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APPLICATIONS OF PRODUCTS TO THE GENERALIZED
COMPOUND SYMMETRY PROBLEM

By STEVEN F. ARNOLD
Lawrence University

Arnold (1973) studied testing problems where the covariance matrix is
assumed to have the generalized correlation structure under both hypothe-
ses. That paper showed how to transform such problems to ‘‘products’” of
unpatterned problems. This paper extends those results to testing problems
where the covariance matrix is assumed to have Geisser’s (1963) generali-
zation of the pattern of compound symmetry. We prove theorems indicat-
ing how to transform such problems to products of unpatterned problems.
These results are then applied to three problems: 1. a general problem
where both the mean vectors and covariance matrix are patterned (this
problem is general enough to include both the multivariate analysis of
variance (MANOVA) and classification problems.); 2. the MANOVA
problem when only the covariance matrix is patterned; 3. a problem arising
only when the covariance matrix is patterned. In this paper we only show
how to transform such problems to products of unpatterned problems that
have been studied, since in Arnold (1973) it was showing how to convert
results about known problems to results about their product.

1. Introduction. In Arnold (1973) problems involving certain patterned co-
variance matrices were transformed to products of unrestricted problems. In
this paper these results are extended to show how to transform problems in-
volving Geisser’s (1963) generalization of Votaw’s (1948) model of compound
symmetry. In Section 2 we prove the basic theorems telling how to transform
such problems to products of problems where nothing is patterned. In Section 3,
these results are applied to three problems. Arnold (1973) showed that results
about component problems could be used to generate results about their prod-
uct. So, in this paper, a problem is considered “solved” when we have shown
it to be a product of problems that have been studied.

1.1. Definitions. We write

A=(Aij)’ (Aij:pixqj)’ i=1”",n9j:1,”’,m’

B=(B), (Biip, Xr), i=1,...,n,
to mean that 4,; is a p; X ¢, matrix, an‘d B, is a p, X r matrix, and
Ay -+ Ay, B,
A=t ) m=ll
Ay - A, B,

If Aisa k X m matrix and B = (b,,), (b;;: 1 X 1) is an n X p matrix, then the
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Kronecker product of A and B, A x B is the nk X mp matrix
C=(Cy), (Cy:kxm, i=1...,nj=1,.---,p,

where C;; = b,;A. Clearly (4 x B) = A« B'; (A« B)(C x D) = AC « BD (if all
multiplications are defined); (4 x B)™ = A~' % B~'(if 4 and Bare invertible). The
following matrices will be used frequently in this paper. Let I(j) be the j X j
identity matrix; let E(i, j) be the i X j matrix with 1 in every position; let F(i, j)
be the i X j matrix with (i)} in the first row, first column and 0 in every other
position. Let U(j) be a j X j orthogonal matrix with first column equal to
j¥(1, - -+, 1y. Then UGYE(G, ))U(j) = F(i, j)-

To state the generalized compound symmetry model, let X(i, 1), - - -, X(i, k;)
be p, X 1 vectors, i =1, ..., m. Let X/ = (X(i, 1), ---, X(i, k;)’) and X’ =
(X!, ---, X,))). If Xhasar(= 5, pk,;)dimensional normal distribution with
mean vector ¢ and covariance matrix X, then the X(i, 1), - - -, X(i, k;) are inter-
changeable for each i = 1, ..., m if and only if there exist p; X 1 vectors d,,
p: X p; matrices 4, and p, X p; matrices B;; such that

(1'1) Z:(Z‘LJ)’ (sz:ktp‘txkgpg)9 i,j:l,"',m,
u:(/’li)’ (,Uzklple), i:l,...’m,
where
(1.2) 2, = (A, — By) x I(k;) + B;; * E(k;, k),
Z;; = By« E(ky, kj) i#7,
and
(1.3) py = 0, % E(k;, 1) .

If there exists A,, and B,; satisfying (1.2) we say that X has pattern E. If there
exists such d; satisfying (1.3), we say that p has pattern D. Pattern E is Geisser’s
(1963) generalization of Votaw’s (1948) model of compound symmetry.

In this paper we show how to transform problems involving patterns D and
E to products of unpatterned problems. In this paragraph we therefore define
such a product. A testing problem P consists of the following three elements:
an observed random variable X having density from a general class D(6) (for
example N(y, X)); a null set Q; and an alternative set ®. We use the following
shorthand for P: .
P: X~ D(ﬁ) .

H:0eQ,
A:0€0.
We make one convention for this notation. All random variables are independent
unless otherwise specified. Let P, and P, be the problems
P11X1~D1(61)’ P22X2~D2(02),
H:0,eQ, H,:0,eQ,,
A,:0,€e0,, A4,: 0,€0,.
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Then the product P of P, and P, (written P = P, X P,) is the problem

P: X, ~Dy(6), X, ~ Dy0)

H,:0,¢Q,, 0,e9Q,,

Ay: 0,€0,, 0,€0,,
That is, the product P is just the problem of testing P, and P, simultaneously
and independently. In addition, we define one of the component problems to
be trivial if it has the same null set and alternative set. Theorems A and B of
Arnold (1973) show how to transform results about the component problems to

results about their product. The problems studied in this paper transform to a
product of more than 2 problems. Such a product can be defined recursively by
Pox ... xP, =P x---xP_)xP,.

It is clear that Theorems A and B can be immediately extended to products
of k problems. For this reason we show how to transform the testing problems
involving pattern covariance matrices to products of unpatterned problems that
have been studied. Since results about the components will then generate results
about their product, in this paper we do no more than show how to transform
the problems involving patterned covariance matrices to products of unpatterned
problems that have been studied.

2. Basic theorems.

THEOREM 1. If X has pattern E as defined in (1.1) and (1.2), there exists an
orthogonal matrix C independent of A, and B,; such that

E, 0 0
0 E xIk,—1)... 0
2.1) osc= |9 ®rlt=D . — &
0 0 o By x Ik, — 1)
where
E,=A,— B, and E, is qgXxXq (9= "p),
By=(Di;)» (Dijipi X py)s Lj=1,---,m,
(2.2) Dy = A; + (k — 1)B,;, D;; = (k;k;)B;; , i£j.
ProofF. Define ‘
L= (Ty), (Ty:pk, X p;k;), ihj=1,...,m
Clearly I is orthogonal. Let ¥ = I"ZIl. Then
V=) (Vijtkips X k;p;)s hj=1,--.,m,

Vi = (I(p:) * U(k,))'[(A; — By) * I(k;) + By  E(k;, k)]((p,) * U(k,))
= (4; — By) = I(k;) + B,; * F(k,, k)

= (At & =15, 0 )
0 (A; — By) « I(k; — 1)
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and
Vii = ((p:) = U(k;))'[By; * E(ky, k)I(I(p;) + U(kj)) = By; » F(ky, k)
_ (kB 0)
= ; o)

Upon writing V out, it is clear that there is a permutation matrix P such that
P'VP = PI"ET'P = E defined in (2.1) and (2.2). Let C =TP. [J

CoRrOLLARY. If X has pattern E, then £ > 0 if and only if 8, > 0,i = 0, 1,- - -,
m. Therefore, although X was patterned, the E, are unrestricted.

Now we are ready to transform random variables with patterned covariances
to random variables with unrestricted covariance matrices. So let X and S be
independent, X(¢ X r) ~ N(¢, ) and § ~ W(n, X). Thatis, Xisa ¢ X r random
matrix whose columns are independently normally distributed with common co-
variance X and EX = p, a ¢t X r constant matrix, and S has a Wishart distri-
bution with ES = nZ. Now let C be the matrix defined in Theorem 1. Let

W, D,-.-.--D, Y, 0,
C'SC = Df' V:“ V:"” , CX= Zf , op=|"
Dy Vo Vm z, Tn

where Wy is g X ¢, Vy; is (k;, — 1)p, X (k; — 1)p;, Y, and ¢, are ¢ X r and Z,
and 7, are py(k, — 1) x r. Let
Vi=Vu(jsm) s (Vu(jsn): ps X po) s jyn=1,0.k, — 1,
Zi=(ZJ) (Z(Dipix7n),  w=((), (():px71),

j=1,...,m.
Let

W= 252Vl ) s Y, =(Z1), -+, Zi(k; — 1)),
0; = (t;(1), -+, vy(k; — 1))
Then, by a proof similar to that of Theorems 1 and 2 in Arnold (1973), we have
THEOREM 2. If X(t X r) ~ N(u, L), S ~ W(n, X) and % has pattern E, then
Wo Wi ooy Woy Yo Yy, -+, Y, defined above are mutually independent, jointly
sufficient, and ‘
Y(g X r) ~ N(3,, &), Yi(p: X (k; — 1)r) ~ N(9,, E;),
WO ~ W(n, EO) N Wi ~ W(n(k,,' — 1), EL) .
THEOREM 3. (a) p has pattern D if and only if 6, =0,i =1, ..., m.
(b) p=0ifandonlyif6,=0,i=0,1, ---, m.
() p is unrestricted if and only if d; are unrestricted, i = 0,1, - .., m.
(d) If p has pattern D then p’2-'pue F if and only if 0,/8,7*0, ¢ F.

See Arnold (1970) for explicit expressions for Y,, W,, i =0,1, -.., m. Y, de-
pends on which orthogonal matrix with the given first row is chosen. However,
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most invariant procedures will be functions of Y,Y,’ only and this does not de-
pend on the choice.

3. Applications. In this section some examples are given using the previous
theorems. The examples are in no way exhaustive, but are intended merely to
illustrate different kinds of problems that can be solved using these methods.
Once we have shown that a problem is a product of other problems, we will go
to the next problem.

3.1. In this section the mean and covariance matrix are assumed patterned
under both null and alternative hypotheses. We are testing
H: p2ueG ¢ haspattern D, X has pattern E
A: X tueF # has pattern D, X haspattern E.
This format is general enough to include the Hotelling’s 7%, MANOVA and
multivariate classification problems (see Arnold (1973)).
After making the transformation of Theorem 2, we get the product of testing
H: /B, 0, e G
A:0/8, 0, e F,
and the trivial problem of testing
H:BZIO, El>0 i:1,2,--',m
A25i=0, Ei>0 i=1,2,...,m.
This result shows that most problems where y has pattern D and X has pattern
E can be transformed to a product of a trivial problem and a problem similar

to the original problem except that the mean vectors and covariance matrices
are no longer patterned.

3.2. In this section we look at what happens when we only assume that the
covariance matrix is patterned. Under these conditions we typically get a
product of m 4 1 problems, none of which is trivial. As an example we look
at the MANOVA problem when we make the additional assumption that X is
patterned under both hypotheses. A canonical form for the MANOVA problem
is the following (see Lehmann (1959), pages 293-296):

P:X(tXr)~Nw,Z), S~WnZ),

X, (t X 8) ~ Ny, ),
H:py=00, —o<<py<oo, Z>0
A:—OO</11<OO, —OO</22<OO, Z>0-

If we assume in addition that ¥ has pattern E, under both hypotheses we get
the product of the following m + 1 unrestricted MANOVA problems

Py: Zy(q X 1) ~ N(6op» B)), W, ~ W(n, &),
Zy(q X ) ~ N(Op, Ey) ,
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Hy:05=0, —0c0<0y3<o0, E>0,
Ay: —00 < Gy < 00, —oo < Gy < oo, &, >0,
and
1Y (ps X (kg — 1)r) ~ N6, B)), W, ~ W(nk, — 1), E,),
o Yu(p: X (ky — 1)s) ~ N(0y,, &;) ,
H:0,=0, —oc0<0;<00, & >0,
A: —c0o <0< 0, 0,00, >0,
i, 1, ..., m, so again this is a product of unpatterned problems that have been
studied.
3.3. In the following examples we assume that p, = p,, k, = k;,, forall iand
J. Thatis & = (Z,;) where X,; is pk X pk, i,j=1, ..., m, and X, = (4;, —
B,)* 1+ B, «E, X,; = B;; « E. The first problem we consider is testing 2, =
X By =2y, and g, = p;forall i j, k = n. If

X = (X)), (X:pkxr) i=1,...,n,

i

this is the same as asking if the X; are interchangeable when we know that X has
pattern E. When we make the transformation suggested, we get the product of
P/: Yy(mp X 1) ~ N(3y, B), W, ~ W(n, &) .
H: 0, haspattern A4,, &, haspattern B,, &, >0,
AOI:_OO<50<OO9 Eo>0,

and

Pl: Yl(px(k_l))NN(at’Et)9 W1~W(n(k— 1)’Ei)9 i—l,...,m’
Hl':(;l:-..—_"am, 81:"’:Em>0,

A/ —00 <9, <0, E >0, i=1,....,m,

where 4, and B, are the generalized intraclass correlation patterns for means
and variances defined in Arnold (1973). If we assume in addition that y has
pattern D we get the product of P, and a new problem P,’ where we are testing

H2,:5i:0’ 51:-- :Em,
A0, =0, Ei>0, i=1,...,m.

‘

If we only test that £, = X, Z,; = X, , we get the product of two problems
Py and P/ related to P/ and P/ where we are testing

P! Hf: —o0 <9< oo, &, haspattern B,, E, >0,
A7 —o0 <0< o0, E >0,
and
P! H': —0 < <0, B=...=8 >0,
Al —00 <0, <0, E >0, i=1,....,m.

Py and Py have been studied by Olkin (1970), P,’ and P, are two forms of the
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problem of testing the equality of covariance matrices, while P, is the problem
of testing the equality of normal distributions; and so all these problems have
been studied.

4. Summary. This paper has shown that many problems in which the co-
variance matrix has the generalized compound symmetry model can be factored
into a product of problems in which the covariance matrices are no longer
patterned.
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