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TESTS FOR INDEPENDENCE IN INFINITE
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This paper deals with distribution-free tests for independence under
the constraint that the population has a bivariate discrete distribution.
The locally most powerful conditional test, given the marginal empirical
distributions, is derived. The unconditional asymptotic distribution ot
the conditional test statistic standardized by the conditional mean and
variance is also given under the hypothesis of independence and under
contiguous alternatives. Furthermore, some discussions on asymptotic
relative efficiency are made. Two competitive test statistics having asymp-
totically chi-square distributions with different degrees of freedom are
compared by means of the local asymptotic relative efficiency.

1. Introduction and summary. Let us consider the problem of testing inde-
pendence of a bivariate distribution on the basis of a random sample (X,
Yy), -+, (X, Y,). Suppose the functional form of the joint as well as the
marginal distribution functions is unknown. Then, distribution-free tests have
to be considered. Concerning distribution-free tests for independence, many
authors such as Bhuchongkul (1964), Jogdeo (1968), Ruymgaart (1974), Ruymga-
art et al. (1972) and Shirahata (1974a, 1975) studied rank tests. However, the
assumption of the continuity of the underlying distribution function in these
works is not a realistic one since statistical data are usually obtained by counting
numbers or by rounding off a continuous quantity.

When ties occur with positive probability, the usual rank tests do not have a
distribution-free character. Convenient ways to maintain the distribution-free
character are to consider the randomized ranks or, preferably, conditional tests,
given the marginal vectors of ties. Behnen (1973) gave the general asymptotic
theory of conditional rank tests. As for the univariate problem, Behnen (1976),
Conover (1973) and Vorlickova (1970, 1972) studied conditional rank tests. This
paper deals with a conditional test for discrete distributions conditioned, as in
Shirahata (1974b), on the marginal empirical distributions, not on the marginal
vectors of ties. Furthermore, the asymptotic distribution is also considered since
the determination of the exact critical point is quite tedious for large n. Other
works about distribution-free tests for independence when ties are present are
given by Burr (1960), Cureton (1958), Lyerly (1952), Robillard (1972) and
Sillitto (1947).
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The statistic to be investigated is not based on ranks but on the original data.
In Section 2 the locally most powerful conditional test, given the marginal
empirical distributions, is derived. A large class of statistics is also proposed
and the conditional mean and variance are calculated under the hypothesis of
independence H,. In Sections 3 and 4, the test statistic standardized by the
conditional mean and variance is dealt with. The unconditional asymptotic
normality is proved under a subhypothesis of H, and under contiguous alterna-
tives. In Section 5, asymptotic efficiency of our test is given. A comparison
between the test based on the square of our statistic and the chi-square test is
also discussed by employing the notion of local asymptotic relative efficiency
suggested by Hajek and Sidak (1967). In addition, some attentions are paid to
the rank test theory developed by [1].

2. The locally most powerful conditional test for independence. Assume the
common distribution of the (X,, Y,) is discrete. For simplicity, assume that
each (X,, Y,) is distributed on J x J where J denotes the set of integers. The
set J x J may be replaced by a product J; x J, of arbitrary countable sets J, and
J,. Define

vy = # k| (X, Yi) = (i, )} (i, ))elxJ
(21) Ti.:#{lek:i}, T.j:#{k|yk:j} i,jeJ
7, ={r.;ield}, 7, = {r.;5j€J}
and
e = {r (i jed x J)

where the symbol # denotes the number of the elements of the specified set.
Then, clearly (z,, 7,) is a sufficient statistic under H, and ¢ is sufficient for the
class of distributions on J x J. Thus, in order to obtain distribution-free tests
of H,, we can restrict attention to tests based on r on condition that (z,, 7,) is
given. Converting the sample into z is equivalent to regarding the sample as a
contingency table. Throughout this paper, the word ‘conditional’ means ‘on
condition that (z, 7,) is given’ unless otherwise stated.

Suppose that the common distribution of (X,, Y,)’s is governed by a parame-
ter ¢ and that X, and Y, are independent of each other if and only if § = 0.
Denote by p,;(0) the probability of the event {(X,, Y};) = (i, j)} at & and by H,
the associated hypothesis. Put p,;(0) = p,,p,; where 3, p,, = >3, p, = 1, piu =
Oand p,; = 0 with 37, taken over J. The first result in this paper is the following
theorem which can be proved by the usual manner of deriving locally most
powerful tests in [8].

THEOREM 2.1. Assume that there exists
(2.2) pi; = @[dO)p. ()=  forall (i, j)el xJ

and that if p,,(0) = O then there exists a positive number 6,; such that p,;(6) = 0
for 0 < 0 < 0,;. Then the locally most powerful conditional test of H, against H,,
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0 > 0 is given by the test with critical region

(2.3) S1 = 245 TiiPrilPiePei > (715 T3)
where c(t,, t,) is chosen so that the test has the desired level conditionally, 3 ,;

being taken over J x J.

It seems difficult to apply S, in practice since p]; may be complicated. How-
ever, since S, can be rewritten as .S, = D=1 Py, v /Px e Povy S1 1S €asy to treat
when p{; is a product. Suppose that observations are obtained by rounding off
continuous random variables to integers and that the continuous model has the
Farlie type (1960) distribution function

F(x,y) = Fx)G(y)(1 + 0AF(x))B(G(y)) + 0(0)),
then p,, = F(i+4) — Fii—3),p; =00+ % — G —3%)
and p{; is a product, or specifically
pis = [AFG + )F( + 3) — AF( — $H)F( — 3)]
X [BG(] + )G + %) — B(G(J — £)C( — 2)]-
In the following theorem the conditional mean and variance of a linear
statistic in r,

(2.4) Sy(a) = 2045 4iiTij >
which generalizes the statistic S, is calculated under H, where q,; is a given

constant. Let us denote by E,, Var, and P, the conditional mean, variance and
probability, respectively.

THEOREM 2.2. Under H,, the conditional mean and variance of S,(a) are given by
(2.5) E;S(a) = X a,7,T,;/n
and

Var, S,(a) = (n - 1)~ X827, 7,
(2.6) — [n(n — D[22, 7(2; a57:)" + 225 9457.5)°]
+ [r(n — D] ai5707.5)"

The theorem is an easy consequence of the following lemma, which is a

generalization of Fisher’s expression for the 2 x 2 table.

LEMMA 2.1. Under H,, the conditional distribution of t is given by

(2.7) Pe(r) = (IT: wo NI 7o) /m! T14j 75!
and. hence -
Eyr,; = t.7.5/n,
Var,t,; = 7,7, — v,)(n — 7,;)/n*(n — 1),
Eitiity = Tt Tt — Dfn(n — 1) j# ]
Egr ity = tute Tty — 1)/n(n — 1) i+

j “i'g
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and
EotiiTip = ToTpaToiTop/n(n — 1) i+, j+].

When both X, and Y, can take only two values, the test based on S,(a) is, if
it is not trivial, equivalent to Fisher’s exact test. Thus, the test using S,(a) can
be regarded as an extension of Fisher’s exact test to the case of an infinite
contingency table.

3. The asymptotic distribution of the test statistic under the hypothesis of
independence. In this section the unconditional asymptotic normality of

(3.1) Sy(a) = (Var, Sy(a))}(Sy(a) — E;Sy(a))
is investigated under the hypothesis of independence where S,(a), E,S,(a) and
Var, S,(a) are given in the previous section.

It would be desirable to do without any limitation on the underlying distri-
bution {p,, p,;} but indeed we introduce a class of distributions

(3.2) C. = {{Pi.P.j}; 2045 @i PiuPoy < 00}

and consider a subhypothesis of H,,

H,,: the common distribution of (X,, Y,)’s belongs to C,.

When {a;;} is bounded, H,, coincides with H,. Furthermore every distribution
with a finite domain belongs to C, for any {a,;}. Hence, the limitation may be
not so strong. The main result in this section is

THEOREM 3.1. Under H,,, the convergence
3.3) Sy(a) —, N(O, 1) as n-— oo
holds provided o *(a) is positive where

(3.4) 7.%(a) = 245 @PipPes — 2iPi( D Aiipus)’
— 2 Pei( 2 i)' + (D4 @i Piapes) -

Note that the asymptotic normality of n~#(S,(a) — E(S,(a)) holds under H,,
since S,(a) = X7, ay,y, is a sum of independent identically distributed random
variables with finite variance. Thus Theorem 3.1 implies that S,(a) is asymp-
totically normal under the same condition under which S,(a) is asymptotically
normal. '

In order to prove Theorem 3.1, let us put

(3.5) Zij=nMry; — npup.;),
(3.6) Z, = ¥, — np)
and

(3.7) Z; =n¥z,; —np,;).
Then

(3.8) ”_%(Sz(a) — E;Sy(a)) = ij Bij sz + nt Zij a;Z,, Z,;
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where
(3:9) Vis=2; = Pulei — PeiZia-
Thus, Theorem 3.1 can be easily derived by the following lemma.

LemMma 3.1. Under H,,, it holds that

() A =nt3a,2,Z,; = o),

©)
(i) X, a,;V; —4NQO, 0*a)) asn— oo
and
(ili) n='Var, S,(a) —, 0,(a) as n — oo.
Proor. (i) Since 7, and r,; are independent of each other and since (z,,, 7,..)
and (z,;, 7,;) each follows trinomial distribution,
P4 > ¢) = E(47)/"
= (r) (L alipenpes(l = p)(1 = puj)
(3.10) = Zigeir @i PuPeiPei (1 — Pu)
= i P PolPai(l — Pug)
+ Diriizi @i Pi P PaiPei) -
By the Schwarz inequality, (3.10) is bounded by 4(ne?)~* 3,; a% p,.p.; Which
tends to zero as n — oo.
(ii) The proposition required is a well-known property of the multinomial
distribution if the domain of the distribution {p,,p,,} is finite. Thus we have
only to take care of the complication due to the infiniteness of J. For each

finite set K © J x J, 3, x4, V., is asymptotically normal with mean zero
and limiting variance o %a), say. It is easily seen that

(3.11) g (a) — g,}(a) as K—JxJ.

Denote by ®(x) and ®,(x) the distribution functions of N(0, ¢ *a)) and

N(0, o,*(a)), respectively. Then

|P(Zu a, sz = X) - q)(x)l

(3.12) = [Q(x) = P)| + [P(Liex @y Vi = X) — Qp(x)

+IP(Ea Vi =x)— P(Nohex @3V = X)|.
The last term of the right-hand side of (3.12) is bounded by
(3'13) P(|Z<i,j)zKazj sz' > h) + P(|Zu‘,j)e1{az‘j Vij - X| = h)

for every £ > 0. The second term of (3.13) converges to @ (x + h) — O (x —
k) as n— oo. Let ¢ be an arbitrary but small positive number. Then there
exists a positive number ¢ such that

(3.14) D(x+h) —Dp(x— h) <« whenever 2A < do, .

If we take & = (0,(a) — ¢)d/2, then there exists a finite set K such that for every
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K D K, (3.14) holds. Furthermore, for sufficiently large but fixed K and the
stated A, the first term of (3.13) is smaller than ¢ for large n.

On the other hand, the first and the second terms of the right-hand side of
(3.12) are small for large K and large n. Therefore, for an appropriate # and
sufficiently large but fixed finite set K, there exists an n, = n,(k, K) such that for
every n > n, (3.12) is bounded by Se. This completes the proof of (ii).

(iiiy From (2.6), (3.4) and Schwarz inequality, it sufficies to show that
each of

Ay = i @l pie — Tifnl X po — To/nl
Ay = 2ij @i Pl pos — 7o/l and A, = 3, a;p.;
converges to zero in probability as n — co.
Put B;; = a|p,, — t../n| X |p.; — 7.;/n| and take a sufficiently large but finite
index set K so that 3, ;.. a;p,.p.; < € for a small ¢ > 0. Then

(3.15) P(2i By > ¢) = P(Lex Biy > €/2) + P(Xipex Bij > ¢/2) .

Since K is a finite set and each B,; converges to zero in probability, the first
term of the right-hand side of (3.15) is smaller than ¢ provided n is sufficiently
large. On the other hand the second term is bounded by

P i ex @iPiaToi[N > €[8) + P(Xijyex Qi PujTaalnt > €[8)
+ P(Xliiex G Tia Tos/n® > €[8)
which is smaller than 24¢ for ¢ < %. Thus, it is found that 4, —, 0 as n — co.

The convergences of A, and A, can be shown similarly. This completes the
proof.

Pie — z;./n

4. The asymptotic distribution of the test statistic under contiguous alterna-
tives. Returning to the probability distribution {p,;(#)}, let us postulate the
following assumptions:

AssumPTION 4.1. The distribution {p,,p,;} = {p;;(0)} belongs to C, defined
by (3.2).

AssUMPTION 4.2. There exists a positive number §’ such that the distribution
{p:;(0)} is absolutely continuous with respect to {p,,p,;} for 0 < 6 < ¢’

AsSUMPTION 4.3. The derivative p/,(0) = (d/df)p,,(#) exists in an interval in-
cluding # = 0 which is common for (i, j) e J x J.

AssUMPTION 4.4. The convergence
i PO — 2 |pls] < oo as 0 —0
holds where p; = p;},(0).
AssUMPTION 4.5. The Fisher information satisfies

Iy = 25 PO [pii(0) = Iy = X2 (L) pipe; < 0 as n— oo.
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AssSUMPTION 4.6. It holds that

pi=Xipy =0 iel, py=2up; =0 jel.
The asymptotic normality of S,(a) given by (3.1) is proved under H, ,: the
common distribution of (X,, Y,)’s follows {p,;(4,)}, 8, = n~*6, for some ¢, > 0.

THEOREM 4.1. If Assumptions 4.1 through 4.6 are satisfied, then the convergence
4.1 S,(a) — N(p,(a), 1) as n— oo
holds under H, , where
42 o:(a) = 0,7 ()00 2; a5 Pl -

The proof of this theorem is based on the notion of contiguity introduced by
Le Cam (1960) and elucidated in [8].

Let
(4.3) L, = 1t=1[px,v,(00)/Px e Por,] >
(4.4) Wy =2 35 llPx, v (00)[PxyePor, )t — 1}
and
4.5) Ty =0, 2%zt Pryry[PryePor,) -

To show Theorem 4.1, we need the following lemma which can be proved along
the similar line of arguments as Lemma VI 2.1a and Theorem VI 2.1 of [8].

LemMa 4.1. Suppose Assumptions 4.1 through 4.5 are satisfied, then the con-
vergences

(4.6) T, —4 N, 0.:21,) as n— oo,
4.7) logL, — T, + 6,1,/2—,0 as n-— oo
and

(4.8) log L, —4 N(—041,/2, 01,) as n— oo

hold under H,,.

In view of Le Cam’s second lemma [8], the convergence (4.8) implies con-
tiguity of H, , to H,,. Therefore, from Le Cam’s third lemma [8], in order to
prove Theorem 4.1 it suffices to show that (Sy(a), log L,) is asymptotically
bivariate normal with covariance p,(a). under H,.

ProOF oF THEOREM 4.1. From the arguments in Section 3 and (4.7), (S,(a),
log L,) is asymptotically equivalent in probability to (¢,”*(a)n~* 3}, a,;V,;, T, —
0.1,/2). Therefore, it is sufficient to show that
4.9) an~t 3. a,;V,; + 0T, —, N(O, d*c 2(a) + b*01, + 2abo,(a)p,(a))

as n — oo for any but fixed real numbers a and 5. Now, in view of Assumption
4.6, T, is identical with 6, 37 .; (pi;/p..p.;)V:;- Hence the asymptotic normality
(4.9) can be shown by the same method in Lemma 3.1.
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5. Some arguments on asymptotic relative efficiency. Let us first consider
the situations in Sections 3 and 4. The asymptotic efficiency (AE) of the test
using Sy(a) is defined in [8] as

(.1 AE(Sy@)) = (Zi; @i Pl o () ,
which is the square of the asymptotic correlation coefficient between Sy(a) and
the log-likelihood ratio (4.3). Assumption 4.6 entails that (5.1) is maximized
and equal to one if and only if a,; = p/,/p,. P.;- Therefore, the locally most
powerful conditional test is an asymptotically most powerful test.

The ratio of the AE’s of two competitive tests is their asymptotic relative
efficiency (ARE). Consider the testing H,, N H,,, then the ARE of the test using
Sy(a) with respect to that using S(b) is

ARE(Sy(a), Sy(b)) = (21 ai;pl5/ X bis Pli)* X (0,(b)]o X)) .
Second, let us pay a little attention to rank tests. The ranks R, and Q, are

defined by
R, =#{k|X, < X}, O, =¢{k|Y,=Y]}.

and denote by B, = (B,,, - - -, B,)and B, = (B, - - -, B,,) the marginal vectors
of ties of X’s and Y’s respectively.

Let F(x, y; 6) be a bivariate distribution function such that it is absolutely
continuous with respect to F(x, y; 0) = F\(x)Fy(y) where F, and F, are distri-
bution functions. Here F(x, y; 6) is not assumed to be continuous or discrete.
Furthermore, assume that the Radon—NikOdym derivative f(x,y; 0) = dF(x, y;
0)/dF(x, y; 0) has derivative (3/06)f(x, y; 0) = h(x, ¥; 0) and that A(x, y; ) satisfies

8 1h(x, y; 0)| dF,(x) dFy(y) — §§ |h(x, y; 0)| dF\(x) dFy(y) < co  as 60
Define the ties-conditional (this word means ‘on condition that B, and B, are
given’) scores by

a,(i,j| B, B)) = E(h(X", Y'9; 0)| B, B,, F,, F,)
where X' (Y*?) is the ith (jth) order statistic among (X, -+, X,) ((Yy, - -+, ¥,))

and where the ties-conditional expectation is calculated under F(x)Fy(y). Then
the ties-conditional rank test using

S, =2, a,(R;, Q,| By, B,)

is the locally most powerful ties-conditional rank test to test H, against the
alternative associated with F(x,y;0), 6 > 0.

Furthermore, let us again consider the sequence of distributions {p,;(4)} such
that p,;(0) = p,.p.; and consider the scores constants b, (i, J) satisfying

§6 $o [6.(1 + [un], 1 + [vn]) — o(u, V)Pdudv — 0 as n— oo

for a nonconstant square integrable function ¢(u, v) defined on (0.1) x (0.1).
Let

S5(g0) = n~t 2t bn(Rk’ leBl’ B,)
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be an averaged scores rank statistic where
bn(i’j| Bv Bz) = [(Bl,k - Bl,k—l)(BZ,k’ - Bz,k'—l)]_l Z bn(m’ ml) ’

Y. being taken over the set of pairs (m, m’) such that B, , , <m= B,
By, <m < By, forB, <i<B,and B, _,<j= B, and put

So(¢) = [Var (S,(¢)| B, B2)]_%[S5(90) — E(Sy(¢) | By, B,)]

where ties-conditional mean and variance are calculated under H, Then
Behnen [1] shows that under certain weak conditions

Se(¢) — N(0, 1) as n— oo under H,
and
Se(9) — N(py(¢), 1) as n— oo under H,,n S 0, = n*0,
where

02(9) = Ol D15 PraPei€in. )} 2043 Pii Py
for

Ppn.; = (Piupes) ™ VViy; (4, v) dudv
with 7;; = (302 o Pres Trhe e Pia] X (i e Pok> Dihe—eo o] If the scores func-
tion ¢ is chosen so that ¢, , == pl;/p;.p.;, then the test using Ss(¢) is asymp-
totically most powerful and 1ts AE is equal to one. The locally most powerful
ties-conditional rank test has the scores function stated above.

Finally, let us consider the case in which (X,, Y;)’s take a point in a finite set
{G, jyi=1,...,m j=1, ..., m}. Suppose that p,;(0) is continuously differ-
entiable with respect to ¢ and that if p,;(0) = p,,p.; = 0 then p;;(f) = 0 for |0]
smaller than a positive number 6’. The sequence of the alternatives to be con-
sidered is H, under which the common distribution of (X,, Y,)’s is given by
{p:;(0,); 0, = n~*@,, 6, = 0}. A conventional test for the two-sided situation is
the chi-square test based on

X2 - Zzn':ll Z;nzzl n(Tij - TuT-J/n) /T“ °j *

Denote by y,%(A?) a chi-square distribution with m degrees of freedom and
noncentrality parameter A% Then the convergences

X2 - X%ml—l)(mz—l)(o) under HO
and
X2 - X?ml—l)(mz—l)(abzlo) under H”n

hold where I, is given in Assumption 4.5. Furthermore, S;%(a) and S;%(¢) are
asymptotically y,%(0) under H, and are asymptotically x,’(e,’(a)) and y,*(0,*(¢))
respectively under H, .

Now, we want to compare the test using S;*(a) or S;%(¢) with the chi-square
test. In this case, simple determination of ARE is not possible because of the
difference between their degrees of freedom. However, the notion of the local
asymptotic efficiency defined in [8], page 271 can be utilized.

Let d be the asymptotic distance between the alternatives and the null
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hypothesis and let us consider two competitive tests using 7 or T,. Denote
by 8,(a; d) i = 1, 2 the asymptotic power of the test T, at level a.

DeFinITION 5.1. The local asymptotic efficiency at level « of the test T, is
defined by

(5.1) o(T; a) = (2[ad)[B(a; d) — alluc, i=1,2
if it exists and the local asymptotic relative efficiency at level « is
(5.2) e(T,, Ty, a) = e(T; a)/e(T,; a) .

The efficiency (5.2) suggested in [8] is convenient when the functional form
of the asymptotic distribution of 7 is different from that of 7,. But it still
depends on «. Thus it is more convenient to introduce the following.

DEeFINITION 5.2. The local asymptotic relative efficiency of the test 7, with
respect to the test T, is defined by

(5.3) e(Ty, T,) = lim,_ye(T}, Ty, @) .

In this paper we are interested in the situation when 7, and T, are asymp-
totically chi-square.

THEOREM 5.1. Suppose the asymptotic distance between the null hypothesis and
the sequence of alternatives is represented by 0* and that T, is asymptotically y; (0)
under the null hypothesis and y; (0,°0 %) under the alternatives, i = 1,2. Then

(5-4) oT,, Ty @) = 0 x I —a — §§1 £, 4a(x; 0) dx

02 71— a — §guf, u(x; 0)dx

and

(5.5) e(T,, T,) = k,0.*k; 0,2,

where f,(x; A%) denotes the density function of y,*(A%) and a; = «a(a) is determined

by

(5.6) a =7 fi(x;0)dx, i=1,2.
Proor. The asymptotic power of the test T, at level « is

(5.7 Bua; 05°) = 1 — §§i fi (x; 0,%0,7) dx i=1,2.

Hence, (5.4) follows by a short calculation.
Since the derivative of a,(a) is given by

(5.8) a/(a) = — 1/f,(a;0)
and since a, — co as a — 0, it follows from (5.4) that
e(Ty, T,) = lim,_, (6,°/0,")[ —1 — fk1+2(a1; O)a,/())/[—1 — flc2+2(a2; 0)a,/(a)]
= (k,02/k,0,%) lim,_, a,/a, .
Furthermore we have lim,_, a,/a, = lim,_, a,/(a)/a,'(«). Hence, from (5.8), it

a—0
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remains to show that

(5.9) lim,_ fi (@53 0)/ fr (a3 0) = 1.
From (5.6), it follows that
(5.10) a = 2f (a3 0) + (k; — 2) {7 x7fi (x5 0) dx

and the second terms of the right-hand side of (5.10) is O(«/«;). Hence
a—lfki(ai; 0) =% + O(a; ™)

and consequently (5.9) follows. This completes the proof.
Theorem 5.1 implies

(5.11) e(S} (@), x°) = (my, — 1)(my — 1) (25 a;;p.5)'[1,0,%(2)
and
(5.12)  e(S3(9), 1) = (my — 1)(my — 1)( 245 @150, » ) [lo Zii PiaPei Ppins; -

If we employ the locally most powerful conditional test or the locally most
powerful ties-conditional test, then each of (5.11) and (5.12) is maximized and
equal to (m;, — 1)(m, — 1). Thus, when m, or m, is not small, our test with
appropriate constants a,; or the rank test with appropriate scores function ¢
will assure us higher asymptotic power for the alternatives not too far from H,
and for large n than the chi-square test does.
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