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CELL SELECTION IN THE CHERNOFF-LEHMANN
CHI-SQUARE STATISTIC!

By M. C. SprUILL

Georgia Institute of Technology

The approximate Bahadur slope of the Chernoff-Lehmann y?-test-of-fit
to a scale-location family on R¥ is computed. The goal is to select cells
(whose number is independent of sample size) to maximize this slope. The
supremum is found and is shown to be a maximum only in trivial cases. If
the sup is finite there is always a best selection for a fixed number of cells.
Equally likely cells are shown to be admissible when the alternative is large.

1. Introduction. Let (27, /") be a measure space and x and v be two prob-
ability measures on (27 7). If n: A}, A;, -+, Ay is a partition of 27 it is
well known that

() Xk (m) = n 250, (1 A;) — 1(A;))'[1(A;)
converges in law to a yj,_, distribution where g, is the empiric measure based

on the independent y,, ..., y, sampled from x. Suppose however that, rather
than y, a nontrivial alternative (v € #) v holds and define

M(a) = inf {m: X,*(z) > y%_.. for n = m}.

That is, M(a) — 1 is the last time the approximate a-level test makes an error.
It is known that w.p. 1 (v)

lim,, —(2log a)/M(a) = Zi_; (v(A;) — 1(4,))*/1(4;)

if the rhs is positive and finite (see Lemma 1). Thus the approximate Bahadur
slope of the test based on (1) for testing H,: p against H:v is ¥ =

JL1V(A,)/m(A;) — 1 (Bahadur (1967)). It is readily seen that the “best” par-
tition by this measure is the one resulting in the largest ¥ value.

The problem of maximizing the slope W(rx) as a function of 7 for y and v
fixed is considered in Section 2. The main result is Theorem 1, and the implica-
tions of this result are explained in comments following that theorem. In Sec-
tion 3 the parallel result, Theorem 2, is obtained in the case of testing fit to a
location-scale family against a location-scale alternative family using the
Chernoff-Lehmann statistic with random cells (see Moore and Spruill (1975)).
Section 4 shows that an optimality property of equally likely cells in the ordi-
nary y’-test pointed out by Mann and Wald (1942) holds in the case of testing
fit to a parametric family against a large alternative.
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1t should be noted that the results which follow could differ from those based
on exact Bahadur slope since Bahadur (1967) has pointed out that there may be
large differences between exact and approximate slopes especially at alternatives
far from the null hypothesis.

2. Cell selection for simple hypotheses. Let (527, %) be a measure space
and v € ¢ be probability measures on (27 .97). Any finite collection of sets
r: A, -, A, satisfying

- AjGVQ/ j:l,---,M,

(A, 0 A) =0 i)

m(UT" 4;) = 1

and

is a partition of 2°.

DerNiTION 1. (@) If @@ A, -+, Ay is a partition and p(4;) > 0 for j =
1, -+, M the partition is said to be admissible.

(b) The notation = < #’ means that each set of z is contained except for a
set of y-measure zero in a set of z’.

(c) If II is any collection of partitions Z(Il) = {4: A er for some = ¢ II}.

(d) The collection I is complete if each z € Il is admissible and given C e Z7(1I)
and z°¢Il, z°: B,, - - -, B, there is a partition z eIl such that = < z° and
C n B; e unless p#(C n B;) = 0.

A set D C R* is said to be a rectangle with sides parallel to the coordinate
axes if there are numbers —co < a; < b; < 400, j =1, ---, k, such that D =
{xeRFia; < x? < by, j= L, - o, k), x = (xP, x®, ..., x®). The collection
of all admissible M-partitions whose M component sets A, - .-, 4, are each
rectangles with sides parallel to the coordinate axes will be denoted by II,,. If
for each sequence of sets {C,} such that C,e Z(U, II), #(C,) — 0 implies
v(C,)/1(C,) — 0, one writes v* = o(y).

THEOREM 1. Assume v £ p.

@) If w2 Ay, -+ -, Ay is admissible and v(A;) # p(A;) for some j the test of
H,: p against H,: v which rejects for large values of X,*(w) has approximate slope

W(r) = D vi(A)lm4;) — 1.

(b) If I is complete and z°cIl, «a necessary and sufficient condition for
w0 AL A, -, Ay to satisfy Q(n’) = sup {{(z): 7 e IT} is that there exist con-
stants 0 < a; < oo, j = 1, -+, M, such that for all C e = (1),

UC) = S a, (A0 0 C) .

(c) If & = R*, v* = o(n), and p & m (Lebesgue measure on R*) then for each
integer M > 1 there is a =" ¢ IL,, such that ¥(a") = sup {¥(x): = e II,;}.

(d) If 2= R¥ and pp & m then

sup {¥(n): me Uy-, I} = § ¢*/fdm — 1
where g = dv/dm and f = dp|dm.
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COROLLARY 1. Let 2= RFandv & pp & m.

@) If i®e Uy I, then W(z%) = § ¢*/f — 1 iff g/f is constant a.e. m on A
fori=1, ..., M(z".

(b) If § g*/fdm < oo then for each integer M > 1 there is a n" ¢ II,, such that

Y(z") = sup {¥(n): weII,} .

A few comments are in order. The theorem and corollary show that there
is a “best” partition only in trivial cases. This implies that except in those
trivial cases the partition may be bettered by subdividing an existing cell.

They may also be applied in the following way. If we are testing fit to u
against v, and a competing test (not necessarily a y’-test) has slope ¥*, then if
§ ¢*/f > ¥* + 1 we can do better with a y? test; if § g?/f < ¥* + 1 we can not
do as well; and if { ¢*/f = W* + 1 the conclusion depends upon the conclusion
of (a) of Corollary 1.

ExampLE 1. Consider the problem of testing fit to the continuous df # on R
against the continuous df G. The Kolmogorov-Smirnov approximate level a
test rejects H,: F if nf||F, — F|| exceeds the upper « cutoff of

K(x) = X%, (— 1) exp[—2j2x*] , 0<x< oo,
Here || || is the sup norm and F, is the empiric df. Abrahamson (1965) shows

that the approximate slope of this test is W* = 4||F — G|[*. Since F and G are
continuous there is a point #, such that ||F — G|| = |F(t,) — G(t,)|. Hence

F(t) — G®) | (F(t) — G(1)’
ng/f—lg—(w 0 Y 4 0, 0,
F(t) 1 —F(n)
- Fi( Lo, 1 ) > s
4 \Fiy  T—Fu)/=

and the »* test using m: (— oo, ), (f, +o0) has slope at least as great as the
K — S test. In fact the only case in which no partition can be found to make
the slope greater than ¥* is when

9 _
J()
¢; =0,¢ 4+ ¢, =2. .
The proofs of the theorem and corollary are given below.

Col(x)(—oo,F—l(g)) + cll(x)<F*l<§),+m) s

ProoF oF COROLLARY 1.

(a) It may be verified that | J5_, II,, is complete and that & (|J,, II,,) contains
all rectangles of nonzero p-measure. Using (b) and (d) Theorem 1 one proves (a).
(b) Let p(4) > 0. By Schwarz’s inequality.

[$4 @/IAHUDE = 840811184 £]

so that

2) (A A) < 5. 9°f -

Now (b) follows from Theorem 1(c) and the dominated convergence theorem.
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The proof of Theorem 1 is carried out below. Let x/7, x.’ -« s 1. be inde-
pendent »* random variables with a(j) degrees of freedom and let C(x) be the
df of the random variable > 2,%% 1 = 4, > 4; =0, j =2, -+, M, 1, fixed.
The first lemma is an easy consequence of the arguments given on page 312 of
Bahadur (1967) and in Theorem 7 of Gleser (1966).

LEMMA 1. Let Z, be nonnegative random variables with df’s H,, for 6 € ©, and
suppose for € ©,c O, ||H,, — C||—0 as n— co. If for some 6'c® — O,
Z,/n — a a.s., then the approximate slope W(0") of the test which rejects H,: 6 € ©,
if Z, > C!(«a) exists and equals a at §'.

Part (a) of Theorem 1 is an immediate consequence of Lemma 1.

LEMMA 2. Leta, = 0,5, >0, 3, a,=a, and },)L, b, = b. Then

a? a 1 a, a;\’
v @@ 1 s ibib-<4—4> >0.
o, b p Lo L blilg g ) =

Proor oF (b) oF THEOREM 1. Assume there are constants 0 < a;, < oo, i =

1, .-+, M, and a partition z°: A, - -, 4,0 such that for all C e Z/(II)

w(C) = X4

J

MC N Af).

Let 7’ ¢ II be arbitrary. Since II is complete there is a 7 € Il such that = < =’
and 7 < 7°. By Lemma 2 ¥(z) = W(z'). Computation shows that ¥(r) = ¥(=’).
Sufficiency of the condition has been shown. To see the necessity let 4, be an
arbitrary member of #° where

¥(z’) = sup {¥(r): 7 1l}.

Without loss of generality we may assume it to be 4. Suppose there is a
C e (1) such that g(4° n C) = p(C), and #(C°n A > 0. By the com-
pleteness of Il there isa = € I,z: B, B, -, B,, such that B, = 4,° n C. Thus
by Lemma 2
W(r) = v¥(A4 N C)Jp(AL N C) + (AL N CO) /(40 n C%)
+ DHa A A0 — 1.

It follows from Lemma 2 that if
o VAP N C) |, (A8 N CY)

p(4 n C) w4 n C)
then

(A2 N C) | (AN C) (A
MATC) T (AT 0 CY) T (A

This however implies that W(r) > ¥(z") which is a contradiction. Thus
equality holds in (3). Manipulation shows that this implies that v(4,’ n C) =
V(A /(AN (A° n C). The conclusion for arbitrary C e Z(II) follows by
using this argument and the completeness of II.
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Let {r,} be a sequence of partitions in II,, with {x,,, x,,, « - -, Xx,}, K < 2*M,
the set of vertices of the component rectangles; x;,€[—oo, +oo]*. Since
[— o0, 4 oco]* is compact and K is bounded, we may in an obvious manner select
asubsequence {r, } and a partition 7, so that the vertices of the =, converge to
those of m,. m, may fail to be admissible, however it is clear that there is a
7 ¢ II, such that 7% < =, if 4 € m.

PRroOF OF (c) oF THEOREM 1. Let 7, ¢ II,, be such that

¥(z,) - sup {¥(n): mell,}.
Let 7, 7* and {z,,} be as above. Clearly

U(m,) — DHAS) m(Af) — 1
where the sum extends over only those indices j such that u(A4,) > 0. By
Lemma 2 ¥(z) = lim ¥(x,) since 7 < «,.

Rudin (1966) defines a substantial family S of open sets in R* to be any family
satisfying:

(a) There is a constant 8 < oo such that each E ¢ S is contained in a ball B
with m(B) < Bm(E).

(b) To every y ¢ R* and d > O there exists an Ec S, whose diameter is less
than ¢, such that y e E.

DEFINITION 2. The sequence of partitions {z,} has mesh converging to zero
properly (wrt g) if there is a substantial family S and for almost every () y € R*
there is a sequence of sets {4,(y)}, 4,(y) € 7,, and an integer N(y) < oo such
that y e int (4,(y)) € S for n = N(y), and diam [4,(y)] — 0 as n — oo. For defi-
niteness we take S to be the set of all rectangles 4 which are contained in a

ball B for which m(B) < k*m(A4). This collection is nonvoid and in particular
contains all k-cubes.

ProorF of (d) oF THEOREM 1. It is first proved that if {z,} has mesh converging
to zero properly then

4) lim,_,, ¥(z,) = § ¢*/fdm — 1.
The proof then follows from the fact that if
Y(r,*) - sup {¥(r): 7 e U II,}

there is a sequence {r,} with mesh converging to zero properly and =, < =,*
for all n. To prove (4) let z,: A,,, - -+, Ay, and define the functions

ho(y) = Zajpen, N Ain) [ (Az) 4, (Y) -

Since 7, converges to zero properly (wrt z) and v ¢, for almost every (v) y
eventually

_ v(4.)
h(y) = L A, . d 4, S.
» A(A.0) (er an (e
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Writing
h(y) = HAON/m(A()
w(A())[m(4.(y))

it follows from Rudin (1966), page 154, that lim 4,(y) = 9(»)/f(y). Thus
h,— g/f a.s. v. By Fatou’s lemma

(5) { ¢*/fdm — 1 = {liminfh,dv — 1 < liminf § h, dv — 1.

Since § A, dv — 1 = W(x,) it follows from (2) and (5) that
§ g*fdm — 1 < lim inf ¥(x,) < lim sup ¥W(x,) < § ¢*/fdm — 1.
3. Cell selection in a composite hypotheses case. In this section Theorem 1
is extended to the case of testing fit to a location-scale family against another

location-scale family as alternative. Let {F,} be a scale-location family on R*
generated by the absolutely continuous df F,

. ym _ 0(1) y(k) _ 0(2k—1)
Fo(y) = F( ) >t 9 ’
— 0 < y(j) < +OO )
0e@ ={feR¥%: 0% >0, —oo < 0¥ L +o00}.

If n, € II,(F) (the admissibility is determined by F) and the vertices of the rec-
tangles of m, are {X,, X, ** +, Xon}» X,; € R, denote by =(¢, n;) for each § ¢ ©
the partition with sets corresponding to z, and vertices {x,(6), - - -, x,,(6)} given by
X, (0) = 0%xP + 0%V, j=1,...,k;i=1, ..., m. The Chernoff-Lehmann
statistic T, (see Moore and Spruill (1974)) is given by
Ton =S¥ (Nas0) — nps(0,))nps(0,)

where N,;(0,) is the number of observations y,, - - -, y, falling in the jth cell of
n(én, 7,) and pj(én) is the probability which F;, assigns to it. The MLE 6, maxi-

mizes },%_, log f(y,|6), where f(+ | 6) is the density of F),.
The following assumptions are made.

(B1) T,, has as its limiting distribution the distribution of % _,_; +

Mo sk A;7;7 under any F, e {F,: 6 € ©}. i

(B2) Under an alternative df G such that G € F,, ¢, — 6, w.p. 1 where
0, € ©® maximizes § log f(x|0) dG(x).

(B3) M >2k + 1.

Sufficient conditions for (B1) may be found in Moore and Spruill (1975). See
Perlman (1972) for conditions relating to (B2).

Under these assumptions it follows from Lemma 1 that the slope of the test
of fit to the family {F,} is

W(m(00 7o) = 271 (G(Ay) — Fo(A5))'[Fo(A;)

if #(0y, my) : Ay, - -, Ay is admissible. Here as below the set function determined
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by a distribution function L is denoted by the same letter. Thus L(A4) = {, dL(x)
when 4 is a measurable set. Elementary arguments (Spruill (1973), Moore and
Spruill (1975)) show that if G,, € {G,: 6 € O} the slope does not depend upon the
particular element G,..

THEOREM 2. Under the assumptions B:
(@) If =, el (F) and G(A;) # F,(A;) for some j, the slope of the test of Hy: {F;}
against H,: {G,} based on T,, is

Y(z(0p 7)) = 271 (G(A4;) — Fy (A;))[Fy,(4;)

for every G, e {G,}.
(b) If mye Uy ILy(F) then

U(n(0p 7)) = § @lfy, — 1 iff

9/fs, is constant a.e. m on the cells of n(0,, 7).
(©) If G* = o(F,,) then for each M > 2k + 1 there is a partition 7" ¢ IL ,(F)
such that
U (@0, 7)) = sup {¥(z(0p, 7)) : @€ L(F)} -

(@) sup {¥(z(0o, 7)) : 7 € Uy My(F)} = § ¢*[fy, dm — 1.

ExaMPLE 2. Consider the scale-location families generated by the following
densities:

(1) g(x) =e* x=0.

(2) g(x) =e ™2 —co < x < +o00.

3) g(x) = e*(1 4+ €)™, —oo0 < x < + 0.

(4) 94(x) = e~*x*~1/T'(B), x > 0, B > 2 known.

(5) 94(x) = {exp[—HA[* #1209+ D((3 + B)[2), —o00 < x < +o0, Be(—1,
1] — {0} known.
If G(x) is the corresponding df and F(x) is the standard normal density it can
be checked that Bl and B2 are satisfied (see Dahiya and Gurland (1971)). It is
easily seen that in each case except (5) for e (—1, 0), § 9*|fs, = +oo. In fact
it is easily checked that (1 — G(x))*/(1 — F,(x)) — oo as x — oo so G? is not
o(F,). Hence with that exception given any specific test a y* test can be found
with larger slope using no more than 4 cells. In the exceptional case a best
M-partition exists for every M > 3.

4. Equally likely cells for large alternatives. In Section 3 certain results
were given concerning cell selection in the case of testing H,: {F,} against
H,:{G,}. In this section it is shown that for much larger alternatives < the
use of equally likely cells in T,, for testing H,: {®,} against H,: &, ® the
standard normal, is desirable. The reasons are similar to those given in Mann
and Wald (1942) for testing H,: F against H,: .

Let ©“={G: G « m, Gadf, {|x] dG(x) < oo} and {®,} be the unit normal
location family. An M-partition 7: (—oo, a,), (@, @,), - -+, (@y_,, +oco0) is said
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to be equally likely if ®(a;) — ®(a;_)) =1/M, j=1,.--, M, ay= —co,
a, = - oo.

THEOREM 3. (a) For testing Hy: {O(x — )} against H,: & the test T,, using

cells (a,_, + %,a; + %), j =1, - - -, M, has slope
W= $1 (6, + #) — G + p)f(P(a;) — Dla;y) — 1

at G ¢ & where p = § x dG(x) if G(a; + p) # D(a;) some j.

(b) Let =, be the equally likely M-partition and = be any other M-partition for
which ¥(z,, G) < ¥(r, G) for all Ge . Then « is equally likely.

(c) If =, is equally likely there is a Ge & and a partition © for which
0 < ¥(x,, G) < ¥(r, G).

Part (a) of Theorem 3 is just a special case of Theorem 2(a). Theorem 3(c)
is easily proved by using Theorem 2(b) and simply constructing a df Ge &
whose density is a constant multiple of the normal on nonequally likely cells.
It remains to prove Theorem 3(b). Let 7: (— oo, @), (@), @;), « -+ (@15 +©0)
and n’: (—oo, by), -+, (by_;, +0) be two partitions. Define I, = (a,_, a,),
Ty = (bi-ss b:)s [(G) = XL G(1)[ P4 (1)), and fo(G) = T3, G(J;)/ Py, (J))-

LemMMA 3. If G*e & is such that § x dG*(x) = 0, and f(G*) > f,(G*) =1,
then there is a G e & such that § x dG(x) = 0, and f(G,) > fo(G,) > 1.

PRroOF OF (b) oF THEOREM 3. It is shown that if 7: (—oo, b)), - -+, (by_1, )
is not equally likely, there is a G ¢ & such that 0 < ¥(z, G) < ¥(x,, G). Since

sup {”q)% — G||: § xdG(x) = 0y, G(b;) = ©(b; — 0y)),j=1,---,M,Ge &}
= max {O(b; — b,) — P(b;_; — 0,)},

there is a G* € ¥ such ||®, — G*|| > 1/M, ©(b; — b,) = G*(b,),j =1, ---, M,
and § x dG*(x) = 0,. For the same reason it must be that if #,: (— o0, a), - - -,
(ay_,» o0) is equally likely then ®(a; — 0,) — P(a;_, — 0,) + G*(a;) — G*(a;_,)
for some index j. This shows that f(G*) > f,(G*) = 1. The proof of (b) now
follows by taking G to be the G, of Lemma 3.
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