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TAIL MINIMAXITY IN LOCATION VECTOR
PROBLEMS AND ITS APPLICATIONS

By JAMES O. BERGER
Purdue University

Let X = (X1, --+, Xp)t, p = 3, have density f(x — ) with respect to
Lebesgue measure. It is desired to estimate § = (61, - - -, 0p)t under the loss
L(6 — 6). Assuming the problem has a minimax risk Ro, an estimator is
defined to be tail minimax if its risk is no larger than R, outside some
compact set. Under quite general conditions on f and L, sufficient con-
ditions for an estimator to be tail minimax are given. A class of good tail
minimax estimators is then developed and compared with the best invari-
ant estimator.

1. Introduction. Let X = (X, ---, X,) be an observation from a p-dimen-
sional random variable with density f(x — #) with respect to Lebesgue measure.
It is desired to estimate the location vector § = (@,, -- -, 6,)". The loss incurred
in estimating 6 by 6 is L(0 — @), where 0 < L(+) < oo, L(0) = 0, and L is
continuous.

It will be assumed that the best invariant estimator for # (with respect to the
translation group on R?) exists and is unique. A simple reparameterization of
the problem will then ensure that d(X) = X is the best invariant estimator. It
will also be assumed that d, is a minimax estimator of §. This additional as-
sumption is fairly weak. Indeed if L is bounded or L(x) — co as |x| — oo (|x| is
the usual Euclidean norm), then it can be concluded that §, is minimax. (See
Ferguson (1967) for similar results.)

For a measurable estimator d(x) = (d,(x), - - -, 6,(x))’, define the risk function
R(0, 0) = E, L(6(X) — 0), where E, stands for the expectation under §. For
convenience, define A,(¢) = R(d, 6) — R(d,, #). Noting that d, has constant risk,
it is clear that d is a minimax estimator if and only if A,(#) < 0 for all 4 ¢ R?.
The search for minimax estimators is thus equivalent to the search for estimators
as good as or better than d, (in terms of risks).

Stein (1955) showed that g, is inadmissible for estimating a multivariate normal
mean under squared error loss if p > 3. Considerable effort has since been given
to improving upon 4, in location vector problems. The theoretical questions
have been answered quite thoroughly (in the case where there are no nuisance
parameters) by Brown (1966). He has shown that in 3 or more dimensions 4, is
inadmissible for an extremely wide variety of distributions and loss functions.
Unfortunately, the theoretical results do not explicitly give estimators which
are significantly better than d,.
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Finding minimax estimators of practical importance has been a topic receiving
considerable treatment in the literature recently. Baranchik (1970), Strawderman
(1971), Alam (1973) and others obtained classes of good minimax estimators of
a normal mean with covariance matrix a multiple of the identity and squared
error loss. Berger (1975) was able to extend the above results to the case L ar-
bitrary (but known) and arbitrary quadratic loss. (Partial results in this direction
had earlier been obtained by Bhattacharya (1966), Bock (1975), and Berger
(1974c).) An extension in a different direction was made by Strawderman (1974)
and Berger -(1974d). They found classes of good minimax estimators for a wide
variety of nonnormal distributions (but again only for quadratic loss).

The obvious weakness of the above practical results is that only quadratic loss
is dealt with. Clearly, it would be desirable to determine how dependent these
results are upon the assumption of quadratic loss, and to determine what should
be done for other losses. Unfortunately, finding practical minimax estimators
for nonquadratic loss appears to be an extremely difficult problem. Existing
techniques do not offer hope of a solution.

Because of the above problem, this paper considers a subject we will call tail
minimaxity. An estimator, d, is said to be tail minimax if there exists K > 0
such that if |§] > K, then A,(#) < 0. Classes of tail minimax estimators of ¢
will be developed for the general problem.

Tail minimaxity is a useful concept for several reasons. First, since a mini-
max estimator must clearly be tail minimax, it provides a necessary condition
for minimaxity that turns out to be quite easy to check. Related to this is its
usefulness in suggesting what estimators may actually be minimax. For exam-
ple, it was this theory which suggested the class of minimax estimators found in
Berger (1974c¢). Finally, tail minimaxity will be discussed as a criterion on its
own merits. Considerable evidence will be presented which indicates that reason-
able tail minimax estimators are usually nearly minimax, and even if not seem
considerably more desirable than g, in terms of risks. The intuitve justification
for tail minimax estimators is as follows. It is well known that “Stein type”
estimators, which improve upon d,, pull the usual estimate J,(X) = X in towards
zero. (This behavior is clear for the typical Stein estimator 6(X) = (1 — |X|7*)* X,
where * stands for the positive part.) Estimators which behave in this fashion
will clearly have risk smaller than d, in‘a neighborhood of ¢ = 0. If they are
also tail minimax, their risks will be as small as d, for large values of |f|. It can
be hoped that the risk behavior, for # in the midrange, is reasonable. Section
3, in dealing with applications, presents numerical evidence supporting this
belief.

As a final comment, note that the multiobservational situation can be sub-
sumed into the general framework of this paper. If a sample X', X*, ..., X" is
taken, and an invariant estimator 4,(X!, ---, X") is to be used, merely set
X = 0, and let f be the density of X. Hopefully, estimators improving upon d,
can then be found.
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2. Theoretical results. This section develops the major results on tail mini-
maxity. The analysis is accomplished by using the methods of Brown (1974) to
approximate A,(¢) for large values of |§|. Conditions for tail minimaxity can
then be easily derived. A relatively simple class of tail minimax estimators is
also developed.

Before proceeding, some needed notation will be given. For an arbitrary
estimator g, let

7(X) = (7:(x)s « 5 7p(%)) = 0(x) — x .
If h: R» — R' is a function with the appropriate number of derivatives, let

(1) 0 . ) 0?

i % J

h(x), etc.,

and let Vi(x) = (h(x), - - -, h'”(x)) denote the gradient of . Let J,(x) be the
Jacobian matrix of y. Thus the (i, j) entry of J (x) is 7,’(x). The usual “o” (little
oh) and “O” (big oh) notation will be used. For a p x p matrix 4, let tr 4
denote the trace of A4, and ch,,, [4] denote the maximum characteristic root of
A. The letter K will be used as a generic constant throughout the paper.

A fairly large number of assumptions are needed. They are not the most
general possible, in that many of the more technical assumptions could un-
doubtedly be weakened. They are fairly easy to verify in their present form,
however, and do cover many of the situations that occur in practice. The first
7 assumptions deal with fand L. The last 2 assumptions concern the estimator

o(x) = x + r(x).

ASSUMPTIONS.

1. L has continuous third order partial derivatives, except possibly at zero.
2. E,L9(X)y=0forl1 <i<p.

3. The p X p matrix .&¢ with elements /,; = E, L% (X), is positive definite.

4. The p x p matrix M, with elements m,; = E[L*“(X)X;], has positive
eigenvalues.
5. f1Sigp, 1£j<p, 1 <k <p, then
(2) E|X[ < oo,
(b) E[|XPILU(X)[] < oo for 0 < n < 3,
(©) EfJXPIL“9(X)]] < oo for 0 < n < 4,
(d) Ef|X]|L#9(X)|] < oo for 0 < n < 3.
6. (a) If |y| £ K,, then there exist K, and K, such that L(x + y) < K, +
K, L(x) for all x € R”.
(b) There exist constants K, and K, such that if |y| < |x|/2, then
L5004 )| < K, 4 KL,
7. Let Q(¢) = {xe R”: |x| < ¢}. Assume thatase — 0
() T f(x)dx = o(e),
() o LV f(x)dx = 0 (),
(©) Sow [L“()] f(x) dx = 0 (1).
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8. |r(x)] < B < oo for all xe R”.
9. There exist @ > 0 and T > 0 such that if |x| > T, then
(@) (] = aflx],
(b) 74x) has all second order partial derivatives, 1 < i < p,
© lr?x) =o(x™), 1 =si=p 1 =j=p,
(d) [P =o(x), lsisp I=j<sp 1 =k=p.

DISCUSSION OF ASSUMPTIONS.

1. The possible nondifferentiability of L at zero causes complications in the
analysis but is allowed so that important losses such as L(x) = |x| can be con-
sidered.

2 and 3. These assumptions are very closely related to the assumption that
the best invariant estimator is dy(X) = X. To see this, note that by the defini-
tion of the best invariant estimator, the function g(c) = § L(x + ¢) f(x)dx is
minimized at ¢ = (¢;, - -+, ¢,) = 0. Under appropriate conditions, this implies
that 0 = ¢"(0) = E,L®(X), and that the matrix =, with elements [, =
E,L¢9(X) = g9(0), is positive definite (in order for the critical point to be a
unique local minimum).

4. This assumption guarantees that it is desired to estimate the full location
vector @, rather than certain coordinates of §. (See Berger (1974a) and Berger
(1974b) for a discussion of the latter type of problem.) The assumption, itself,
is really quite weak. It holds in all practical examples of which the author is
aware (providing the entire location vector is of interest). Three common situ-
ations in which it is satisfied are:

(i) If fis a p-variate normal density with known covariance matrix I, it is
shown in Section 3 that M = "X, which clearly has positive eigenvalues.

(ii) If L is the quadratic loss L(x) = x*Qx, Q positive definite, an easy calcu-
lation shows that M = 2QX, where I is the covariance matrix of f.

(iii) If L(x) = > 7, hy(x,;), where k,(x,) is strictly increasing in |x |, and X, - - -,
X, are all independent, then m,, = { x, L“(x) f(x)dx = § x,;h/(x,) f(x)dx > 0O,
1 <i<pym; = E[X;h/(X,)] = E[X;]E[h/(X,)] = 0if i = j(by Assumption 2).

5. Asan example, note that if L is quadratic loss, then 4 absolute moments
of the density are required. Because of the possible nondifferentiability of L at
zero, care must be taken in checking that the integrals in (b), (c), and (d) are
finite around zero. For p > 3, the conditions are usually satisfied. For example,
if f'is bounded, L(x) = |x|* (a > 0), and p > 3, it can be easily checked that the
integrals over compact neighborhoods of zero are finite.

6. This assumption can be easily verified for most loss functions. If L(x) =
|x|* (@ > 0), for example, verification is straightforward.

7. This assumption will usually be satisfied if p > 3. Part (a), for example,
only requires f to be bounded in a neighborhood of zero (in addition to p > 3).
It can be checked that part (b) is satisfied for L(x) = |x|* (@ > 0), and p > 3.
Part (c) actually follows from Assumption 4, but is included here for simplicity.
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8. This assumption is somewhat restrictive in that it does not allow consider-
ation of basic Stein type estimators such as (1 — |x|~?)x. (Clearly y(x) = —x/|x|*
is unbounded.) It is well known, however, that such estimators can be signifi-
cantly improved upon by “positive part versions” such as d(x) = (1 — |x|~*)*x.
It is easy to check that this estimator has bounded 7.

9. All minimax estimators of practical interest, of which the author is aware,
satisfy this condition.

THEOREM 1. Assume Assumptions 1 through 9 hold. It follows that there exists
K > 1 such that if 10| > K, then

As(0) = tr (JOM*) + 37'(0) L 1(0) + o(10]7%) .

ProoF. Much of the proof is patterned after Brown (1974). A fair number
of details are included since the possible nondifferentiability of L at zero com-
plicates matters, and since similar results sketched in Brown (1974) have not
been worked out in detail.

Define V = {x: |x — 6] > 3/|0]}, where « is from Assumption 9. Clearly

21) A0 = [ [LO() — ) — Lix — 0)]f(x — 6) dx
= W [L(G(x) + x = 0) — L(x — 0)]f(x — 0) dx
+ Sye [L(r(x) + x — 0) — L(x — 0)]f(x — ) dx .
Consider first the integral over V'* above. Using Assumption 8, it is clear that

if xe V°and |0] > 1, then |y(x) + x — ] and |x — 0| are bounded. The con-
tinuity of L and Assumption 7(a) thus imply that

(2.2) e [LG(X) + x — 0) — L(x — 6)]f(x — 0) dx
< K §ye fx — 0)dx = o(J6]*) .

Consider next the integral over ¥ in (2.1). Note first that if |x — 6] > g, then
Assumption 8 implies that [y(x)] < # < [x — 0]. If [x— 60| < fand |§] > 28+ T,
then by Assumption 9(a), |1(x)| < a/jx| £ a/(|0] — B) < 2a/|6]. Combining
these two observations, it is clear that

(2.3) lr(x) < |x—6], if xeV and |6 >28+T.

Assuming |8 > 28 + T, it follows from (2.3) that if x € V, then the line between
(x — 0) and (y(x) 4+ x — @) does not contain zero. Assumption 1 thus implies
that L(y(x) + x — 6) can be expanded in a Taylor series about (x — ), up to
fourth order terms. Using this expansion and rearranging terms gives

(2.4) W [L(r(x) + x — 0) — L(x — 0)]f(x — 6)dx
=L+ L+ L+ 1L+,

where
11 = Zle Slep Lm(x - 0)7i(x)f(x - 0) dx >
Iy =5 200 20es Vo L9V (x — O)r (X7 (x)f(x — 6) dx,
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Iy =4 X0 X5 Dk by LO2R(t7(x) + x — O ()7 5(0)7e(2) flx — 0) dx,
where 0 < 1(x,0) < 1,

Iy = =20 §ye LO(x = O)pi(x) fx — O) dx,

Ii=—% 27 20 Spe LP(x — O)r(x)r (x) f(x — 0)dx .

As before, it can be checked that if xe V° and |§| > T + 6a + 1, then
|7(x)| < 2a/|0]|. Using this, together with Assumption 7, it is clear that
(2.5) I+ Iy =0(|0]) .

To handle 7,, define ¥, = {x: |x — 6] > |0|/3}and V, = {x: 3a/|f] < |[x — 0] <
|6|/3}. Clearly, if xe ¥, and |#] > 68, then |y(x)| < B < |0]/6 < |x — 0]/2. As-
sumption 6 (b) thus implies that
(2.6)  |LOR(tp(x) + x — O)] < K, + KJLE99(x — 0)],

if xeV, and |0 > 68.
Using (2.6), together with Assumption 5 and a simple Chebyshev argument, gives

2.7) Gy ILER((x) + x = O)[rx)r ()r()] flx — 0) dx
< KO § [x — O[1 + |[L430(x — O)[]fix — 0)dx = o(|0]7%) -
Note next that if x e V,, then |x| > 2|#|/3. Assumption 9(a) and the definition
of V, hence give
(2.8) |1 = aflx| < 3a/(2l6])
<|x-—0|2, if xeV, and |0 > 3T/2.
Using (2.8) and Assumptions 5 and 6(b), it is clear that

(2.9) LB (r(x) 4+ x = O)|r(x)r ,()7u(x)| f(x — 0) dx

3y’ (i,4,k) _ . . "
§(2|0|> Vi, (Ko + K[ L3P (x — 0)[] fix — 0) dx = o(0]7) -

Combining (2.7) and (2.9) shows that
(2.10) Iy =0(10]™) -

Finally, the major terms /, and /, must be considered. It will be necessary to
expand the y,(x) in Taylor expansions about §. For this purpose, define W =
{x:|x — 0] < |0]/2}. Assume |0| > 2T. Clearly, if xe W and |6 > 2T, then
|x| > |0|/2 > T. Taylor expansions of the y,(x) (up to third order terms) will
thus be valid if x e W. Using the expansions gives

L= 20 Sw L9 = O)[r(0) + X5 7:7(0)(x; — 0;)
+ 5 20 DR (e + (1= 0)0)(x; — 0,)(x, — 0,)] f(x—0) dx
+ 27 Swe LO(x — O)ri(x) f(x — 0) dx
(2.11) = 20 See LO(x — O)[10) + 2001 7(0)(x; — 0;)] f(x — 0)dx
+ 27 Swe L9(x — O)[7i(x) — 1:(0)
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— 31 0)x; — 0))(x — 0)dx
+ 3 2 2 Xk S LO(x — 0)y, 9P (tx 4 (1 — 1)0)
X (x5 — 05)(x — 04) flx — 0) dx,

where of course 0 < #(x, ) < 1.

By Assumption 2 and the definition of the m,, it is clear that

i3

(2:12) B Sar L — O)[7(60) + D3y 19(0)(x; — 0,)]f(x — 0) dx
POy = e [10)M1].

— »
- 1=1

Assumptions 5, 8, 9 and a simple Chebyshev argument show that
(213) T Sue L9 — O)[7(x) — 7:0) — T3er 770N (x; — 0,)] fix — 0) dx
=o(|0]).

Finally, note that if xe Wand 0 < ¢ < 1, then tx + (1 — 7)6 € W. It thus fol-
lows from Assumption 9 (d) that

(2.14) SUp, ey [7.70(1x + (1 — 0)0)| = suPeiersiope [7:97(6)] = 0(10]7%) .

Using (2.14) and Assumption 5 gives

(2:15)  §y LO(x — 00 (ex + (1 — D0)(x; — 0,)(x, — 0,) f(x — 0) dx
= o(|0]7%) .

Combining (2.11), (2.12), (2.13) and (2.15), it is clear that

(2.16) I =t [J(O)M*] + o(|60]7%) .

The term /, can be handled in an exactly analogous manner. In the Taylor
expansion of y,(x)y;(x), the dominant term will be y,(6)y,(#) since its coefficient
is [,; = E,L'"?(X) and /" is positive definite. The result is
@17) L=} S0 SO Ok, + o(61) = 170)£7(0) + o(6])

Finally, combining (2.1), (2.2), (2.4), (2.5), (2.10), (2.16) and (2.17) gives the
desired result. []

From Theorem 1 follow the following two important corollaries.

COROLLARY 1. Assume Assumptions 1 through 9 hold, and that there exist ¢ > 0
and a sequence {6" € R?, i = 1} such that |6"| — co and such that

Y

tr (JOYM) + S0 7(0) = |6, izl

It can be concluded that 6(X) = X -+ 7(X) is not tail minimax, and hence can-
not be minimax.
Proor. Obvious. []

COROLLARY 2. Assume Assumptions 1 through 9 hold, and that there exist ¢ > 0
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and K > 1 such that if |0| > K, then

(2.18) tr (J(OMY) + 370) Z1(0) < —¢lO]" .

It can be concluded that d(X) = X -+ 7(X) is tail minimax.
Proor. Obvious. []

Corollary 2 will be important in our search for tail minimax estimators.
Corollary 1 is quite useful for demonstrating that a proposed estimator cannot
indeed be minimax.

For the remainder of this paper, estimators of the following form will be
considered:

(2.19) 3(X) = (1 _ C(X)B> X,

X'Ccx
where / is the p X p identity matrix, B is a nonzero p X p matrix, Cisa p X p
positive definite matrix, and r: R? — R' is a measurable function. This class of
estimators is relatively simple and yet includes most interesting minimax esti-
mators so far discovered. Note that for the above estimator,

7(X) = —r(X)BX/(X'CX) .

LEMMA 1. Assume 0 is of the form (2.19), and that Vr(0) exists for |0| > K. Then
for |0] > K,
tr [J(OM] + $r{(0)Z7(0)
_ =vVr@ym*se _ r(0) 20)CM*BY_ r(0)6'B' Bﬂ}

I [tr (BMY) — =222 BT M7
6'Co 6'Co 6:Co 26'C6

Proor. Straightforward calculation. []

THEOREM 2. Assume L and f satisfy Assumptions 1 through. Assume also that
0 is of the form (2.19), where

(i) Ir(x)] < B < oo,
(i) there exist T > 0, ¢, > 0, and ¢, > 0, such that if |x| > T, then
(a) r(x) has all second order partial derivatives,
(b) r'(x) = o(l)as |x|] >0, 1 Zi<p,
(€) ri(x) = o), 1< i<p, 1</ <p,
(d) Vr(x)M‘Bx = 0,
(€) & = r(x) < (chyy [C1B L B) ™ 2r(BM") — 2ch,,, [M'B +
CB'MC] — &}.
Then 0 is tail minimax.
Proor. Corollary 2 will be applied. Note first that ch,,,[C'B*./ B] > 0
(since C and & are positive definite and B is nonzero). Straightforward calcu-

lation, together with condition (ii)(a), (b), and (c), verifies that y satisfies As-
sumption 9. To apply Corollary 2, it remains only to verify (2.18).
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Using Lemma 1 and condition (ii)(d), it is clear that if |#] > K > T, then
(2:20)  tr (J(OMY) + 1(0)L1(0)

< =IO L pagey — MDD _ 0N B0
6tCo 6tCco 26¢C6O
Since C is positive definite, it is well known that
t Rt
OB'ZBY 4 en,  [C-B.B],
260¢C6O

20'CM'BO _ 64CM'B + B*MC)f

< chy., [M'B + C-'B*MC] .
6:Co 6'Co

Together with (2.20) and the assumption that r > 0, these facts imply that
tr (J(O)M') + 37(0)-~7(0)

(2.21) < —10) {tr (BM') — ch,, [M'B + C-'B‘MC]
5:Co
_ f(_z@ ch,.. [c—lBts;/B]} .

Condition (ii)(e) thus gives
tr (J(O)YM?Y) + 57'(0)- 7 7(0) < —e,6,/(20'CO) < —e, ¢, Chyy, [CT/(2]6F)

Since C is positive definite, ch,,;, [C~*] > 0, and (2.18) is verified. Hence d is
tail minimax. []

For a given practical situation, the question of how to best choose C and B is
very complex, involving not only f and L, but also the available prior informa-
tion. The answers will of necessity be in the form of rough intuitive guidelines
(an exact specification of the prior is assumed to be impossible for otherwise a
Bayesian analysis should be run) rather than precise mathematical conditions,
and hence seem best contained in a later manuscript.

For illustrative purposes, a particularly simple and attractive tail minimax
estimator will be considered. The estimator will be of the form (2.19) with
B = (M) and C = M1 (M~")!. For p = 3, this choice of B and C is the
most attractive choice the author has yet encountered. For higher p, however,
the estimator is good only if M has no “extreme” characteristic roots. Again,
this issue will not be pursued here.

COROLLARY 3. Assume L and f satisfy Assumptions 1 through 7. Let

(2.22) (X)) = (1 - Xt}(/[(f};%;’;)_‘]y[\/) X

where

i [r(x)(M~)'x|
(1) FM:T;?(MW‘T)“; < ﬂ < 0,
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(ii) there exist T > 0, ¢ > 0, and &, > 0 such that if |x| > T, then
(a) r(x) has all second order derivatives,
(b) ro(x)y =o(l)as|x] > o0, 1 <i < p,
() rii(x) = o(x™), 1 < i< p, 1 <j<p,
(d) r(x) is nondecreasing in |x|, 1 < i < p,
(e) & S r(x) S 2(p — 2) — &

Then 0 is tail minimax.

Proor. Noting that r¥(x)x; = 0 by condition (ii)(d), the corollary follows
immediately from Theorem 2. [J

The question of how to choose the function r arises next. The choice r(x) = ¢
is attractive because of simplicity, but unfortunately the resulting estimator is
such that y(x) has a singularity at zero. For quadratic loss, a relatively simple
and good method of eliminating such singularities is given in Berger and Bock
(1975). Indeed if L(x) = x'Qx, then the suggested choice of r is

(2.23) r(x) = min {x'(2Q)(M~")"x, o, {x'(2Q)(M7)'x} ,

where 7, ,,(+) is the indicator function on (0, co). The reader is referred to the
above paper for a justification of this choice. The obvious analog of (2.23) for
the situation of this paper is

(2.24) r(x) = min {x* / (M=)x, el o {xt ~ (M7Y)'x} .

COROLLARY 4. Assume L and f satisfy Assumptions 1 through 7. Assume in
addition that x* '/ (M~")'x > 0 for all x + 0. Let

where 0 < ¢ < 2(p — 2). Then 0° is tail minimax.

Proor. It is straightforward to check that condition (i) of Corollary 3 is satis-
fied for this estimator. Since x*./(M~')'x is a positive definite quadratic form,
it is clear that there exists 7 > 0 such that if |x| > T, then x' .2 (M~)'x > c.
Hence if |x| > T, it follows that r(x) = c¢. Condition (ii) of Corollary 3 is thus
trivially satisfied, and the conclusion follows. []

The additional condition, that x* / (M~1)'x > 0, is true in most practical situ-
ations. See the discussion of Assumption 4 for three cases where the condition
is clearly satisfied.

Note finally, that the estimator 9° is probably not admissible since it is not
even analytic. Nevertheless, comparisons of the risk functions of 0° and similar
admissible estimators have indicated that ¢ is “nearly admissible”, in the sense
that significant practical improvements upon #° seem unlikely to exist.

3. Applications. In this section only the tail minimax estimator 0°, given in
(2.25), will be considered. It will be seen that 6° offers considerable improvement
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in risk over d, at = 0. It is clear that the estimator could be centered at any
“likely” parameter value to take advantage of prior information. For simplicity,
all graphs and calculations will just be for ° centered at zero.

Before proceeding, the question of choosing c arises. For p = 3, an exami-
nation of typical risk functions shows that choosing c as large as possible (recall
0 < ¢ < 2(p — 2)) tends to result in the most attractive risks. For p > 4 and
the problem of estimating a multivariate normal mean under squared error loss,
Efron and Morris (1973) suggest ¢ = p — .66. This choice has worked well in
other situations of our experience and so is the suggested choice of ¢ if p > 4.

The numerical results presented in this paper will be for p = 3. The difficulty
in choosing ¢ for p = 3 is that the obviously “largest” value, ¢ = 2 = 2(p — 2),
does not necessarily give rise to a tail minimax estimator. Indeed if

(3.1) flx = 0) = Kexp[—|x = 0]],  L(x) = |x],

it can be shown that A,c(f) > 0 for large |f| and ¢ = 2(p — 2). Another prob-
lem with large ¢, as indicated by the numerical results, is that large values of ¢
are more likely to give rise to estimators which are not strictly minimax. (It can
actually be shown that if ¢ is small enough, then the estimator of Corollary 4 is
strictly minimax. Such a result would not, of course, provide a practically useful
minimax estimator.) In spite of the two problems, the choice ¢ = 2 will be con-
sidered since it often does give rise to a tail minimax and indeed minimax esti-
mator, and since in any case it presents the “worst case” of tail minimaxity from
the point of view of a tail minimax estimator being nonminimax. Numerical
results will also be presented for the choice ¢ = 1. Thus the estimators examined
will be ' and 0* when p = 3.

A. Applications to the normal distribution. Assume that X is a p-variate nor-
mal random variable with mean # and known covariance matrix .

LEMMA 2. If L is such that Assumptions 1 through 7 of Section 2 are satisfied,
then M = gE.

Proor. Note first that M* = E,[ XVL(X)], where the expectation is taken com-
ponentwise. Let 4 be a p X p nonsingular matrix such that (4-1)'£-14-1 = [,
Define Y = AX, L*(y) = L(A™Yy), I}, = E,L*®(Y), m}; = E[L*(Y)Y,], & *
as the p X p matrix with elements /};, and M* as the p X p matrix with elements
mj;. It is easy to check that
(3.2) M** = E[YVL*(Y)] = E[AXVL(X)A™'] = AM'A~",

A e R

From the choice of 4, it is clear that Y is a p-variate normal random variable
with mean A6 and covariance matrix /. Defining yi = (y,,- - S Vicv Vit V)
it follows that

(3.3)  mfy = (o L¥(p)y,(2a)~ exp[ — | y|*/2] dy
= Vap-1 2m) 772 exp[— | yi*[2] {2 L*¥O(y)y; exp[—y /2] dy,; dy? .
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Except at the point y/ = 0, L*®(y) is everywhere differentiable as a function
of y;. Assumption 5(c) implies that for almost all y7

limy, o L*®(y) exp[—y/2] = 0, lsigp.

Using the above two facts, an integration by parts gives that
§20 L*O(y)y; exp[—y;*[2]dy; = §2, L*%P(y) exp[—y (2] dy; »
for almost all y/. Together with (3.2), this gives that
mifs = Ypo L* @9 (y)(2m)~*" exp[—|y*/2] dy = [; .
Thus M* = *. Using (3.2), it follows that M = £ 4447 = <L, []

By the above lemma, it is clear that (2.25) becomes

min (X”I.“IX, c)g‘lz‘l) X
Xii11g-y :

Corollary 4 shows that ¢° is tail minimax.

(3.4) 3(X) = (1 -

An interesting feature of this estimator becomes apparent when the case
¥ =1I,1> 0, is considered. 0° then becomes

(3.5) 3(X) = <1 _ min (1‘;};2))(( 0)33_1>X,

which does not formally depend on the loss function. Thus, as long as the
problem is symmetric in the sense that .~ = [I, the actual shape of the loss
function does not need to be known in order to determine 6°. Of course the
loss function will play an important role in introducing a possible bias term (a
nuisance we avoided by Assumption 2), but the fact that it plays no further role
in determining ¢° is extremely attractive from a practical point of view. At the
risk of carrying the analogy too far, the following is a possible interpretation
that could be given for the nonsymmetric situation. The matrix & intuitively
represents the relative weightings or importance of the various coordinates of
6. From the point of view of tail minimaxity, this is the only feature of the
loss that is important, and so the difficult task of accurately specifying the shape
of the loss can be avoided. .

We finally turn to an investigation of how good the tail minimax estimators
actually are for estimating a normal mean. Consider first the case of quadratic
loss. Thus assume L(x) = x'Qx, where Q is positive definite. Calculation shows
that & = 2Q. Hence
(3.6) 5(X) = <1 _ min (X*Z1X, f)Q_IE_1>X

XtE—IQ—ll—lX
In Berger (1974c¢) it was shown that ¢° is actually completely minimax for 0 <
¢ < 2(p — 2). Indeed, under similar conditions, the general class of tail mini-
max estimators given in Theorem 2 was shown in Berger (1975) to be completely
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minimax for estimating a normal mean under quadratic loss. These results lend
considerable support to the idea that tail minimax estimators behave well.

The risk function of ¢* (for p = 3) was numerically calculated in a variety of
situations. The case £ = /and Q diagonal, with diagonal elements ¢,, was con-
sidered for convenience. As could be expected, the more the g, varied, the less
the improvement in risk obtained (over the risk of d,). However, even with
(max ¢,)/(min ¢;) = 10, 0 still had a risk 25 9, less than that of §,at § = 0. For
the improvement obtained at ¢, = ¢, = ¢, = 1, see Figure 3.

Of course, the major purpose of this paper was to provide a means of dealing
with nonquadratic loss. Thus we will now evaluate the performance of ¢° for
a variety of nonquadratic losses. For simplicity, assume that Y=TJand . & =
I, where [ > 0. The tail minimax estimator (3.5) then becomes

(3.7) 0(X) = (1 — ¢/|X[)*X.
The risk functions of ¢* and 0* were evaluated for the following losses:
(i) L(x) = |x|*,a=4%,1,2,3,and 4,

(i) L(x) = Xfa xS

(it)) L(x) = [xP/(1 + [x]").

Note that these include a concave loss (|x|*) which is “nasty” at zero, and a very
reasonable bounded loss. For all the above losses, it is straightforward to verify
that the assumptions of Section 2 hold. Note, in particular, that by Lemma 2,
I =1, = my = EJ[X,LP(X)] > 0 (since the losses are increasing in |X]|.)

The tail minimax estimator ¢* appeared to be completely minimax for all the
above losses, with improvements in risk (over that of ;) ranging from about
509, at |§] = 0, to about 159, at |§] = 2. The flatter the loss, the less was
the observed improvement.

The results for 6> were more interesting and so will be considered in greater

1.2}

1.0

Risk

L L | L i L I L 1 n 1

1.0 2.0 3.0 4.0 5.0 6.0
Parameter

Fic. 1. L(x) = |x]t.
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detail. Figures 1-5 show the risk functions of ¢* for some of the interesting
cases. The scale labeled PARAMETER is |¢|. The horizontal line is the risk of
the best invariant estimator, d,. The following observations can be made from
the graphs:

(i) ¢* appears to be completely minimax if the loss is squared error or flatter.

Risk

AF
2F
I 1 i 1 L | 1 1 1 1 L L
1.0 2.0 3.0 4.0 5.0 6.0
Parameter
Fic. 2. L(x) = |x|.
3.2

Risk

. I 1 1

! 1
1.0 2.0 3.0 4.0 5.0 6.0

Parameter

Fi1G. 3. L(x) = |x]2.
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Even when clearly not minimax, the risk function of §* seems preferable to that
of d,.
(ii) &* gives improvements in risk of about 709 at |¢| = 0. The region of
significant improvements extends up to about 3 standard deviations from 0.
(iii) Again, the flatter the loss, the less is the improvement.

In conclusion, tail minimax estimators appear to be quite good for estimating
a normal mean. They are very often completely minimax, can offer significant

15.2¢ — e

13.3

11.4

9.5

Risk

7.6

5.7

3.8

1.9

! 1 L 1 L l L I L | ! L

1.0 2.0 3.0 4.0 5.0 6.0
Parameter

Fic. 4. L(x) = |x]%.

Risk

! L L L A 1 L L L L I |
1.0 2.0 3.0 4.0 5.0 6.0

Parameter

Fi1G. 5. L(x) = |x2/(1 4 |x[?).
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improvement in risk over d,, and in some sense are robust with respect to the
loss function.

B. Application to nonnormal densities. For simplicity, only the situation
L(x) = |x]* and ¥ = ml (where L is the covariance matrix of X) will be con-
sidered. It is easy to check that 27 = 2I and M = 2ml for this situation. The
tail minimax estimator (2.25) thus becomes

(3.8) 3(X) = (1 — me/|XP)*X.

As mentioned at the beginning of this section, it is not always true that ¢*»=»
is tail minimax. For estimating a normal mean, outside results indicated that
6**-% is often tail minimax. Because of the uncertainty for the nonnormal
situation, however, we will deal with the more conservative estimator 6*~? in
this section.

For wide classes of densities of the form f(|x — 6|), Strawderman (1974) and
Berger (1974d) showed that if an additional restriction is put on ¢, then ¢° in
(3.8) is completely minimax. For example, it was shown that if f is a mixture
of p-variate normal densities and if ¢ < 2/(mE|X|~?), then ¢° is minimax. It is
interesting to compare this bound on ¢, with the tail minimax bound of 2(p — 2).

(i) If f is normal, then mEj|X|=* = (p — 2)~'. Thus the two bounds are
the same.

(i) If f(jx — 0]) = Kexp[—|x — 6]], it can be calculated that mE|X|~* =
(p+ I)(p — 1) (p —2)~". Thus the ratio of the tail minimax bound to the
known minimax bound is (p 4 1)/(p — 1). Note further that 9-% is indeed
strictly minimax for this problem if p > 3.

(iii) Let f(|x — 6]) = K(1 + |x — 6)*)~*, where a > (p + 3)/2 so that the
assumptions of Section 2 are satisfied. It can be calculated that mE |X|?* =
(2a — p)(p — 2)"'(2a — p — 2)7', and hence that the ratio of the tail minimax
bound to the known minimax bound is (2a — p)/(2a — p — 2). For large a, the
two bounds are nearly the same.

Numerical results will be presented for two commonly occuring densities, the
double exponential and the exponential. Assume that the X; are independent,
with densities f(x, — 6,). ‘

Consider first the double exponential density f(x, — 6,) = exp[—|x;, — 6,]]/2.
It is easy to check that m = E X, = 2. For p = 3, Figure 6 gives the risk
along the 6, coordinate axis, of the estimator ¢'(X) = (1 — 2/|X]*)*X. (Thus
PARAMETER is |6,].)

Finally, consider the exponential density

flxg = 0;) = Lg)(x; — 0;) exp[—(x; — 0,)] .

Before proceeding, note that d,(X) = X — T, where T = (1,1, .-+, 1)’. Thus
the distribution is not properly centered for an application of the theory.
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6.4}
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4.8 |-
4.0 |-
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B2
M 3.2
241
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8
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FiG. 6. Double exponential, L(x) = |x|2.
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Reparametrize by defining », = 6, + 1. Then X, has density /., (x, + 1 —
7,) eXp[—(x; + 1 — 7,)], and it is easy to check that X, is the best invariant
estimator of »,. Calculation shows that m = E,X,? = 1. The tail minimax esti-
mator for » = (y;, - - -, 7,)" is thus 6°(X) = (1 — ¢/|X[**X. The corresponding
estimator for ¢ is (3°(X) — 1). This is a tail minimax estimator centered at
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¢ = 1. (See the comments at the beginning of this section.) The corresponding
tail minimax estimator centered at zero is 0°(X) = (1 — ¢/|X — T)*(X — 1I).
Figure 7 gives the risk of ¢' along the #, coordinate axis.

For both the above nonnormal densities, ' performed quite well.
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