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ON INVARIANCE AND RANDOMIZATION
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This paper generalizes the results of Paik and Federer (1970), Ehrenfeld
and Zacks (1961) and Zacks (1963, 1964) regarding invariance and randomi-
zation in fractional replication. It is shown that (i) the characteristic roots
of the information matrix of a design in the general factorial relative to an
admissible vector of effects remain invariant under a permutation of levels;
(ii) the unbiased estimation of a linear function of an admissible vector of
effects can be obtained under equal probability randomization. In addition
some applications of the results are indicated.

1. Introduction. Ever since the concept of fractional replication was intro-
duced, many researchers have contributed either to the construction or the analy-
sis of these designs. More recent writings (Ehrenfeld and Zacks (1961), Zacks
(1963, 1964), Paik and Federer (1970)) have brought out some of the randomi-
zation and invariance aspects of regular and irregular fractional replicates. These
papers dealt mostly with proper fractions from the symmetrical factorials.

This paper considers arbitrary fractions from factorials in which the number
of levels of each factor is a positive integer. Section 2 studies the class of all
row permuted matrices generated from a submatrix of a real orthogonal matrix
of order s with each entry in the first column equal to 1/st, and, establishes
that any matrix in this class is related to another by post multiplication with an
orthogonal matrix. Further, a property of the resulting class of orthogonal
matrices is noted and these results are then utilized in Section 3. In this section
the characteristic roots invariance of the information matrix of a fraction relative
to an admissible vector of effects under a permutation of levels is established in
the general factorial setting. This generalizes the result of Paik and Federer
(1970) which was proved in the case of the symmetrical factorial for a parametric
vector consisting of the main effects and the mean. Section 4 establishes the
unbiased estimation of a linear function of an admissible vector of effects under
equal probability randomization. The main result of this section broadens the
randomization results of Ehrenfeld and Zacks (1961) and Zacks (1963, 1964)
for regular fractions to arbitrary fractions. In the final section possible applica-
tions are indicated.
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2. Preparatory lemma. Let C = (c;;) be a real orthogonal matrix of order
s (s = 2) with ¢, = 1/st. It follows that the sum of the entries in each column
of C besides the first is zero. Delete the first column of C and call the resulting
matrix C*. Let {C/*, C,*, - .-, C#} be the set of all row permuted matrices ob-
tained from C* and suppose C* = C,*. Let C; be the matrix of order s obtained
from C,* by adjoining a first column, each entry of which is 1/s*. The follow-
ing lemma will be useful in the next section.

LEMMA 2.1. There exists an orthogonal matrix U; such that

C*U; = C;*.
Moreover,
sl U. = 0 R

j=1%7J

where Q is the zero matrix.

PRrOOF. Observe that the matrix C/C; = C'C; is an orthogonal matrix which
has for its first row the 1 X s vectora’ = (1,0, 0, - - -, 0) and for its first column
the vector a. Let U; be the lower right matrix of order s — 1 in C/C;. The
first part of the lemma can now be verified. The second part of the lemma is
a consequence of the definition of U, and, the observation that the sum of the
elements in any column of C; besides the first is zero.

3. The invariance theorem. Paik and Federer (1970) established the charac-
teristic root invariance of the information matrix of a fraction from the symmet-
ric factorial with respect to the main effects and the mean under a permutation
of levels. The purpose of this section is to generalize this result to the setting
of the general factorial where the information matrices of fractions are taken
relative to an admissible vector of effects.

Consider the general s, X 5, X --- X s, factorial, s, = 2, where the ith factor
has s, levels from the set S; = {0,1,2, ---, s, — 1}. Let S =8, X S, X --- X S,
be the Cartesian product of the sets S;,. With each treatment (i, i,, - - -, i,) in S

associate an observation and an effect denoted by y(i}, iy, - - -, i,,)and A1 4,2 - - A, 'm,
respectively. Let Y, be the set of all observations and P, the set of all effects.
Let X = X, ® X,® - -- ® X, be the Kronecker product of real orthogonal mat-
rices X; of order s; with each first column entry in X, equal to 1/(s;)*. Then X
is a real orthogonal matrix of order s =. xs; with each first column entry equal
to 1/st. Associate with the observation vector Y, and the column vector P, of
single degree of freedom parameters the well-known linear model

E(Y) = XP,,  Cov(Y,) = oI,.

Let P be a K X 1 vector of single degree of freedom parameters and let P, =
(P’, Q). Then the implied linear model for a N X 1 observation vector Y under
the assumption that Q = 0 is

E(Y) = X(Y,P)P,  Cov(Y) = oI,
where X(Y, P) is the N X K submatrix of X read off from X relative to Y and P.
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The following concept is needed in order to formulate the main result of this
section. A set of effects P will be called admissible iff whenever 4,1 A% - .. A 'm
belongs to Pand i; # 0 (1 < j < m) then A1 A2 - .. A7t A} AR ... A, 'm be-
longs to P for all [ # 0 in the set S;. An admissible set of effects can be charac-
terized in the following way. Define formal row vectors of effects of the ith
factor by

v’ = (Aio) >
vE = (A} A2, -, AfTY) .

Forl;e{0,1}and 1 < j < m, let
a — al(ll, ""lm) — 1]111@1]212@ “ e ®vmlm,

be the formal Kronecker product of these formal row vectors. A set of effects
a will be called a basic collection if and only if there exists a sequence (/;)7,
with [; € {0, 1}, such that « is the set of all effects formed from the entries of
the row vector a'(l,, [, - - -, 1,). It is clear that any basic collection of effects
is admissible. Moreover, one can establish that a set P of effects is admissible if
and only if P is a disjoint union: P = [J%_, a;, where «; is a basic collection of
effects. Since P,, the set of all effects, is admissible, it follows that, if P is admis-
sible then the set Py — P is admissible.

Let Q; be the symmetric group of all permutations on the set S; and let Q be
the direct product of these groups. ThenQ = {w: 0 = (w,, - - -, 0,) With 0, € Q,}.
An element o in Q will be called a level permutation. If Y is any observation
vector and w in Q is any level permutation then w(Y) will denote the observation
vector obtained from Y wherein each component y(k,, k,, - - -, k,,) in Y is replaced
by y(wl(kl)s a)2(k2), Tt a)m(km)).

Let « be a basic collection of effects and let X;* be the matrix obtained by
deleting the first column of X;. Thena' = V41 ® 1,2 ® - - - ® v,,'n for a suitable
sequence /; € {0, 1}. If Y is any observation vector then observe, that it follows
from the Kronecker factorization of &’ given above, that the row of the matrix

X(Y, @) corresponding to the entry y(i;, - - -, i,) in Y is given by the Kronecker
product
3.1 M, QM;,® --- QM ,

where M{ = (1/(s;)*), the one by one matrix with entry 1/(s;)?, if [; = 0, and,
M is the ijth row of X;*, if I; = 1.
The main result of this section is the following.

THEOREM 3.1. For each level permutation w in Q, a basic collection of effects
@, and, any observation vector Y, there exists an orthogonal matrix U(a, w) such
that

X(Y, a)U(a, 0) = X(o(Y), @) .
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Further
L Yieca U(a, ©) =0, if & % (AP AL - 4,9,
7(s;!)
=1, if a = (ALA4>--- 4,0,

where O is the zero matrix and I is the one by one identity matrix.

Proor. Let = (@, ,, - - -, ®,) be a level permutation and suppose @’ =
VR vE® .. Qo,lm with [;€{0,1}. Let Z;* be the row permuted matrix
obtained from X;* whose ith row is the ,(i)th row of X;*. According to Lemma
2.1, there exists an orthogonal matrix U; such that

(3.2) X U; = Z;*.
Define
(3-3) U@, 0) = Uy (o) QU (0) @ --- QU, (0,,),

where, U, (o;) is the one by one identity matrix if /; = 0, and, U, (;) = Uj,
the matrix given in equation (3.2), if /; = 1+ From equations (3.1), (3.2), and
(3.3), the first part of the theorem can be verified. The remaining part of the
theorem follows from the second part of Lemma 2.1 and the definition of the
matrix U(a, o) given in equation (3.3).

Let P be an admissible set of effects. Then, as remarked earlier, P = |J'_, a;
(disjoint), where each «; is a basic collection of effects. The column vector P
givenby P’ = (a/, @, - - -, @) obtained from an admissible collection of effects
will be called an admissible vector. 1f Y is any observation vector and P’ =

(¢, &', ---, &) is an admissible vector, then let
(3.4) Xp(Y) = [X(Y, @) [ X(Y, @,)] - - |X(Y, @)]] .

CoROLLARY 3.1. For each level permutation w in Q, an admissible vector P, and,
any observation vector Y, there exists an orthogonal matrix U(P, w) such that

Xp(Y)U(P, 0) = Xp(a(Y)) .

Further,

L s G UP, ) =0,  if P (APAY .. A)),

7(s;!) )
:1, if P’:(AloAzo"'Amo)a
where 0 is the zero matrix and I is the one by one identity matrix.

Proor. LetP’' = (a/,a), ---,a/). By Theorem 3.1, for each w in Q and each

J (1 £j £ 1), there exists an orthogonal matrix U(a;, ») such that X(o(Y), @,) =
X(Y, a;)U(a;, w). Define U(P, ) to be a diagonal block matrix with U(a;, »)
being the (j, j)th block. The assertions in the corollary can now be easily
verified using Theorem 3.1.

An immediate corollary to Corollary 3.1 is the following.
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COoROLLARY 3.2. LetY be an observation vector and P an admissible vector. Then
any pair of matrices in the set of information matrices {Xp'(0(Y))Xp(0(Y)): 0 € Q}
have the same characteristic roots.

4. The randomization theorem. In this section the unbiased estimation of a
linear function of an admissible vector is explored when a randomized obser-
vation vector is selected from among the whole class of observation vectors
generated by the group of level permutations. The main result established here
generalizes the results on randomization as expounded by Ehrenfeld and Zacks
(1961) and Zacks (1963, 1964) for regular fractions to arbitrary fractions in the
setting of the general factorial.

Let P be an admissible set of effects and let P° = P, — P be the set comple-
ment of Pin P,. Then, as remarked earlier, P° is also an admissible set of effects.
Let Y be any N X 1 observation vector. Then the usual linear model under
the assumption that P° = 0 and a given distribution G is

(4.1 EY) = Xy(Y)P,  Cov(Y) = o’I,,

where, P’ = (a/, &/, - - -, @) and X (Y) is defined by equation (3.4).

Let Mp(Y) = X,'(Y)X,(Y) denote the information matrix of the observation
vector Y relative to P and let M,~(Y) be a generalized inverse of M,(Y). Further,
let g2 be a column vector with the property g’ = 2,/ Xp(w(Y)), for each v in Q,
that is, g is a vector which lies in the row space of X,(w(Y)) for each w in Q.
This formidable condition is only necessary for developing the general theory.
In most practical situations of fractional factorial designs, such as Resolution
IIT and V designs, the interest lies in the estimation of the vector P itself and
not in linear functions of P. The design matrix X,(Y) in such situations is then
of full rank, which is preserved under level permutations, so that it is not nec-
essary to assume the row space condition.

A general solution for P from the system defined by equation (4.1), call it
P, is given by

(4.2) P = M,~(Y)X, (Y)Y .

Let p/F be any linear function of P. Then the expected value of p,/P° using
a nonrandomized design is given by

E(t/P°|Y) = pt/[Mp~(Y)Mp(Y)P + Mp=(Y)Xp'(Y) Xpeo(Y)P?] -

It will be seen later that the parameters P° play the role of nuisance parameters.
Further, if w in Q is given and P’ is a solution to the equation o(Y) = X,(w(Y))P
then the expected value of p/P,° is defined by

1
m(s;!)

Note that in this definition the underlying randomized design is selected with
equal probability.

Eﬂ(.uolpwo) = Zmen Ea(/“o’Pwo I w(Y)) .
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The following lemmas will be useful in establishing the main result of this
section.

LemMMA 4.1.
1
n(s.!)

where p' = 2, Xp((Y)) for each w in Q.

Ziwea £ Mp=(0(Y))Mp(o(Y))P = ¢'P,

Proor. By a property of generalized inverse it follows that
(4-3) Xe(o(Y)Mp=(o(Y)) Mp(0(Y)) = Xp((Y)) -

Hence, substituting the definition of g in the expression given in the lemma
and using equation (4.3) the lemma can be verified.

Lemma 4.2, If P is any admissible vector, then
Zivea Mp™(0(Y)) X' (0(Y)) Xpe((Y)) = O,
where 0 is the zero matrix.

Proor. LetP’ = (a/, @), ---, a/)and (P°) = (B/, B8/, - - -, B)/) where a,, §3;
are basic collections of effects. By Corollary 3.1, there exist orthogonal matri-
ces U(P, w) and U(P°, ), each being diagonal block matrices of / and k blocks
respectively, with the respective (j, j)th blocks being U(a;, w) and U(B;, w),
such that X,(a(Y)) = Xp(Y)U(P, 0) and X,(0(Y)) = Xp(Y)U(P°, w). Substitut-
ing these equations in the expression given in the lemma it follows that

Zivea Mp™(0(Y))X¢'(0(Y)) Xpo(@(Y))
= Yeea U'(P, )My~ (Y) X' (Y)Xpo(Y)U(P?, @) .

Let L = Mp=(Y)Xp' (Y)Xpo(Y). Then L is a fixed matrix independent of  in Q.
Partition L into lk matrices K;;, 1 < i< land 1 < j < k, where each K;; is a
matrix conformable with U'(a;, ®) and U(B;, ). Then U'(P, 0)LU(P*, w) is a
block matrix whose (i, j)th block is U'(a;, ®)K;; U(8;, ). Thus to establish the
lemma it is enough to show that };,., U'(a;, w)K;;U(B;, ) = 0. Now suppose
a/ =v1Q@v2Q® ... Q@u,!mand B/ = v 1®v,2® ... ®v, n. Then, since
@, and B; are disjoint sets there exists an r with /[, = 0and k, = l or/, = 1 and
k, = 0. Suppose that [, = 0 and k, = 1. Then, from equation (3.3), one has
that U, (w) is the one by one identity matrix for each w in Q,. Select permuta-
tions w, in Q; (i # r) and fix them. Set F = {(0,, @,y - -+, 0,_1, @, @y, + =+, ©y) ¢
o € Q,}. Then Qis a disjoint union of such sets F. It now follows, from equation
(3.3), that for any 9,, 9, in F, U(a,, 6,) = U(e,, d,). Hence, U(a;, »)K,; is inde-
pendentof win F, and, }. ., U'(e,, )K;; U(B;, 0) = (U'(@;, ®)K;;) 3, » U(B;, ®).
Moreover, from Theorem 3.1, it follows that

Zoer U(Bj @) = Up(@) ® -+ @ Fyea, Up () ® -+ QU (@0,) = 0.

Hence, Y, .o U'(e;, 0)K;; U(B;, ») = 0 as well. Thecase/, = 1and k, = 0 fol-
lows similarly, completing the proof.
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The main result of this section is the following.

THEOREM 4.1. Let Y be a given observation vector and consider the class of ob-
servation vectors w(Y) generated by w in Q. Select a permutation y in Q with proba-
bility (TTr, (s.1))~. If g is a column vector such that g’ = 2, Xp(0(Y)) for each w
in Q, where P is an admissible vector, then Eq(p'P %) = p'P, where P ° is a solution

to the equation 9(Y) = Xp(9(Y))P.

Proor. Now

BAP)) = o T bt 1700)

1 TAf -
—— Zigea # M (1(Y)) Me(0(Y))P
n(s;!)

+ My~ (7(Y)) X' (0(Y)) Xec(n(Y)) P°] -
By Lemma 4.2 the sum of the second term in the above expression reduces to
the zero matrix and by Lemma 4.1 the sum of the first term reduces to g/'P,
completing the proof.

5. Some applications. The results obtained in this paper have wide applica-
bility in most practical settings of factorial experimentation. First of all, admis-
sible vectors P admit such celebrated vectors as “main effects” and “main effects
plus two-factor interactions”, which typically appear in resolution III and V
settings respectively. The interest in such cases lies in estimation of all the
elements of the admissible vector P. It is well known that a necessary and
sufficient condition for estimability of P is that the underlying design matrix of
the given fractional replicate is of full rank. If this is the case then any permu-
tation w e Q will lead to an observation vector w(Y) such that P is estimable.
As indicated earlier in most practical settings it is not necessary to check the
row space condition for estimating P.

Secondly, the invariance theorem relates that when the amount of information
is measured by a functional on the spectrum of the information matrix then each
design in the class of designs generated by the action of Q on a fixed design
will contain the same amount of information, since the underlying information
matrices are spectrum invariant. Hence, if no additional criteria are specified
then one should pick a design randomly for the results to be unbiased as shown
in the randomization theorem.

Finally, if additional meaningful economic and/or physical criteria can be
introduced then random selection is not appropriate. To illustrate this realis-
tically consider the 2* factorial with the objective to estimate the main effects
and the mean with five treatment combinations under the assumption that all
interactions are zero. It is known that a determinant-optimal saturated main
effect plan is given by the treatment combinations D, = {(0000), (0111), (1011),
(1101), (1110)}. Using the invariance theorem one gets 16 equi-information
designs by applying Q. The first one is already listed and the remaining 15 are:
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D, = {(1000), (1111), (0011), (0101), (0110)}, D, = {(0100), (0011), (1111},
(1001), (1010)}, D, = {(0010), (0101), (1001), (1111), (1100)}, D, = {(0001),
(0110), (1010), (1100), (1111)}, D, = {(1100), (1011), (0111), (0001), (0010)},
D, = {(1010), (1101), (0001), (0111), (0100)}, D, = {(1001), (1110), (0010),
(0100), (0111)}, D, = {(0110), (0001), (1101), (1011), (1000)}, D,, = {(0101),
(0010), (1110), (1000), (1011)}, D,, = {(0011), (0100), (1000), (1110), (1101)},
D,, = {(1110), (1001), (0101), (0011), (0000)}, D,, = {(1101), (1010), (0110),
(0000), (0011)}, D, = {(1011), (1100), (0000), (0110), (0101)}, D,; = {(0111),
(0000), (1100), (1010), (1001)}, D,, = {(1111), (1000), (0100), (0010), (0001)}.
Let w(D) = 1’D1 (= the number of 1’s in D) be the weight function of a design.
The weight function can be interpreted as the total cost of a design if the low
level 0 of any factor is assumed to cost 0 units and the high level 1 of any factor
is assumed to cost 1 unit. Evaluating the weight function for the sixteen satu-
rated main effect plans above it is seen that D,, is the unique cost-optimal and
determinant-optimal design, since w(D,;) = 8 and this is lower than that for the
other fifteen designs.

If a situation arises where the design in the determinant-optimal (or for any
other optimality criterion) class is not unique then further physical and other
criteria can be introduced by the experimenter in order to select a design. If
no other criteria are introduced in such a situation then one may choose a design
randomly from the determinant-optimal (or for any optimality criterion) class.

6. Unsolved problem. An interesting question to consider in the context of
Corollary 3.2 is the following: For what other collections P (besides admissible
collections) are the matrices Xp(w(Y)) generated by Q orthogonally related?
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