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MONOTONE PERCENTILE REGRESSION!

By ROBERT J. CASADY AND JONATHAN D. CRYER
University of Iowa

Suppose that for each number ¢ in [0, 1] there is a distribution with
distribution function F.(+) which has pth percentile &(z). Consider the
problem of estimating &(«) under the assumption that £(+) is monotone. An
estimator which is analogous to the median regression estimator consid-
ered in Cryer, Robertson, Wright and Casady (1972), is studied. Asymptotic
properties including consistency and law of the iterated logarithm results
are obtained under various assumptions.

1. Introduction. Suppose that for each number ¢ in [0, 1] we have a distri-
bution with distribution function F,(-). Let {¢;}>_, be a sequence of numbers in
[0, 1], not necessarily distinct, to be called observation points, and let {Y,}5,
be a sequence of independent random variables such that the distribution func-
tion of Y; is th(-). For some fixed number p, such that 0 < p < 1, and for
each r in [0, 1] let &(¢) be the pth percentile of the distribution function F,(.).
In what follows we will adopt the definition

§(n) = inf {x|F(x) = p}

and the function &(.) will be referred to as the pth percentile regression function.
Also, for the remainder of the paper, f,(-) will denote the density of F,(+) with
respect to Lebesgue measure and f,'(+) will denote f,/(x) = dF (x)/dx.

In many experimental or survey situations, such as a study of growth in
preschool children or a statewide survey of mathematical achievement for chil-
dren in the primary grades, an estimator of the function &(.) is desired. The
classical parametric approach is to assume that &£(.) has some rather simple
functional representation that depends on a few unknown parameters. For
example, £(f) = at + 8 where « and 8 are unknown parameters. These pa-
rameters are then estimated by some method such as least squares, minimum
absolute deviations, or even maximum likelihood if further assumptions are
made concerning F,(-). We wish to pursue a nonparametric approach and as-
sume only that £(+) is monotone nondecreasing.

Cryer, Robertson, Wright and Casady (1972) suggested an estimator for a
monotone median regression function which is analogous to the estimator of
a monotone mean regression function as given in Brunk (1969) and further
investigated in Makowski (1973). Motivated by this estimator of the median
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regression function the following estimator of the pth percentile regression func-
tion is proposed:

(1) = max,., min, ., Z{Y;|j < n,r < 1,
<

s}

5}

where Z, denotes the pth percentile of the empirical distribution function of
the random variables described inside the braces. The equality of the two
representations for &,(z;) follows from the work of Robertson and Waltman
(1968). The value of &,(t,) at values of ¢ between observation points can be
specified in any manner so long as the estimator function remains monotone.

In Section 2, the general monotone percentile regression model is used to
estimate the pth percentile for each of a finite number of populations when it
is assumed that the pth percentiles are ordered. The proposed estimators are
shown to be uniformly strongly consistent and a law of the iterated logarithm
is shown to hold, thus establishing a rate of convergence for the estimators.

Section 2 also establishes that the proposed estimator of the monotone per-
centile regression function is uniformly strongly consistent on any interval [a, ]
where 0 < a < b < 1. This result is an extension of a similar result for the
estimator of a monotone median regression function as given in Cryer, Robertson,
Wright and Casady (1972). It should also be mentioned that all of the other re-
sults in their paper are easily extended to the case of estimating monotone per-
centile regression functions. Also in this section a pointwise law of the iterated
logarithm type result is proven under the assumption that &(+) is Lipschitz of
order one.

Finally, in Section 3, a more general regression situation is considered in
which the observation points are also considered to be random variables. The
results previously mentioned for Section 2 are shown to hold for this more
general model. B

t.

J

I\ A

= min,  , max,., Z{Y;[j<n,r

2. The main results. In this section we will first consider the problem of
estimating the pth percentile, &,,i = 1, 2, - .., k, for each of k populations when
we assume that §, < §, < --. < §,. As an example, one might be interested
in estimating the tenth percentile score on a standard achievement test for
students in each for the six primary school grades.

In terms of our general monotone regression model, the preceding problem
is equivalent to estimating £(+) at only a finite number of observation points,
say 0 <5y < 5, < --- =5 = 1. The number of observations from population
i, out of a total of n observations, will be denoted by N,(n).

The pointwise strong consistency of the estimators is established in the fol-
lowing theorem.

TueoreM 2.1. If for i such that 1 < i <k, F,(5(s))) = p, f:(&(s:)) > 0 and
Ny(n) — oo as n — oo, then

P{hmn-w ‘én(si) - E(st)l = O} =1.
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The proof of this theorem is implicit in Robertson and Waltman (1968) and
depends primarily on well-known results concerning the almost sure convergence
of sample percentiles to the population percentiles.

If the assumptions of Theorem 2.1 hold uniformly in i, then the following
corollary establishing the uniform strong consistency of the estimators follows
directly from Theorem 2.1.

CoroLLARY 2.2. If for eachi such that 1 < i < k, F,(§(s;)) = p, fo,(€(s)) > 0
and N,(n) — co as n— co, then

P{lim,,_,, max,_;, |én(s1.) —&(s) =0} =1.

The following theorem establishing a law of the iterated logarithm result for
the monotone percentile regression estimators was motivated by the fact that a
law of the iterated logarithm holds for the usual percentile estimators.

THEOREM 2.3. If for i such that 1 <i <k, f,(§(s;)) > O, f; (+) is bounded in a
neighborhood of &(s;) and lim inf, Ny(n)/n > 0, then there exists a positive finite
constant K such that

P{lim sup, (Ni(n)/log log N,(m)!é,(s) — &(s)| < K} = 1.

The proof of this theorem is similar to the proof of Theorem 2.7 given later
and hence will not be given here. The proof may be found in Casady (1972).
The following corollary is a direct consequence of Theorem 2.3.

COROLLARY 2.4. Suppose that min,, f, (§(s;)) > O, there exist positive con-
stants B and 0 such that

max,gp (SUp {| /5, ()] x € [£(s.) — 9, §(s:) + ]}) < o0
and
min, .., N,(n)/n = B for all n sufficiently large.

Then there exists a finite constant K such that
P{lim sup, (n/log log n)* max,.,, |£.(s) — €(s)| < K} = 1.

Thus far we have dealt with the convergence of &,(+) to £(+) at a finite number
of distinct observation points when we assumed that the number of observations
at each of these points becomes large. We now consider the same convergence
under the general monotone percentile regression model. That is, we will consider
the convergence of £,(¢) to &(¢) for each point ¢ in (0, 1). It will be assumed,
analogous to the previously mentioned assumption, that the number of obser-
vation points in each subinterval of (0, 1) becomes large. The following defi-
nition enables us to make this assumption more precise.

DeFINITION 2.5. For any number ¢ € [0, 1]let G,(t) = n~' - cardinality {j|1 <
Jj=n,t; <t}. Thatis, G,(-) is the empirical distribution function of the first
n observation points.
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For the remainder of this section assume that for all #/ and ¢’ such that
I<r<r<li
(2.1) lim inf, (G, (#") — G,(')) > 0.

Using this assumption, Cryer, Robertson, Wright and Casady (1972) proved
several theorems and corollaries dealing with consistency properties of the esti-
mator of a monotone median regression function. This is a special case of mono-
tone percentile regression and the proofs for the results in Cryer, Robertson,
Wright and Casady (1972) can easily be altered for the more general case. For
this reason the following theorem will be given without the proof.

THEOREM 2.6. Suppose that the pth percentile function &(+) is continuous on [0, 1],
for each positive number ¢

(2.2) inf, F, (§(t) +¢) —p >0,
(2.3) p—sup Fy (§(t,) —¢) >0,
and (2.1) holds. Then for 0 < a < b < 1
P{lim,, sup,<,<; |&.(1) — E()] =0} = 1.

Our main interest is in establishing a rate of convergence by proving a law
of the iterated logarithm-type result for the estimator &,(+). The proof of this
result requires not only that the number of observation points in each interval
become large but that this property hold uniformly on all intervals exceeding
a certain length, say /,, where [, — 0 as n becomes large. More precisely, it
will be assumed that there exist positive constants 8 and ¢ such that for n suf-
ficiently large

(2.4) (Gu(1") = G()/(" =) = B
for all ¢, #’ such that | — /| > c¢n~*. Example 2.10 will show that this hy-
pothesis is not vacuous.

THEOREM 2.7. Suppose that §(+) is Lipschitz of order 1 on [0, 1],
(2.5) 0 < o, = inf, f, (§(t)) = sup, [, (§(t) = &y < o0,
and for some § > 0
(2.6)  sup, (sup (|7, ()] x € [6(6) — 0, (1) + 3])) = M < oo .
Further, assume (2.4) holds. Then for each t in (0, 1) there exists a K < co such that
P[lim sup, (n/log log n)*|€,(t) — E(t)| < K} = 1.
ProoF. Let ¢ be a fixed but arbitrary point in (0, 1), §, = (log log n/n), S, =

t+ 9, and ¢, = (K, loglog n/n)* where K, is a positive constant to be chosen
later. Now choose 2 and 7 such that 1 < y < 2, and note that

£a(t) — €(Sa) = max, g min,g, Z(Y;|j = n,r < 1; = 5) — £(S)
= min,g, o max,o, Z,(Y;|j = n,r=t; =5) — §(S,)
= min,g, s max,, Z,(Y; —§(S,)|j=nr=t=5)
= ming, g max, o, Z,(Y; — (1) |j=nr<t; <)
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so then we have
{Eu(r) — &(S.) > 2e,)
C {min,g, s max,., Z,(Y;, — @) |j = nr < t; < 5) > e}
= {max, ., min,,.s Z,(Y; — @) |j S nr<t; <5) > %,}.
Forj=1,2,..-andn=1,2, ..., define
X;..=1 if Y, <&(t)+ A
=0 otherwise,

n

and for all real numbers a, b and x such that a < b let I(a, b, x) = 1 ifa <
x < b and zero otherwise. Also, for a < b let N(a, b, n) = Y %_, I(a, b, t;) then
for s’and r'such that r' <t < s’ < S,
{Z,(Y; =) |j=nr <1, <5) > 2,)
c X I, s, t)X; , < N(r', s', n) - p}
=X 107 8" )X — p) < O}
Hence it follows that
{Eur) — §(8,) > %} C (min,, max, o5, D3 I, 5 )X, — p) < O}
= {max, mintgsgsn 2 d(ry s, t)(p — X; ) > 0}
=A4,.

Let m, = [y*] for k =1, 2, - - -, where [x] denotes the integer part of x and let

rpo=tandr,,>r, . > - >r, ., = 0 be the unique values of the ¢,’s such
that j < nand ; < ¢. Temporarlly fix k and for n such that m, < n < m,,,and
I'such that 1 <[/ < i, define,

B,, = {max,, ., max,, min,,.s 27 I(r, 5, t)(p — X;,) <0,
max, g, Mil g, 215, 1 i s, 1)(p — X;,) £ 0,
mintésgsn Z?:l I(rn,l’ 5, tj)(p - Xj,n) > 0} :

It is easy to verify that B,, ;. n B,,, ., = @ if either n’ % n” or I’ & I" and that
Uresit 4, < Xvkgt 3iin, B, ;. For nand [ as before define

Un,l = {Z;’Zc:b—-}-l [(rn,l’ Smk+1 J)(E 3, Mp4q - Jmk+1) > 0}

when Y 7EH I(r, |, Sm,,.p» 1) = 1and n < m,,,. Otherwise, let U, , be the sure
event. On U, , n B, , we have

min, g, 235 (P 5, 1) (p — X;,) >0,
which implies
(2'7) Z?:l ](r"b,l’ S’mk+1’ t])(p - XJ:"’*) > O
because S, . < S,. Also, X;, = X; by definition so that (2.7) implies

Mty

(2'8) Z?:l I(rn,l’ Smk_H’ tJ)p g ](rn 19 mk+1 ]) 7, mk+1
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But we also have on U, , n B, ,
(29) DTN Iuts Sy VEX ) Z DI (s Sy 1)K
so combining (2.8) and (2.9) we get
(2'10) Z?=l I(rn,l’ Smk+19 tj)P + Z;’ZI}—I I(rn,H Smk+19 tj)EXj,mk+1
= DI It Sy 1) X, -

Finally, adding Y}2_ I(r,,, S t,)EX; to both sides of (2.10) and rear-

Mg+1’ Mgty
ranglng terms we get

(2'11) Z]mjf-l ](r’ﬂ«,l’ S'mk+1’ tj)(Eijmk+] - Xj,mk+1)
Z Z?=1 I(rn,l’ Smk+l’ tf)(EXj,mk+1 - p) *
But EX;, . —p= F, (&) + %,,, ) —p=0, n=m, and r,, <t so that
(2.11) implies
(2.12) S Ity Sy YEX o — Xy )

= 2F It Sy s GNEX; o — )
Now let
Cp = {max, o, Z7H I, Sy, s NEX; s — Xjimy )
= D7 A Sy GNEX; o — P}
and note that r,,e{t;|j < m,,,, 1; <t}. Hence, (2.12) implies that B, , n
U,, Cc C,forall nand [/ such that m, < n <m,,,, 1 <I<i, Thus we have

P{Ck} = P{kaH Zg’él Bn,l n Un,z}

n=my

(2.13) = 2akn, Xim P{B,, 0 U, )}

= 2k, Dt P(B, ) - PU,Y

where the last equality holds since B, , and U, , are independent events. Also,
for all j and n

EX;, = F, (1)) + Ze,)
= F (1) + 2e. [, (£(15)) + (R’ f1(0;,0)/2
where t < 0; , <t + Z¢,. Hence for n S0 large that A¢, < d we have
[EX;n — pl < Ae,ay + (2¢,)'M[2,

which implies that lim, sup, EX; , = p. An application of the Berry-Esséen
theorem shows there exists a I" such that

O0<T=min{PWU,): 1 Zl<Zi,m<n< m,,.}
for k sufficiently large. Hence (2.13) implies that
(2.14) I=P(C} = Yvkit 3iin, P(B, )

n=mj

> PIUM A,)
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Next it will be shown that 7, P{C,} < co. Then by (2.14) and the Borel-
Cantelli theorem we have P{{J, k1™ 4, i.0. k} = 0 and hence P{4,, i.0. n} = 0.
Let

Re = (T30 Snyps EX; s = PN Sy M)
and then by an extension of Bernstein’s inequality (see Hoeffding (1963)) we have
P{C,} < exp(—=N(0, S, , s Misa) - 42[2(0 + 4/3))
where o} = ¥ 74110, S, . t;) Var (X; .. /NQO, S, ., m.,). To show
Y P{C} < oo it is sufficient to show liminf, N(O, S, , M)A /(2(0, +
4,/3) log k) > 1, but using the uniform convergence of EX; , to p it is easy to
verify that lim, 4, = 0 and lim, 6, = pg, hence we need only show

lim inf, N(O, S,,,, , M)A 2pg logk > 1.
For k sufficiently large

EXf»mkﬂ —p=p+ 267"k+1a1 - (Zemk“)"‘M/Z —P
a, — (e M2 .

= 26""k+1 mk+1)

Hence for large k

Bz N(t, Sy, M) (R, — (Aen  )M[2)/N(O, S, |, My -

Mhe+1
Also,
Smysy — 1 = (loglog [y*H1]/[y*+1])
= ([r*]log log [y**'1/[y**+']H)m,~* .

But [r*]loglog [7**']/[r**'] diverges to +oco. Hence for k large we have

Sy, — 1 = cm~t. Using assumption (2.4) we have
Mty Sy 1) Z (G (S ) = G (1))
Z B(Smy,, — Dm -
Thus 4, = f(Sn,,, — OM(den,, a — (de,,, )'M/[2)[N(O, S,, ., m,,,) so that

N, A — m,,)A,%2pq log k
Z (BSmyy, — OMiAen,, a0 — (28, )*M[2))[(N(O, S, , s 7y10) - 2pq lOg )
= (B(Smyy, — OMi(Ren,, a0 — (Ao, )*'M[2))[2pgm,.,, log k .

It is easily verified that terms involving ¢ to a power of three or greater

vanish as k — oo so that

Mi+1

lim inf, N(O, S, , ., m..1)4,°/2pg log k
2 lim inf, (B(Sy,,, — DM, 4e,, , @)*/2pgm,,, log k
= lim inf, (82a,)*K,}[7*]" log log [7**]/2pqly**']* log k
= ((BAa,/7)*K}/2pq) lim inf, (log log y*+!/log k)
= (A)((Fe)'[2pg)Kit

where the first equality follows directly from the definitions. Let K, = (2pq/(Ba,)?)?
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and note that (1/7) > 1, then the desired result follows immediately. Thus, it
has been shown that
PE(1) — &(S,) > %, i.0. n} =0
where 4 > 1 was arbitrary, so that
P(lim sup, (5,(t) — &(S,))/en S 1} = 1.
By the Lipschitz condition there exists a C, > 0 such that |§(¢') — &§(¢")| =
C,|t' — ¢"| for all ¢, ¢ in [0, 1] so that
lim sup,, (£,(r) — £(1)/e,
< lim sup, (&,(1) — &(S,)/e, + lim sup, (§(S,) — £(1)/e.
< lim sup, (£.(¢) — £(S,))/e. + Co/K .
Hence,
P{lim sup, (n/log log n)*(£,(t) — £(t)) < Kt + Cp} = 1
and in a similar manner it can be shown that
P{lim sup, (n/log log n)}(&(t) — &,(t)) S Kt + C)} =1
and we conclude that
P{lim sup, (m/log log n)i|€,(t) — £(t)| < K} = 1

where K = K;* + C,, and thus the theorem is proved.
The following example will illustrate a case in which assumptions (2.5) and
(2.6) hold.

ExaMpPLE 2.8. Suppose F(.) is a twice differential distribution function,
F(0) = p, F'(0) = a > Oand for some d > 0,sup,.;_, ,; |[F"(X)] = M < . Fur-
ther, suppose that £(+) is a nondecreasing function on [0, 1] and ¢(-) is a func-
tion on [0, 1] such that 0 < a = inf, ¢(¢) < sup, o(t) = b < oo. For each ¢ in
[0, 1] and for all real x let F,(x) = F((x — &(t))/o(?)), then F,(§(r)) = F(0) = p,

(2.15) Jux) = [F'((x — &(0)[o(1)]/o(r)
and

(2.16) [l () = [F((x = £(@0)/o()]/(a(2))* -
From (2.15) we have ‘
0 a/b < F/(E(1) £ afa<
which implies that (2.5) holds. If ¢’ = ad > 0 then (2.16) implies that
sup {|f/()|: xe [£(r) — &', &(1) + ']} = SUPacrs,1 [F(D)/(0(1))’]
< Mja* <
and hence assumption (2.6) holds.

It is not clear such sequences as assumed in (2.4) exist, however, the following
theorem by Smirnov (1944) establishes the existence of such sequences.
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THEOREM 2.9 (Smirnov). Let G,(+) be the empirical distribution function of a
random sample X, X,, - -, X, with distribution function G(+). If G(+) is con-
tinuous then

P{lim sup, (n/log log n)? sup, |G,(x) — G(x)| < })F} =1.

ExAMPLE 2.10. Assume in addition to the hypotheses of Theorem 2.9 that
G(0) = 0,G(1) = 1, G'(+) existson (0, 1) and 0 < B* = inf,.,,, G’(x). Theorem
2.9 implies that for almost every observed sample sequence x;, x,, - - - we have
for n sufficiently large,

(G(t") — G('))/(" — t') — 2K(log log n/n)t/(1" — t')
= (G.(17) = G ()" — 1)

where ($)} < K < oo and 0 < ¢’ < ¢’ < 1. There exists a § such that #/ <
0 < " and (G(") — G()/(" — t') = G'(6) = f*. Hence

B* — 2K(log log n)} /(1" — ) < (G,(1") — G("N/(1" — 1) .
Now assuming " — ¢ > n~* we have

B* — 2K(log log n)tjnt < (G,(1") — G ("N/(I" — 1)

and as (log log n)}/nt — 0 as n — co we have for n sufficiently large

B <A(Gut") = G/ — 1)
where 8 = p*/2 > 0.
Example 2.10 suggests that a more general type of regression situation should

be considered in which the sequence of observation points, as well as {Y,}7_,,
are random variables. This concept will be discussed in the next section.

3. An independent observations regression model. The above results can be
generalized to the situation where the observation points {z,}7_, are considered
as observed values of random variables {7;}7_, as done in Brunk (1969). Brunk’s
discussion formalizes the idea that {7';}7_, is a discrete parameter stochastic pro-
cess and conditional on a realization {r;}7_, of that process the {Y,} are inde-
pendent random variables such that F,(y) =PY; y|T; = t;}. We refer the
reader to Brunk’s paper for the detailed construction of this so-called independent
observations regression model. Let G,(+) denote the empirical distribution for
T, T, -, T

ne

CoROLLARY 3.1. Let {T;, Y,;}3., be an independent observations regression model
such that, with probability one, {FT]_(-)}].:1 has properties (2.2) and (2.3) and either

(1) {G.(*)}p=, has property (2.1)
or

(i1) {T;}7-, are independent, identically distributed with distribution function G(+)
strictly increasing on (0, 1).
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Then for 0 < a < b < 1
P{lim,, sup,,<, [£.(1) — ()] =0} = 1.

Proor. Part (i) follows from the hypotheses, Theorem 2.6 and the definition
of independent observations regression model. Part (ii) will follow from part
(i) if we can verify that the empirical distribution functions {G,(-)};_, have
property (2.1) with probability one. To verify the above, let 0 < ¢ < " < 1
and choose ¢ > 0 such that ¢ < (G(+”) — G(¢'))/2. By the Glivenko-Cantelli
theorem we have with probability one

(3.1) —e < G, (t") — G(t")
(3.2) —e < G() — G (1)
for n sufficiently large. Combining (3.1) and (3.2) we get
0< G — G(') — 2: <G (") — G (V).
Hence, with probability one (2.1) holds and the result is proved.

COROLLARY 3.2. In the independent observations regression model assume that,
with probability one, {FTJ,(-)}j?=1 has properties (2.5) and (2.6) and that &(+) is
Lipschitz of order one. Then if either

(i) with probability one, {G,(+)}7-, has property (2.4)
or

(ii) {T;};, are independent, identically distributed with distribution function G(-)
as in Example 2.10,

then there is a constant K such that for each t in (0, 1)
P{lim sup, (n/log log n)}|é(t) — £()| = K} = 1.

Proor. The proof of (i) follows directly from Theorem 2.7 and that of part
(ii) follows from the results of Example 2.10 applied to part (i).
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