special situafions can an optimal esti-
mator which is independent of the intercorrelations of the “endogeneous” vari-
ables be computed.
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