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ROBUST ESTIMATION OF A LOCATION PARAMETER
IN THE PRESENCE OF ASYMMETRY!

By JonN R. CoLLINS

Purdue University

Huber’s theory of robust estimation of a location parameter is adapted
to obtain estimators that are robust against a class of asymmetric departures
from normality. Let F be a distribution function that is governed by the
standard normal density on the set [— 4, d] and is otherwise arbitrary. Let
X1, + -+, X, be a random sample from F(x — §), where 6 is the unknown lo-
cation parameter. If ¢ is in a class of continuous skew-symmetric functions
¥, which vanish outside a certain set [— ¢, ¢], then the estimator T, ob-
tained by solving > ¢(X; — T.) = 0 by Newton’s method with the sample
median as starting value, is a consistent estimator of 6. Also n¥(T, — 0) is
asymptotically normal. For a model of symmetric contamination of the
normal center of F, an asymptotic minimax variance problem is solved
for the optimal ¢. The solution has the form ¢(x) = x for |x| < xo, ¢(x) =
x; tanh [$x1(c — |x|)] sgn (x) for xo < |x| < ¢, and ¢(x) = O for x| = c. The
results are extended to include an unknown scale parameter in the model.

1. Introduction and summary. A general theory of robust estimation of a
location parameter was developed by Huber (1964). Huber derived estimators
which are robust against symmetric departures from a symmetric model distri-
bution. In this paper Huber’s theory is adapted to allow for asymmetric
departures from the symmetric model.

Let X, ---, X, be independent identically distributed (i.i.d.) random vari-
ables with distribution function F((x — 6#)/o), where # is the unknown location
parameter and o is a scale parameter. Sections 2 and 3 consider the problem
of estimating ¢ when ¢ is known, and Section 4 extends the results to scale
invariant estimators of 6 for the case of unknown scale. Consider the scale
known case, taking ¢ = 1 without loss of generality. Huber proposed estimating
6 by solving
(1.1) Lo g(X, — T,) = 0.

Under regularity conditions on F and ¢, T, is a consistent estimator of ¢ and
nt(T, — 0) converges in distribution to the normal distribution with mean 0 and
variance

2
(1.2) vig, Fy = L4
(§ ¢ dFy
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ROBUST ESTIMATION 69

Estimators T, defined by (1.1) are called maximum-likelihood-type estimators
or M-estimators, since if F has a smooth density f, then the maximum likelihoo&
estimator of # is given by (1.1) with ¢ = —f'/f.

In robust estimation theory, F is not known but is assumed to lie in some
appropriate neighborhood of distributions .. One can define the most robust
M-estimator as the solution to Huber’s minimax variance problem: find the ¢
that minimizes sup {V(¢, F): Fe & }.

To obtain consistency of T, for all F in &, one requires

(1.3) { ¢dF =0

for all Fe & . The natural way to satisfy (1.3) is to restrict .# to symmetric
distributions and to consider skew-symmetric ¢’s. For example, consider the
class &, of e-contaminated normal distributions: fix ¢, 0 < ¢ < 1, and say that
Fisin & _if

(1.4) F(x) = (1 — &)®(x) + eH(x),

where ®(x) = (2r)~* (=, exp(—r’/2) dt. In this case one requires the unknown
contaminating distribution H to be symmetric. This is a stringent requirement,
since in practice one would not expect departures from normality to be sym-
metric. However if the assumption of symmetry of H were removed, then the
parameter # would not be identifiable in the ¢-contamination model. Since the
estimators of ¢ would not be consistent, asymptotic variance would no longer
be a reasonable criterion for judging the performance of the estimators. Further
discussion of this problem is found in Huber (1964).

In Section 2, we carry out the idea of restricting the class of ¢’s so that the
resulting M-estimators are consistent in the presence of asymmetry of F. The
model is the following: specify a number d > 0, and say that F is in ./ if F is
governed by the normal density ¢(x) = (27)~*exp(—x?/2) on [—d,d]. The
distribution outside the interval [—d, d] is arbitrary. The model {F((x — 6)/0),
F e 5} reflects the type of departure from normality that is typically detected
in large samples of data: the data appears to be normal in a central region out
to some number d of standard deviations, but nonnormal and asymmetric in
the tails.

The appropriate M-estimators for this model are obtained by restricting ¢
to a class ¥, of continuous skew-symmetric functions that vanish outside a
certain set [—c, c¢], where ¢ < d. Then (1.3) holds if Fe .~ and ¢ ¢ ¥,. Note
that symmetry in the central region of F is required. The use of such M-
estimators was proposed by F.R. Hampel, who observed that the asymptotic
behavior should depend only on the center and not on the tails of F. Some
examples of ¢’s which vanish outside an interval appear in Andrews etal. (1972).

In Section 2 it is shown that when Fe % and ¢ ¢ ¥, then T, is consistent
and asymptotically normal. One complication that arises is that when ¢ is in
W,, equation (1.1) has multiple roots with probability 1, even asymptotically.
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This difficulty is resolved by defining T, to be the particular solution of (1.1)
obtained by Newton’s method with the sample median of the observations as
the starting value.

In Section 3 we consider a model of symmetric contamination of the normal
center of F, and solve the minimax variance problem. The solution has the

form
P(x) = x x| < X,
(1.5) = x,tanh [{x(c — |x])]sgn(x) x, = x| = ¢
=0 x| =c.

Two other optimality criteria based on asymptotic variances are also considered,
and the corresponding variational problems are solved to obtain the optimal ¢’s.
In Section 4 the results are extended to the scale unknown case.

2. The model and class of estimators. Let @ be a fixed number, 0 < a < 1,
and let

2.1) d= <1)—1<1 _ 02‘>

Let & be the class of distribution functions F satisfying the following condition:
There exists 7 € (—a/2, «/2) such that F(x) = y + ®(x) for all xe[—d, d].
Let X, - - -, X, bei.i.d. random variables with distribution function F(x — 6),

where F is in & but is otherwise unknown. The problem is to estimate the

unknown parameter 6, the center of symmetry of the symmetric part of F.
Define

1 o
2.2 K=o L A,)
(2.2) <2 +4
and
(2.3) c—d—k.

Note that 0 < @ < & implies that ¢ > 0. Also, denoting the median of F
by m(F), note that F e .& implies that m(F) e (—k, k).

Let ¥, denote the class of functions ¢ which map the real line R into R and
satisfy:

(i) ¢ is continuous and has a continuous derivative ¢'.

(ii) ¢(x) = —¢(—x) for all x.

(iii) ¢(x) = 0 when |x| > c.

(iv) ¢ = 0on [0, c], and ¢(x) > O for some-x ¢ [0, c].

Note that ¢(—c) = ¢(0) = ¢(c) = 0 and that both ¢ and ¢’ are uniformly
continuous on R.

We propose to estimate ¢ by solving

(2'4) =1 Sb(Xl - 0) =0

for 9, where ¢ ¢ ¥,. However, since (2.4) has no unique solution, we define
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the estimator to be essentially the solution of (2.4) obtained by Newton’s method
with M,, the sample median of (X}, - .., X,), as the starting value.

DEFINITION 2.1. Consider the sequence {4} given by §, = M, and

(2.5) b, =0, 4 B ¢X =0y j=0.1,2, .
(X, —0)
The estimator T,, = T,(X,, - - -, X,) is defined by
(2.6) T, =lim; .6, if lim, .6, exists
=M otherwise.

REMARK 2.1. In practice one does not try to determine the existence of
lim, ., 6,. An appropriate approximate algorithm is to specify an integer N, > 0
apd aAnumber ¢, > 0, and take T, to be 9j0 if j, is the first j < N, for which
|6; — 0;_4] < e otherwise, if no such j < N, exists, take T, to be M,.

REMARK 2.2. Since T, is a translation invariant estimator, we shall assume
without loss of generality that § = 0.

THEOREM 2.1. Let ¢ ¢ ¥, and let X, X,, - - - bei.i.d. with distribution function
Fe . Then
2.7 T,—,0.

REMARK 2.3. The motivation of the proof is as follows. We define
(2.8) 1) = E ¢(X, — 1) = | $(x — 1) dF(x)
and

1

(2.9) A(0) = (X, o, X5 1) = - X, — ).

The general consistency proof of Huber (1967) does not apply here because the
condition that A(r) have a unique zero at r = 0 is not satisfied. A special argu-
ment is needed to show that the Newton’s method solution of 4,(r) = 0 with
starting value M, is consistent. This is made plausible by the fact that the
Newton’s method solution of 4(r) = 0 with starting value m(F) is 0 (a direct
consequence of the following lemma).

LEmMMA 2.1. Let ¢ c ¥, and Fc.~". Then
(1) A(f) = (L, P(x — Do(x) dx when |1 < k,

(i) (1) = §3+(t_z) when || < k,
(iii) sup (X(1): 1] < k} < 0,

(iv) sup{ ;(2)1 1] € (0, k]} <2.

Proor. (i) follows immediately from the definition of .77, ¢, and ¥_.
If || < k, then
(2.10) A1) = {2, P(x)e(x + 1) dx = §P(x)[e(x + 1) — o(x — )] dx,
so that (ii) follows by symmetry of ¢ and skew-symmetry of ¢.
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Note that 0 < k < ®-%(3). When |7] < k, we have
—2(1) = 15 pl(x 4 Ne(x + 1) + (x — Np(x — n]dx
, . . 129 B (2i+2 y
(2.11) = 2 exp(—1*/2) {§ {ZFO [@)T z—.'2j T 1)!])( } xP(x)o(x) dx
= 2[1 — 1] - [exp(—2*/2)] - {5 xp(x)p(x) dx >0,
proving (iii).
Similarly, when € (0, k], one obtains

2.12) _ (1) < 24[cosh (ke)|lexp(—1/2)] §& x(x)e(x) dx ,
so that
(2.13) Ar) < cosh (kc) < cosh (kc) <2
t2'(1) 1 -7 1 — k*
for all ¢ ¢ (0, k], proving (iv). [
LEMMA 2.2. Let ¢ W, and let X,, X,, --- be i.i.d. with distribution function

Fe . Then

(i) sup {[4.(1) — A)|: || = k} —» 0.

(i) sup {|4,/(1) — X()]|: |1| = k} = 0.

Proor. (i) First note that 2 is a continuous function on [—k, k] and that
the process 1, has continuous paths on [—k, k]. By Theorems 8.1 and 8.2 of
Billingsley (1968), or by an obvious direct argument, it is sufficient to show:

(A) 2,(f) —, A1) for each re [—k, k].
and

(B) For every ¢ > 0,

(2.14) lim,_, lim sup, P[sup {|2,(t;) — 4.(t;)|:

] < k6] Sk, Jo — 1) <3} = e] =0.
The weak law of large numbers proves (A). To prove (B), let ¢ > 0. By
uniform continuity of ¢, there isa d > 0 such that |¢(x,) — ¢(x,)| < ¢ whenever
|x, — x| < d. Thus for |1, — 1,| < 0,

1
(2.15) (1) = Au(t)] = — Dl [9(Xs — 1) — (X, — 1)) <e,
so that .
(2.16) Plsup {|2,(t)) — L(t)|: |t] S k, |t Sk, |ty — 1] < 9} = ¢} =0
forall n > 1.

(if) By the weak law of large numbers,
’ 1 ! ’

(2.17) (1) = —— S (X, —8) > —Ep (X, — 1)
The conditions on ¢ ensure that
(2.18) ()= —Ep¢'(X; — 1)
holds when |f| < k. The rest of the proof of (ii) follows that of (i). []
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Proor oF THEOREM 2.1. Let

(2.19) = sup{ t;f(’))\ 0< < k}

and choose y and ¢ satisfying " <y <2 and 0 < ¢ < min {(k — |m(F)|)/4,
(2 — 7)/r}. Consider the event E, , defined by

(2.20) sup {4,/(1): |{| £ k} < 0, A(—k) >0, 2(k)y < 0.

The event E, , implies that 4, is a strictly monotone decreasing function on
[—k, k] with O in its range, so that the set 4,7{0} n [—k, k] has exactly one
member. Define the random variable Z, by

(2.21) Z, = 2,70} n [—k, k] if E,, obtains
=0 otherwise.
Let I = {t: |7]| < (|m(F)| + k)/2}, and define the process 4,(t) on I by
h() =1 if r=0
(2.22) | A+ 2Z) ] if 120 and E,, obtains
1t + Z,) '
=1 otherwise.

Consider the events
E, .t M, < |m(F)| + (k — |m(F)|)/4,

E .. |Z,)<e,
and

E, .:sup{|h(0)]:tel} <7.
The event Mi_, E, , implies that
(2.23) E 40,) L\ <116, - z.|
4,05
for all 9J. in the sequence defined by (2.5), forcing T,, = Z,. Hence it is sufficient
to show that

(2.24) P(Ni E, ) — 1 as n— oo,
for then we can conclude that
(2.25) PIT,| < €] = P[T, = Z,,|Z,| < ¢] — 1 as n— oo .

Since M, —, m(F), P(E,,) — 1.

Lemmas 2.1 (iii) and 2.2 (ii) imply that P[sup {2,/(r): |f| < k} < 0] - 1. Also
2 (—k) >, A(—k) > 0and 4,(k) —, (k) < 0. Thus P(E, ,) — 1. It also follows
easily from the lemmas that P(E;,) — 1.

To show P(E, ,) — 1, define

(2.26) h(t)—‘tjf(’))! if rel and 10
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Note that & is continuous on / and that the process #, has continuous paths on
I. (Continuity at t = 0 follows from (2.28) and (2.29) below). By (iv) of
Lemma 2.1 it is sufficient to show that

(2.27) Plsup {|h,(t) — h(?)|: tel} < e]—1 as n— oo .

A sketch of the proof of (2.27) follows. In a neighborhood of r = 0, given
that E, , holds, use the mean value theorem to write

(2.28) hot) = | 2 Z) + A Zu A 1) | | AN (Z0 4 7)
t'zn,(Zn + t) 'z'n,(Zn + t)
for some 7, || < |f|. Also
(2.29) h(t) = i@jjﬁ@l _ | #€)
' - (1) 2(1)

for some ¢, |§] < |7|. Using Lemmas 2.1 and 2.2 and the fact that P(N?_, E, ) —
0, find a 6 > 0 such that

(2.30) Plsup {|h,(t) — A(?)|: 1] £ 0} < e] > 1 as n— oo .
Then for those ¢ e I for which |7 > d, we have

12 VA A
(2.31) ) = kgl = g | 20 E 2 - 0,
so that one can show from the lemmas that
(2.32) Plsup {|h,(t) — h(t)|:tel, |t]| > d} <e]—1 as n—oo.
Then combine (2.30) and (2.32) to obtain (2.27). []

If ¢ is a measurable function, and f is an absolutely continuous density, we
define

(2.33) Vg, ) =S ¢ NIE ¢f)
Note that if K # 0, then V(K¢, f) = V(¢, f).

THEOREM 2.2. Let X\, X,, - -+ be i.i.d. with distribution function G, where G is
governed on [—c, c] by an absolutely continuous density g. Suppose that p ¥,
T,—,0,and P[T, = M,]—>0asn— oco. Then
(2.34) mT, —_ NO, V(¢, g)) .

Proor. The hypotheses of Lemma 5 of Huber (1964) hold, except that
the condition that 3] ¢(X, — T,) = 0 with probability 1 does not hold for
our definition of T,. However Huber’s proof goes through with the weaker
condition
(2.35) n Y (X, — T,) —,0.

By Definition 2.1, either T, = M, or }; (X, — T,) = 0. Since P[T, = M,] —
0, P[> ¢o(X; — T,) =0]—>1lasn— oo. So

(2.36) P (X, = Ty)| < el = PLY (X, = T,) = 0] = 1. U
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We remark that the condition P[T, = M,] — 0 in the hypothesis is redundant
when m(G) = 0.
By Theorem 2.1, we immediately have:

COROLLARY 2.1. If Fe % and ¢ €V, then
(2.37) mT, —_ NO, V($, ¢)) .

Note that the asymptotic variance V(¢, ¢) = ({°, ¢%)/({°, ¢¢’)* is independent
of Fe &.

3. Robust estimators: criteria and derivations. A natural criterion for an
optimal estimator for our model is to minimize V(¢, ¢).

LemMMA 3.1. The infimum of V(¢, ¢) as ¢ ranges over W is
1/§e, xp(x) dx .
Proor. By the Cauchy-Schwarz inequality, ¢ minimizes ({°, ¢*¢)/({=., ¢¢')*

in the class of all Lebesgue measurable functions if and only if ¢(x) = K¢*(x)
for almost all x ¢ [—c, c], where K + 0 and

3.1) P*(x) =x xe(—c,0)
= 0 otherwise.

The minimum value is V(¢*, ¢) = 1/{°, x*(x) dx. Now ¢* is not in ¥, but if
we consider any dominated sequence {¢;} C ¥, satisfying ¢,(x) — ¢*(x) a.e. as
j— oo, then §° &0 — §° (¢*)0 and §°, ¢;0" — (2, $*¢’, so that V(¢;, ¢) —
V(g*, ). O

Lemma 3.1 shows that, for the model of distributions with normal center
and unknown tails, the estimator T, based on ¢* is optimal (only formally,
however, since ¢* ¢ W,). It is shown below that, when the model is extended
to allow for symmetric contamination of the normal center, then discontinuous
¢’s such as ¢* can not be optimal according to an asymptotic variance criterion.

Specifically, in analogy to Huber’s e-contamination model, we fix ¢, 0 < ¢ <
1, and consider the class of distributions &2 defined as follows: G €. if G is
governed on [—c, ¢] by a density g(x) = (1 — ¢)¢(x) + eh(x), where h is assumed
to be absolutely continuous, symmetric about 0, and satisfies 0 < {°, h(x) dx <
1, but is otherwise unknown. The distribution outside the interval [—c, c] is
completely arbitrary.

A natural optimality problem for this model is to find the ¢ for which
sup {V(¢, 9) : G € 7} is minimized.

LemMa 3.2, sup {V(¢*, 9): G e T} = oo.

Proor. As G ranges over .7, {° [¢*(x)]’g(x)dx is bounded above by
(1 —¢) {2, x*o(x) dx + ec*. So it is sufficient to show that, given 6 > 0, there
exists a G ¢ 7, with density g, = (1 — ¢)¢ + eh, on [—c, c], such that

3.2) [§¢ ¢*(x)gy'(x) dx| < 6.
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Since 0 > {§ x¢'(x) dx = cp(c) — § ¢(x) dx, then the number z defined by
(3.3) (1 — ) §o x'(x) dx + efez — {5 (x) dx] = 0
satisfies z > ¢(c). Let ¢’ = 6/(2¢z), and choose %, so that h(x) = ¢(x) for x ¢
[0, ¢ — 0"], and sup {hy(x): x € [0, c]} = hy(c) = z. Then
1§35 x[(1 — €)¢(x) + ehy/(x)] dx|
(3.4) = |(1 — ¢) §sx¢'(x) dx + e[cz — {5 hy(x) dx]|
= ] §5 (o(x) — hy(x)) dx| < €0’z < 6. g

A modification of the above proof shows that the result holds for all discon-
tinuous ¢’s, so that the optimal ¢ must be continuous.

Define the class ¥’ by replacing condition (i) in the definition of ¥, by

(") ¢ is continuous and has a piecewise continuous derivative ¢’.
Note that ¥ 5 ¥ .

THEOREM 3.1. (1) If e/(1 — ¢) = 2¢cp(0) — 2®(c) + 1, then
(3.5) inf {sup [V(¢, 9):Ge T]:¢e¥'} = .

2) If ¢/(1 — ) < 2¢c9(0) — 2D(c) + 1, then

(i) §°. (¢'/9)’g is minimized among G € .7, by any G, with density on [—c, c]
given by
(3:6)  g(x) = (1 — e)p(x), Xl < x

= (A =900%)  oshfix(c — <Ix| <c
COSh2 [%XI(C o Xo)] cos [2x1(c |X|)] ’ Xo = |X| = ’

where x, and x, satisfy 0 < x, < ¢ and x, < x,, and are uniquely determined by

3.7) x, = x, tanh [1x,(c — x;)]
and
(3.8) 2 [96(x) — (1 — e)p(x)] dx = e .

(ii) ¢ € W) minimizes sup {V(¢, 9): G € Z} if and only if ¢ is a nonzero multiple
of

(3.9 $o(x) = — 90/ (x)[9o(x) xe[—c, €]
=0 otherwise ;

or equivalently,

do(x) = x, ' x| = X
(3.10) = x, tanh [{x,(c — |x|)]sgn(x), x, Z |x| < ¢

=0, x| = c.
Proor. (1) If & is defined on [—c, c] by

(3.11) (1 — 9(0) = (1 — )p(x) + eh(x)

then % is nonnegative on [—c, c], and the inequality in the hypothesis implies
that {¢ A(x)dx < 1. So g,(x) = (1 — €)¢(0) is the density on [—c, c¢] of a G, e
. So for any ¢ e W/, 0 < { ¢*¢, < o and § ¢g,’ = 0, so that sup {V(¢, 9):
GeF) = oo.
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(2) We apply the minimax theory developed in Section 8 of Huber (1964).
Define 1,(G) = {°,(¢'/g)%9 for G € =2. To show the existence of a unique G, ¢
</, minimizing I(G), we extend .. to the class .7’ consisting of distributions
of the form G = (1 — ¢)F + ¢H, where F ¢ % and H is an arbitrary distribution
symmetric on [—c, ¢]. We extend /, to .2}’ by defining, for G e ./,

(3.12) I.(G) = sup {[({ ¢" dGY|{ 4*dG]: € W'} .

Since =/’ is convex and vaguely compact, and inf {I,(G): Ge./} < oo, there
is a unique G* e &7 minimizing I,(G) by Huber’s Theorem 4. By Huber’s
Theorem 3, we necessarily have G* ¢ &/,

We now show that there exists x, and x,, where 0 < x, < ¢, x, < x,, satisfying
(3.7) and (3.8). For afixed x, € (0, ¢), x,/x is a strictly decreasing map of [x,, o)
onto (0, 1] and tanh [}x(c — x,)] is a strictly increasing map of [x,, co) onto
[tanh §[x(¢ — x)], 1). Hence there is a unique x, > x, satisfying x,/x, =
tanh [x,(¢c — x;)]. Now denote the left hand side of (3.8) by J(x,), where x, is
determined from x, by (3.7) and g, is determined by (3.6). Then J(x,) is a con-
tinuous function of x, on (0, ¢), J(x,) — 0 as x, — ¢ and J(x,) — 2(1 — e)cp(0) —
(I —¢) §2, ¢(x) dx as x, — 0. Thus by the inequality of the hypothesis, there
is an x, € (0, ¢) satifying J(x,) = e.

By (3.6) and (3.7), ¢,, 9,/ and ¢, are continuous at x — X,. Also it is easily
checked that gy(x) — (1 — ¢)¢(x) = 0 on [—c, c], so that k,, defined by

(3.13) 9o(x) = (1 — e)p(x) + ¢hy, xe[—c,c],
satisfies A(x) = 0 on [—c, c]. By (3.8), {° h(x)dx =1. So Gy,e /. Also,
since ¢,(c) = 0, we have ¢, e ¥ .

To show that the unique G €.% minimizing /,(G) is G,, it is sufficient by
Huber’s Theorem 2 to show that

(3.14) §5 (290 (x) — (X)) (g1(x) — go(x)) dx = 0,

where g, is the density on [0, c] of any G, € ../{. Since x, > x,, we have

(3.15) X+ 200(x) — di(x) 2 0, xe[0, x,].
Also '

(3.16) X2+ 2¢0(x) — d(x) = 0, x€[xpc].
Since g, = g, in the interval [0, x,], and since

(3.17) 15.0:x) dx < (1 — ¢) §50(x) dx + (¢/2) = {5 gy(x) dix ,

so that {¢ (g, — g,) dx < 0, it follows that
(3.18) 5 (24 — o) (9, — 9,) dx
= 1500”4 2¢0 — )0 — go) dx — X' §5 (9, — g)) dx = 0.

This proves (i), and (ii) follows immediately from Huber’s Theorem 2. The
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minimum value of sup {V(¢, 9): G € &} is
sup (V(¢ 9): G € )

(3.19) = V(¢o, 90) = 1/1.(Gy)
=1 /[(1 — o) <2(D(x0) — 1 — 2x,0(x)
sinh [x,(¢c — x)] — x,(c — x;)
T xpt) === cosh? [$x,(c — x5)] "'”)] ' -

REMARK 3.1. I have learned of the prior discovery of the above ¢, through
personal communication with P. Bickel and F. Hampel. In 1972 Hampel found
¢, as the solution to a different optimality problem (see Hampel (1973), page
98), and P. Huber found later in the same year that ¢, solves the minimax
problem.

REMARK 3.2. If the normal density ¢ on [—c, ¢] in the formulation of the
problem is replaced by a known strongly unimodal density f on [—c, c], then
we obtain minimax solutions of the form

$o(x) = — " ()[f(x) Il = x
(3.20) — xtanh [Jx(c — [x)]sgn (v) % < |x| < ¢
=0 |x| = ¢
where
(3.21) — [1xf(x) = x, tanh [$x,(c — x)] .
REMARK 3.3. Define ¢(c) by
(3.22) e(0)/(1 — &(c)) = 2¢p(0) — 2D(c) — 1.

If ¢ < ¢(c), then part (2) of the theorem gives the form of all minimax solutions.
If ¢ = ¢(c), then by part (1) all ¢’s in ¥/ are minimax (in a degenerate way).
Table 1 gives some values of a with the corresponding values of the parameters
d, k, ¢ and ¢(c). Values of V(¢*, ¢) of Lemma 3.1 are also tabled.

TABLE 1
Values of parameters corresponding to selected values of the tail probability «

d c V(g*, ()

@ =0yl —qR2) = qué +aR) =d—k =1 /gg( :/}xzz()x) dx (See(§°5§)“‘a
.001 3.2905 .0012 3.2893 1.0129 .6191
.005 2.8070 .0063 2.8008 1.0519 .5535
.01 2.5758 .0125 2.5633 1.0952 .5135
.02 2.3264 .0251 2.3013 1.1784 4617
.05 1.9600 .0627 1.8973 1.4452 .3637
.10 1.6449 .1257 1.5192 2.0450 .2542
.15 1.4395 .1891 1.2504 3.0092 1728
.20 1.2816 .2534 1.0282 4.7040 .1105

.30 1.0364 .3853 0.6511 15.4445 .0333
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REMARK 3.4. Table 2 gives minimax solutions for some selected cases. For
selected values of x,, corresponding values of x, and ¢ were obtained by solving
(3.7) and (3.8). The latter can be rewritten as

- ¢(xo) i _ —
(3.23) =" ‘xl co‘sh;[—%;l(é‘“_“ Xo)] [sinh (x,(c — x,)) + x;(¢ — xo)]

— 2®(c) + 2D(x,) .

TABLE 2
Minimax solutions for selected cases

a = .001, ¢ =3.2893 a= .01, ¢ =2.5633 a= .10, ¢ =1.5192

Xo X1 e Vigo, g0) Xo X1 e WMo, g0) X0 X1 e Vgo, go)
0+ o+ L6191 o o+ o+ .5135 =) o+ 0+ .2542 oo
0.4 0.5826 .4261 14.5201 0.4 0.6556 .3363 15.7132 0.2 .5631 .1879 78.8818
0.8 0.9610 .2311 3.4978 0.8 1.0800 .1767 3.9508 0.4 .8783 .1290 19.5185

1.2 1.3515 .1006 1.8138 1.2 1.5368 .0748 2.0555 0.6 1.1978 .0812 8.8998
1.6 1.7696 .0375 1.3263 1.6 2.0921 .0256 1.4739 0.8 1.5669 .0456 5.2899
2.0 2.2369 .0125 1.1447 2.0 2.9422 .0061 1.2378 1.0 2.0517 .0217 3.6576
2.4 2.8240 .0036 1.0683 2.4 5.6052 .0004 1.1243 1.2 2.8327 .0075 2.7852
2.8 3.8209 .0007 1.0331 2.5633- — 0 1.0952 1.4 4.9151 .0010 2.2630
3.2893- — 0 1.0129 1.5192- — 0 2.0450

REMARK 3.5. To give a meaningful statistical interpretation to the formal
result of the theorem, the domain of ¢» and G must be restricted so that

(3.24) niT, —_ N(0, V(¢, 9))

is satisfied. We first note that, given ¢ > 0, there exists ¢, ¥, such that
sup {V(¢;, 9): G e} < V(g 9o) + 0, so that if we restrict ¢ to the class ¥,
J-minimax solutions can be found. Next note that if ¢ ¢ ¥, and G e ../ satisfy
T,—,0and P[T, = M,] — 0, then (3.24) holds. For ¢ ¢ ¥, and G € >, define
A1) = § ¢(x — 1) dG(x). Toshow T, —,0 and P[T, = M,] — 0, it suffices to
show that 2,(r) satisfies (i)—(iv) of Lemma 2.1. If we change the definition of
k from k = ©®-'(4 + a/2) to k = ®-(1/(2(1 — ¢)) + «/2), then (i) and (ii) are
satisfied: i.e., A,(f) = {34, ¢(x — t)g(x) dx and 2,(t) = —2,(—1t) when |7| < k,
¢ e ¥ and G e 7. Conditions (iii) and (iv) can be checked for particular pairs
(¢, G), but there appears to be no simple characterization of the subset of ¥, x
< for which (iii) and (iv) hold.

An alternative criterion for a robust estimator is due to Hampel (1968):
minimize V(¢, ¢) subject to an upper bound on

3.25 B(¢) = B GO N
(29 )=S0 0 ey di

Hampel proved that in the class of continuous skew symmetric ¢’s, the solution
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has the form
(3.26) $(x) = x X < K
= Ksgn (x) |x| > K,
where K is determined by the upper bound on B(¢). By(¢) is called the “sensi-
tivity” of the M-estimator: a complete rationale for the definition is given in

Hampel (1968). For the restricted class W/, it seems reasonable to require a
measure of sensitivity B to satisfy:

(i) 0 < B(¢) < oo forall g e W/ .
(ii) B(Kg) = B(¢)if pe V., K % 0.
(iii) If {¢;} is a sequence in W/ satisfying ¢ ,(x) — ¢*(x) a.e., then B(¢;) — oo.

We consider two measures of sensitivity satisfying (i), (ii) and (iii):

_ )
3.27 B(¢) = sup | .
R )= S0P 0 g (1) i

where the supremum is taken over all x for which ¢’ exists; and

c / 2 dX
(3.28) By(¢) = <. [¢ (x)]’ p(x) dx
T s g (x) ]’
For members of the class ¥, B/(¢) coincides with Hampel’s “local shift sensi-
tivity” (Hampel (1973), page 98; (1974), page 389).
We define the class of “Hamdels” (Andrews et al. (1972)): for 0 < a < b < ¢,
define

Sba,b,c(x) =X O é lxl < a
(3.29) =sgn(x)-a a< x| <b
= sgn (x) - CCEJZI a b x| <ec

= O IXI g C.

THEOREM 3.2. [In the class ¥':

(l) sbc/Z,c/Z.c minimizes Bl(gb)' !
(i) If K = By(¢on.epne) = 1/(4®(c/2) — 2D(c) — 1), then there isan a < [c/2, c)
such that B(¢, ,.) = K, and ¢, , , minimizes V(¢, @) subject to B(¢) < K.

ProoF. Let a satisfy ¢/2 < a < c. To show that ¢, , minimizes V(¢, ¢)
subject to By(¢) < By(¢,..,.), it suffices to show that ¢, ,, minimizes {° ¢’
subject to

(3'30) Sc—c gbgo’ = Sc—c gl)a,a,c 90,

and

(3.31) sup [¢'(x)| = sup [¢5,q..(x)| = a/(c — a).
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If ¢ ¢ ¥/ satisfies (3.30) and (3.31), then

§20 (x — ¢(x))%p(x) dx
(3-32) = {2, X*p(x) dx + {2, P(xX)e(x) dx — 2 {2, xP(x)¢p(x) dx
= {2, F*p(x) dx + §2, P()p(x) dx + 2 §2, P 0,.(x)9"(x) dx

so that it is sufficient to show that ¢, , , minimizes (¢, (x — ¢(x))*(x) dx subject
to ¢ e ¥/ satisfying (3.30) and (3.31). (The above argument was taken from
Hampel (1968).)

Suppose there is a ¢,e W/ satisfying (3.30) and (3.31) and (¢, (x —
Do(x))o(x) dx < §°, (X — Paae(X))’¢(x) dx. Then there is a point x, € (a, ¢) such
that (x, — ¢do(x0))* < (X — Da,a,0(X0))’. Since x, > ¢, , (%) > 0, we must have
Do(Xg) > Paao(X). Let x; = inf{x: x > x,and ¢y(x) < ¢, , (x)}. Since ¢, is
continuous and ¢,(c) = 0, we have x, < x; < cand ¢y(x;) = ¢, ,.(x;). Since ¢
is piecewise continuous, there is a point x, € (x,, x;) such that ¢y(x,) > ¢, , .(x,)
and ¢, is continuous on [x,, x;). By the mean value theorem, there is a point
X3 € (xy, X;) such that

(333) ¢01(x3) — ¢0(x1) - SbO(XZ) — ¢0(x2) _ ¢a, a c(xl) < —

X, — X, X, — X, c—a

This contradicts (3.31). So when a € (c/2, ¢), ¢, , ., minimizes V(¢, ¢) subject to
Bl(¢) é Bl(¢u,a,c)‘

To show (i), it suffices to show that ¢, ,,, , minimizes sup |¢’(x)| subject to

(3.34) Sc—c ¢,S0, = Sc—c ¢c/2,c/2,c SD, *

Suppose ¢, € ¥’ satisfies (3.34) and that sup |¢,(x)| < sup|¢}.2.(X)] = 1. Then
by the same type of argument as above, ¢y(x) < min {x, ¢ — x} = ¢, ,5.(x) for
x € (0, c). Hence {°, x¢y(x)p(x)dx < §°, XD, /5 00..(X)0(x) dx, contradicting (3.34).

To complete the proof of (ii), note that B(¢, , ) is a continuous function of
a, and that B(¢,,.) — oo as a — c. Hence for any K > B,(¢ ), there is a
point a € [¢/2, ¢) such that B,(¢,,.) = K. [

c/2,¢/2,¢

REMARK 3.6. A generalization of the above proof yields the following: If f
is a symmetric strongly unimodal density, and if f’/f has a piecewise continuous
derivative on [ —c, c], then

Pa(¥) = — f1(%)[f(x) x| < a
(3.35) _f{;§“) a _l lsgn(x) a<x=<ec
=0 x| = ¢

minimizes V(¢, f) subject to ¢ € ¥,” and

(3.36) sup .21 'l < sup 24
2. ¢(0)f"(2) di] [§2. du(0)f"(1) dt]
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provided that a € (0, c) is large enough so that
p—il 1
3.37 w o) = L@ 1
(3.37) supli'l = L~
REMARK 3.7. Hampels ¢, ,, with @ < b can be obtained as solutions if we

also impose an upper bound on sup |¢(x)|/|{¢, ¢¢’|. Specifically, if 0 < a <
b < cand af(c — b) = 1, then ¢, , , minimizes V(¢, ¢) subject to ¢ € ¥’ and

|¢(x)| a

3.38 AFNN < T
-39 B TON 7 R IO ]
and

(3.39) sup ,lilil_(x)l, < ,a/(c ’-b),_ .

§0 'l T 1§20 da.o @]

To minimize V(¢, ¢) subject to ¢ ¢ W/ and By(¢) < K, it suffices to minimize
{¢ % subject to ¢ e W/, (¢’ = —1, and {;[¢'Pe < K. Using Lagrange
multipliers 2, and 2,, we obtain the Euler equation

(3.40) 29(x)p(x) + A¢"(x) = 24[¢'(x)¢"(x) + ¢ (x)p(x)] = 0,
which, after substituting —x¢(x) = ¢'(x) and r = 1/4,, becomes

(3.41) wm—ww—wmz—%m

The solution to (3.41) subject to ¢ T’ has the form C¢,, where C =+ 0 and

(3:42) ) = x — o lxhsgn () o < e
=0 [x] > ¢

where

(3.43) px) = Yo LHDC+ ) - Cm =141 ann

2m + 1)!
A complete proof of the theorem below is found in Collins (1973).
THEOREM 3.3. In the class U :

(i) ¢, minimizes By(¢). ‘
(i) If By(¢,) < K < oo, then there is a t > 0 such that By(¢,) = K, and ¢,
minimizes V(¢, @) subject to By(¢) < K.

4. Extension to the case of unknown scale- Let X, ..., X, bei.i.d. random
variables with distribution function F((x — 0)/s), where Fe .4 and @ and ¢
are unknown. The problem is to estimate #, and we assume without loss of
generality that 6 = 0.

Let F, be the empirical distribution function, and define

s _ Pl — @) — F,a)

- "0 — a) — O Y(a)
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where

(4.2) F,7(t) = inf {x: F,(x) = 1}, 0<r<l.
Also let

(4.3) b — (1 — (a/2)) — ®-1(3a/2) .

O-y(1 — a) — OYa)
LEMMA 4.1. There is a number Bell,d), depending on F ¢ &, such that
(4.4) G,—pfo.

PROOF. There is a y € (—a/2, a/2) such that F(x) = —r 4+ ®(x) whenever
O(x) € [a/2, a/2]. So F(y) = O-Y(y + 1) ify +rela/2,1 — a/2]. In particular

(4.5) F1 —a) — F-Y(a) = Y1 — a + 7) — O Y(a + 7.
So
s P =) = P
(4.6) g, —p qma) = ﬁr s
where
(4.7) p= QU —aty)— OXa+ )

Ol — a) — D-Y(a)

Note that g, =1, p_ = g, for re(—aj2,a/2), and that sup{p,:re
(—af2, a/2)} = B,,, = b, since ¢(x) is symmetric about 0 and strictly decreasing
in x when x > 0. []

We remark that the biasing factor b5 is typically small: e.g., when a = .10,
b = 1.046.

Define
(4.8) ¢ =(d— k)b,

and define ¥, by replacing ¢ by ¢’ in the definition of ¥,. For ¢ W, we
define the estimator T,; by:

(4.9) T, =lim;. 0, if lim;,__6, exists
=M, otherwise
where §, = M, and
X, —0
= ¢< 3 J)

(410) 0j+]:0j+6n' né , ]:0,1,2,

Lo (Fe )

on
THEOREM 4.1. Let ¢ cW,,, Fe..”, 6 > 0, and let X, Xy, -+ be iid. with

df F(x/o). Then T,; —p0.

Proor. Without loss of generality, assume ¢ = 1. There is a Bell, b) such
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that ¢, —, 8. Define

X — 1
@.11) 2,(0) = g¢< ; >dF(x)
and Vo
(4.12) Ao, (1) = % PR (—)-(—(T_—t) :
If || < k, then
(4.13) 40 = Seomaen ¢ (F5) oo e

since || < k and |(x — 7)/f] < ¢’ imply |x| < d. It is easily seen that 4, also
satisfies properties (ii), (iii) and (iv) of Lemma 2.1.
By the argument of Lemma 2.2 (i),

(4.14) sup {|4, ,(1) — 2,(1)|: 1] < k} —>,0,
where

1 X, —t
(4.15) 2y = — Zra o (B0,

n p
To obtain the desired analogue of Lemma 2.2 (i), namely
(4.16) Sup {[4,5,(6) — 2,()]: |1 < k} -0,
it suffices to show that
(4.17) sup {[4,5 (1) — A, ()] : [t| £ k} —, 0.

But this follows easily, since 6, —, 8 and ¢ is continuous and vanishes outside
[—¢’, ¢’]. The analogue of Lemma 2.2 (ii) similarly follows.

The rest of the proof now follows that of Theorem 2.1 with 2,, 2 and T,
replaced by Ans,» Agand T, , respectively. []

By a standard type of argument using a Taylor expansion of 3 ¢((X, —
T,;)é,) about T, =0 and ¢, = B, asymptotic normality of n*T,; is ob-
tained. The proof is found in Collins (1973).

THEOREM 4.2. Under the assumptions of Theorem 4.1,

(4.18) n%Tn,Sn -, N(O’ o 5(¢, g0)) ,
where
(4.19) Vi o) = S PO

B8 S()e'(By) T
and where 8 = B(F) is the number in [1, b] that satisfies
(4.20) ¢, —p Po.

We remark that, although 8 is unknown, V(¢, ) changes very little as 8
ranges over the set [1, b)) when « is reasonably small. If we replace {¥(¢, ¢):
¢ € ¥.'} in the scale-known theory by {V,(¢, ¢): ¢ € W}, then the optimal ¢'s
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found in Section 3, with ¢ replaced by ¢’, determine optimal estimators 7', ; (¢)
in the scale unknown case.
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