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MULTIVARIATE UNIMODALITY

By S. W. DHARMADHIKARI AND KUMAR JOGDEO
M.S. University of Baroda and University of Illinois

For univariate distributions there is a generally accepted definition of
unimodality due to Khintchine which requires the existence of a number
a, called vertex, such that the distribution function is convex on (— o, a)
and concave on (a, ). For multivariate distributions, however, unimo-
dality can be defined in several different ways. Anderson (1955) and Olshen
and Savage (1970) have given such definitions. This paper first examines
the definition which calls a random vector (Xi, ---, X») unimodal if all
linear combinations 3] a; X; are univariate unimodal. We show that this
definition is somewhat unnatural because the density of such a “‘unimodal’’
distribution may not become maximum at the vertex of unimodality. The
paper also examines two other definitions based on the results of Sherman
(1955). One of these looks at the closed convex hull of the set of all uni-
form distributions on symmetric convex bodies and the other requires that
the probability carried by a symmetric convex set decreases as the set is
moved away from the origin in a fixed direction. The equivalence of these
definitions was conjectured by Sherman and this paper gives some results
having a bearing on this conjecture.

1. Notation and terminology. A set A C R" is called symmetric if xe A=
(—x)e A. If Aand B are subsets of R* and k € R, then (4 4 B) denotes the set
{x + y: xe dand y € B} and kA4 denotes the set {kx: x € A}. We call a distribu-
tion P in R" symmetric if P(A) = P(— A) for all Borel sets 4 in R". A function
g on R" is called symmetric if g(x) = g(—x) for all xe R*. A set A C R" is
called star-shaped about x if, for every y € 4, the line segment [X, y] is contained
in 4. A set of distributions in R is called convex if it is closed under finite
mixtures and it is called closed if it is closed in the topology of weak convergence.
If g is a nonnegative function on R", then, for every r > 0, the function g" is
defined by g7(x) = [g(x)]". Finally, the abbreviation UM will stand for either
“unimodal” or “unimodality.”

2. Linear unimodality. We call a random vector (X, ---, X,) linear UM
about 0 if every linear combination )7 @, X, has a univariate unimodal distribu-
tion about 0. The set of all distributions in R* which are linear UM about 0 is
convex and closed. Moreover, the convolution of two symmetric linear UM
distributions in R" is linear UM. However the following example shows that
the density of a linear UM distribution may not have a maximum at the mode.

ExampLE 2.1. Consider the bivariate density
f(x,y) = ke=vbr[eetstaud _ p] xeR,yeR,
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where 0 < @ < 1, b < 1 and k is so chosen that fis a density. It can be verified
that if 6 > (1 — a) then there is a 6 > 0 such that f{x, x) is strictly increasing
in xe[0,6]. On the other hand if & < (1 — a)f, then the x-marginal of f is
unimodal. The circular symmetry of the distribution shows that if (I — a) <
b < (1 — a)t, then f is linear UM about 0 but the density is not maximum at 0.

3. Central convex unimodality and monotone unimodality. Two definitions
of multivariate unimodality, applicable to symmetric distributions, can be based
on the results of Sherman (1955).

DEFINITION 3.1. A distribution P in R” is called central convex UM if it is in
the closed convex hull of the set of all uniform distributions on symmetric com-
pact convex bodies in R".

DeriNITION 3.2, A distribution P in R* is called monotone UM if for every
symmetric convex set C C R" and every nonzero x € R", the quantity P(C + kx)
is nonincreasing in k € [0, oo].

Clearly a central convex UM distribution is symmetric. The same is true of
monotone UM distributions.

THEOREM 3.1. A4 monotone UM distribution in R is symmetric and unimodal. A
monotone UM distribution in R" is symmetric.

ProoFr. Let F be the distribution function of a monotone UM distribution P
in R. Then for x > 0and # > 0,

F(x 4+ h) — F(x) = F(x + 2h) — F(x + h)
or
F(x + ) = 3[F(x) + F(x + 2A)] .

Thus F is concave on [0, co). Similarly F is convex on (—oco, 0]. Hence F is
unimodal. Further the derivatives F’(x) and F’(—x) exist simultaneously for all
X € A, where the Lebesgue measure of A° is zero. If possible, suppose that there
is an x € 4 such that F'(x) > F'(—x). We may assume that x > 0. Then there
isa d¢(0, x) such that P(x, x + 6] > P(—x, —x + 6]. Adding P(—x + 4, x]
to both sides we get

P(—x 49, x + 0] > P(—x, x],

which contradicts the monotone UM of P. Hence F'(x) = F'(—x) forall x € 4.
This proves that P is symmetric. Now suppose that X = (X, ---, X,) has a
monotone UM distribution. Then it is easy to show that the distribution of
each linear combination )]} a, X, is monotone UM and hence symmetric. It
follows that X has a symmetric distribution. This proves the theorem.

It is clear from the very definition that the set of all central convex UM dis-
tributions in R* is closed and convex. Similarly the set of all monotone UM
distributions in R* is convex. We show below (Theorem 3.2) that this set is
also closed. We omit the proof of the following lemma.
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LemMmA 3.0. Let p be a Borel measure in R*. Then, for every convex Borel set
Cin R",
#(C) =sup{u(D): D < C and D is compact convex} .

Moreover, if C is symmetric, then the supremum can be taken over symmetric, com-
pact, convex subsets D of C.

CoROLLARY 3.1. A distribution P in R" is monotone UM if, and only if, the
property mentioned in Definition 3.2 holds for all symmetric compact convex bodies
Cc R~

THEOREM 3.2. Suppose {P,, m = 1} is a sequence of monotone UM distributions
in R", and let P, — P weakly. Then P is monotone UM.

Proor. Let C be a symmetric compact convex body in R* and let x € R* be
nonzero. We have to show that P(C -+ kx) is nonincreasing in k € [0, o). For
k = 0and @ > 0, write D(k, a) = aC 4 kx. Since C is a symmetric convex
body, for fixed k and varying «, the boundaries of D(k, a) are disjoint. There-
fore the set

A4, = {a > 0: P[Boundary of D(k, a)] > 0}
is countable. Suppose now that 0 < k </ < oo and a € (4, U A4,)°. Then the
boundaries of both D(k, a) and D(/, @) have P-measure zero. Therefore, by weak
convergence
(3.1)  P,[D(k, a)] - P[D(k,a)] and  P,[D(l, )] — P[D(l, a)] .
Since P,, is monotone UM, P,[D(k, a)] = P,[D(l, )]. Therefore (3.1) implies
that P[D(k, )] = P(D(l, «)]. Letting a—1 from above through the dense set
(4, U A4,)° and using the fact that C is compact, we see that P[C 4 kx] =
P[C + Ix]. This completes the proof of the theorem.

The following extension of a result of Anderson (1955) was proved by Sherman
(1955).

THEOREM 3.3. Every central convex UM distribution is monotone UM,

Sherman conjectured that the converse of Theorem 3.3 is true and also proved
that the set of all central convex UM distributions in R” is closed under con-
volutions. Therefore, if Sherman’s conjecture is true, then the convolution of
a monotone UM distribution with a central convex UM distribution would be
monotone UM. This consequence is verified by Theorem 3.4.

In what follows we use V, to denote Lebesgue measure in R*. Lemma 3.1,
below, follows immediately from definitions. Lemma 3.2 is due to Sherman
(1955).

DeriniTION 3.3. A nonnegative function g on R” is called convex UM if, for
every ¢ > 0, the set {x: g(x) > c} is convex.

LemMA 3.1. If g is a nonnegative function on R™ which is concave on its support,
then, for every r > 0, the function g" is convex UM,
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LemMma 3.2. (Sherman). Let C and D be compact convex sets in R and let
¥(x) = V,[C n (D + Xx)]. Then ¥V is concave on its support and hence W is convex
UM.

LemMA 3.3. Every marginal of the uniform distribution on a compact convex body
in R* has a convex UM density which is continuous on the interior of its support.

Proor. Write R = Q, x Q,, where Q, = R™, Q, = R*™and m < n. Let P
denote the uniform distribution on a compact convex body C in R*. The mar-
ginal of P in Q, will be denoted by P,. Let D, C Q, and D, C Q, be compact
convex bodies and write D = D, x D,. By Lemma 3.2

V.Y"[Cn (D + z)]

s z¢c R*
V.7(C)

PY(D + z) =

is concave on its support, namely C — D. Letting D, —Q, we see that
PY*(D, + x) is concave on its support, namely, C;, — D,, where C, is the projec-
tion of C on Q,. From Chapter IV, Section 6 of Saks (1964), we know that a
density f; of P, is given by

fi(x) = lim inf}, 5, [PA(D; + X)/Vu(D))], xecQ,.

Since the lim inf of a sequence of concave functions is concave we see that £,/
is concave on its support C,. Now Lemma 3.1 shows that f, is convex UM.
The continuity of £, and hence of f; on the interior of C, follows from its
concavity [see Theorem 10.1 of Rockafellar (1970)]. This proves the theorem.

Lemma 3.4, If P is a monotone UM distribution in R*, h is a symmetric convex
UM function on R* and y € R" is nonzero, then § h(x + ky) dP(X) is nonincreasing
in k € [0, oo0).

Proor. The lemma follows by the standard method of first verifying it for

indicators of symmetric convex sets and then extending it to general symmetric
convex UM functions by linearity and the monotone convergence theorem.

THEOREM 3.4, Let P and Q, respectively, be monotone UM and central convex
UM distributions in R™. Then the convolution P x Q is monotone UM.

Proor. Let Q, denote the uniform distribution on a symmetric compact con-
vex body B — R*. The theorem will follow if we prove that P x Q, is monotone
UM. '

Apart from a constant multiplier, a density f, of (P x Q) is given by f5(y) =
P(B 4+ y). Let D C R" be a symmetric compact convex body and let x € R* be
nonzero. The

(3.2) (P Qu)(D + kX) = Sy ful¥)dy = 1, P(B + y + kx) dy .

Let {P,, m = 1} be a sequence of absolutely continuous distributions in R* cov-
verging weakly to P. Let g, be a density of P,. Then (3.2) shows that

(3.3) (P Q) (D + kX) = $p V5 0uly + Z + kX)dz dy .
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Suppose Y and Z are independently and uniformly distributed on D and B re-
spectively. Then the right side of (3.3) equals £[g,(Y + Z + kx)]. By a standard
theorem this expectation can be computed by using the density #,(u) of U =
Y + Z. Therefore

(3.4) (P, x Q) (D + kx) = § g,(u + kX)hgy(u) du,
or
(P * Qp)(D + kx) = § h,(u — kx) dP,(u) .

We want to show that (3.4) holds with P, replaced by P, at least for enough
choices of B. Now (P, x Q) converges weakly to (P« Q). Further, since
(P = Q) is absolutely continuous, (D + kx) is a continuity set of (P« Q). Hence
the left side of (3.4) converges to (P x Q,)(D + kx). By Lemma 3.3, the dis-
continuity points of 4,(u — kx) are all on the boundary of B + D + kx. Now,
for varying @ > 0, the boundaries of aB + D -+ kx are disjoint. Therefore,
there is a dense set 4 of a’s for which (aB + D + kx) is a continuity set for P.
It follows from the well-known theorem of Mann and Wald (1943) that, for
ac A,

§ hyp(u — kx)dP,(u) — § h,z(u — kx)dP(u) .
Therefore, for a € A
(3.5) (P* Qup)(D + kx) = § h,pz(u — kx) dP(u) .

Now P is monotone UM and, by Lemma 3.3, 4, is symmetric and convex UM.
Therefore (3.5) and Lemma 3.4 show that (P x Q,;) is monotone UM whenever
a e A. It follows by continuity that (P x B,) is monotone UM. The proof of
the theorem is complete.

COROLLARY 3.2. Every monotone UM distribution is the weak limit of absolutely
continuous monotone UM distributions.

Proor. Consider (P Q) of the preceding proof and let B — {0}.

4. Miscellaneous results and open questions. For comparative purposes we
give the following definition.

DerINITION 4.1. The distribution of a random vector x = (X, ---, X,) is
said to be star UM about 0 if it is n-unimedal in the sense of Olshen and Savage
(1970), that is, if t*E[g(tX)] is nondecreasing in f € [0, oo) for every nonnegative,
bounded, Borel-measurable function g.

The reason for the term star UM is that if f is the density of an absolutely
continuous distribution in R* which is star UM about 0, then, for every ¢ > 0,
the set {x: f(x) > c} is star-shaped about 0 [see Theorem 6 and Corollary 3 of
Olshen and Savage (1970)].

Example 2.1 shows that a linear UM distribution need not be star UM. It is
also easy to show that a star UM distribution need not be linear UM. Thus
there is no implication relationship between star UM and linear UM.
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THEOREM 4.1. Every monotone UM distribution is linear UM and star UM.

Proor. Suppose P is a monotone UM distribution in R*. Let Q, denote the
uniform distribution on the sphere C, in R* with centre 0 and radius d. Apart
from a constant multiplier, a density f; of (P x Q;) is given by f;(x) = P(C, + X).
The monotone UM property of P implies that f;(kx) is nonincreasing in k € [0, o)
for every fixed nonzero x € R". Thus f; is star UM. Letting 6 — 0 we find that
P is star UM. The proof that P is also linear UM is straightforward and is
omitted.

RemARk. If a density f on R has spherical symmetry, that is, f(x) depends
on ) x? alone, then star UM, monotone UM and central convex UM of f are
all equivalent. However, we cannot include linear UM in this list in view of
Example 2.1.

REMARK. The properties of linear UM, monotone UM and central convex
UM of a distribution are inherited by its marginals. This result is trivial for
linear UM, follows from Lemma 4.3 for central convex UM and is easy to show
for monotone UM. The marginals of a star UM distribution need not be star
UM. Das Gupta (1974) has given an example where a marginal of an absolutely
continuous symmetric convex unimodal distribution does not have a convex
unimodal density (see Definition 3.3).

ExaMmpLE 4.1. This example might disprove Sherman’s conjecture. Let
A,, ---, A, be the vertices of a regular hexagon centered at the origin. Let
T,, T,, respectively, be the triangles 4, 4,4, and 4, 4, 4;. Theset T, U T, consists
of six outer triangles and an inner hexagon. Suppose P is a distribution with
support T, U T, and having density « on the outer triangles and 8 on the inner
hexagon. Suppose 2a < 8 < 3a. Then it can be shown that P is not central
convex UM. Itis, however, believed that P is monotone UM. Even if this belief
turns out to be wrong, we would still get a symmetric star UM and linear UM
distribution which is not monotone UM.

Open questions which are of interest are to decide whether (i) monotone
UM = central convex UM, (ii) symmetry plus star UM plus linear UM — mono-
tone UM; or (iii) the set of all monotone UM distributions in R" is closed under
convolutions.

‘
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