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A CLASS OF UTILITY FUNCTIONS

By D. V. LINDLEY
The University of lowa and University College London

In the case of the exponential family of distributions it is well known
that the use of a prior distribution belonging to the natural conjugate
family substantially simplifies the analysis whilst often being realistic in
applications. The present paper explores the related idea of a conjugate
family of utilities, and generally the notion of choosing a utility structure
that is suitably ‘‘matched’ to the probability structure and, at the same
time, realistic in application.

1. Introduction. In many statistical problems little attention is paid to the
precise form of the loss function. In point estimation it is usual to employ
quadratic loss, whilst in hypothesis testing a piece-wise, constant function is
often preferred. In the present paper we point out that there are other loss
functions that can be used without increasing the analytic complexity unduly.
We prefer to work in terms of utilities rather than losses, because the former
are more readily interpreted in operational terms. We study the form of these
utility functions and explore some of the consequences of using them. It is
hoped that the availability of a range of amenable utility functions will mean
that statisticians will give more consideration to the utility structure of their
problems than they have done hitherto.

2. Conjugate utilities. Apart from a few remarks in Section 7, attention is
confined to the case of a real variable, x, having a distribution depending on a
single real parameter, 6. Until Section 6, this distribution is supposed to be a
member of the exponential family. This family can conveniently be described
by a density, with respect to some suitable dominating measure, and for a suit-
able parameterization, proportional to e*’H(x) for some nonnegative function
H(x). Writing

2.1) G(0)' = § e’ H(x) du(x)
for all ¢ for which the integral is finite, the density of x, given 0, is
(2.2) p(x|0) = e" H(x)G(9) .

(In (2.1), dp(x) refers to the dominating measure.) The natural conjugate family
of densities for ¢, Raiffa and Schlaifer (1961) (see also Wetherill (1961)), then
has density proportional to e%’G(f)™ for suitable x, and n,. These last two
quantities will be referred to as hyperparameters. Defining

(2.3) K(ng, x,)™ = § e*/G(0) d6 ,
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2 D. V. LINDLEY

the integral being over the relevant f-values, the conjugate density of 4, given
n, and x,, is
(2.4) (0| ny, x;) = €5"G(0)"K(ny, X,) -

The basic result in this theory is that if (x;, x,, - -+, x,) = X isa random sample

from (2.2), and if the distribution of ¢ prior to the sample is given by (2.4), then
the similar distribution after the sample is to hand is

(2.5) PO | 1y X0, X) = €/ ZHG(O) K (n + nyy 3 X,)

where the summations are from zero (not one) to n. This is the same type of
distribution as before, (2.4), but with the hyperparameters changed from x, and
n,to 3 x,and n + n,. It may therefore be written, p(¢ |n 4 n,, 37 x,).

In decision problems it is necessary to go a stage further and, besides a dis-
tribution for 6, to introduce a utility function U(d, &) for the utility of decision
d when the parameter value ¢ obtains. The optimum decision is that having
greatest expected utility, the expectation being with respect to ¢, having the
distribution (2.5). Just as the posterior analysis is simplified by using distribu-
tions for @ that fit nicely with those for x, so the utility calculations can be
expadited by employing a convenient utility function. One possibility is to use
a conjugate utility function defined as a function of the form

(2.6) U(d, 0) = e*'G(0)*F(d) .

There x(d), n(d) and F(d) are suitable functions of d, whose form will be dis-
cussed below. Since there are no necessary normalizing constraints on a utility
function, as there are on a probability density, F(d) does not have to satisfy a
result like (2.3): nevertheless we shall find it convenient below to restrict F(d)
somewhat, certainly it must be positive.

For hyperparameters x and N (in posterior analysis these will be x = 37 x
and N = n + n,) the expected utility of d is

(2.7) U(d) = § el=+=VGO) N+ DIK(N, x)F(d) df
= K(N, x)F(d)|K[N + n(d), x 4+ x(d)]

in terms of known functions. Maximization of this over d provides the optimum
decision. Notice that we have here a “closure” property analogous to that for
conjugate distributions. With the latter we know that whatever data (whatever
values of N and x) we obtain, the distribution will always be of the same form,
(2.5): with the conjugate utilities the expected value will always have the same
form, (2.7). Consequently neither the probability distribution nor the expected
utility go outside a closed family.

The possible advantages of the class (2.6) are that it represents a wide class of
functions, and therefore provides considerable latitude of choice in a particular
application, and that the expected values are available explicitly in terms of
known functions, (2.7). We proceed to consider the form of (2.6) in more detail,
and then discuss methods of maximizing (2.7).
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3. The form of a conjugate utility. To understand (2.6) it is simplest to con-
sider it as a function of ¢ for fixed 4, rather than as is customary with a loss (or
utility) function, as a function of 4 for fixed §. From this unconventional view
with d constant, (2.6) is just the unnormed density (2.2). Typically, therefore,
it will be unimodal with tails tending to zero. In other words, 4 is good for only
f-values around the mode and is unsatisfactory for large and small §-values.
This is the type of utility function that is more useful in what statisticians refer
to as point-estimation problems, where the wish is to have ¢ in some sense near
to ¢. But there are other examples; thus in an inventory problem, where @ is
the uncertain demand and d is the stock level, d = @ is the optimum choice with
no unsold stock and no dissatisfied customers. Notice that ¢ is the “natural”
parameter in the exponential family (2.1) and not necessarily the one that is
“natural” in applications. An example is given below where ¢ is the reciprocal
of the variance of a normal distribution.

Because of the usual feature of unimodality, consider the maximum of (2.6)
for fixed d. Writing g(f) = log G(f), the logarithmic derivative of (2.6) vanishes
when x(d) + n(d)g’(f) = 0. It would be natural in most applications for such a
maximum to occur at § = d: that is, for the decision being taken, d, to be the
best possible were § at that value. We shall therefore suppose

3.1) x(d) = —n(d)g'(d)

referring to this as condition C,, and using it to eliminate x(d). At this value
of 4 the utility (the maximum for that d) is equal to

U(d, d) = exp[n(d){g(d) — g'(d)d}]F(d) .

In some applications it would be natural for this maximum to be the same for
all d. Roughly this is saying that getting the right answer, d = 6 is equally good
whatever that right answer is. (This would not obtain in the inventory example
mentioned above, where U(d, d) = d would be more natural, at least for small
d.) If we take this common value to be 1, we have f(d) = log F(d) given by

(3-2) fd) = n(@d){g'(d)d — g(d)},

referring to this as condition C,. Note that typically these utility functions will
be bounded, unlike the squared-error usually employed in point-estimation
problems. This is a real advantage, since an unbounded utility has always the
potentiality of yielding an infinite expected utility when combined with a suit-
able probability distribution. No decisions are reasonably that good, and it is
simplest to suppose that neither “Heaven” nor “Hell” exists, and that expected
utilities are always finite.

Under C, and C, the conjugate utilities are of the form

(3.3) U(d, 0) = exp[n(d){9(0) — g(d) — ¢'(d)(0 — d)}]

and only n(d) is free to be selected. For ¢ near d we may expand the expression
in braces about d and obtain approximately exp[$n(d)g”(d)(0 — d)*], so that near
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the 6 best for that d the utility behaves like a normal density with spread, ex-
pressed in standard deviation terms, [—n(d)g”(d)]™}. (¢9"'(d) is negative.) The
role of n(d) is therefore clear, it measures how near # has to be to d for the
decision to be good: large n(d) says it has to be very near, small n(d) means that
it is not critical. A special case would be where the departure was the same for
all d; for this to happen we need

(3.4) n(d)= = —rg"(d)

for some constant, k. We refer to this as condition C,. Under C,, C, and C,
the only freedom lies in the choice of &, which is no freedom at all since utility
is not affected by a scale change. It should be remembered that C, refers to only
local behavior in § about § = d.

Having simplified the conjugate utility structure to the form (3.3), or its special
case, (3.4), it is possible to say something about its structure as a function of d
for fixed @, in the usual manner. On taking logarithms of (3.3) and differenti-
ating with respect to d, it is easy to see that it has a maximum at d =6. A
second differentiation shows that the second derivative there is n(d)g''(d), agree-
ing with that with respect to . The above remarks on local behavior therefore
apply equally well as a function of d or of #, with the other variable fixed. The
mixed second derivative at d = 6 is —n(d)g"(d) so that around 6 = d = ¢ the
utility function has the form

exp{sn(n)g”(n(@ — dy’} .

4. Maximization of expected utility. We now turn to considering the maxi-
mum value of the expected utility, (2.7). This is in a suitable form for numerical
work provided the function K(n, x) is available, but, as it stands, it is difficult
to obtain analytic results. Instead we proceed to make some approximations
which will help in understanding the form of the optimum decision and, in
certain cases, will enable it to be calculated with ease. In applications to ran-
dom samples of size n, N, in (2.7), is n + n,, where n, is a prior hyperparameter.
We shall develop approximations for large N which will be useful when either
the sample size is large or the prior knowledge substantial. If N — oo, x = 3] x,
will also increase, so we write x = N%, thereby defining

(4.1) X = (xo + 2 xt)/(no +n).

Notice that % is only the sample mean when x, = n, = 0, otherwise it is modified
in a familiar way by the prior knowledge.

LEMMA. For large N, K[N + n(d), Nx 4+ x(d)]™" is asymptotically

—2z |} 1 ’ <
(4.2) {N;&’(ﬁo)} [A(6,) — 5h"(60)[Ng"(00)] exp{N[x0, + 9(0,)]} .

There 6, is a root of the equation x + ¢’(6) = 0 and k(0) = exp[x(d)f + n(d)g(0)].
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From (2.3) K[N + n(d), NX + x(d)]™* is equal to
{ exp[(Nx + x(d))0]1G(O)V D db = § ¥/ Dh(0) db ,
where f(0) = X6 + g(¢). Expand both f(f) and A(¢) in a Taylor series about 6,,
the root of f’(6) = 0. This gives
§ {1(Bo) + (0 — O (G0) + (0 — 00)*h"(60)} exp{N[f(00) + (0 — 00)°f"(00)]} 40,
retaining only the terms as far as the quadratic. Integration gives the stated
answer on recognizing that f"'(6,) = g"(6,).

We now apply the lemma to investigate what happens to the expected utility
as N — oo. Expression (2.7) is the ratio of two K-functions, the numerator being
a special case of the denominator with n(d) = x(d) = 0 and hence () = 1.
Therefore, applying the lemma to both, we easily have that U(d) is asymptotically
(4.3) F(d)[A(6o) — $h"(00)/Ng"(0,)] -

Consider first what happens when the term O(N-?) is omitted, leaving us with
simply A(0,)F(d). Using C, and C,, we have
exp[—n(d)g'(d)f, + n(d)g(6,) + n(d){g'(d)d — 9(d)}]
from (3.1) and (3.2). This is equal to
exp[—n(@d){g'(@)(0y — d) — 9(6s) + 9(d)}],
which clearly has its maximum at d = 6,. We therefore have

THEOREM 1. Under conditions C, and C, the optimum decision for large N is given
by the root, 0,, of the equation ¥ 4+ g'(f) = 0.

Note that with x, = n, = 0, 6, is just the maximum likelihood estimate of 6;
and that in any case the optimum decision does not depend on n(d).

Better results can be obtained at the expense of some complexity by retaining
the term O(N~') in (4.3). We prove

THEOREM 2. Under conditions C, and C,, the optimum decision, to O(NY), is
0, — 1n'(6,)/Nn(6,)g"" (6,)-

Simple calculations, principally involving the evaluation of A”(f,), readily
show that (4.3) is

exp[ —n(d){g'(d)(0, — d) — 9(0) + 9(d)}]
x {1 = HOG0) = ST 4 i (0
2Ng"(8,)
Now we know from Theorem 1 that the maximum must be near d = 4,, so

let us expand terms in 4 around 4,, retaining only those as far as the quadratic.
The result is

exp[—3n(00)9"(0,)(d — 6,)°]

% { | _ M00°9"(0)d — 6,)° + n(0) + (d — 0)n'(8,) + $(d — 6,)*n""(6,) }
2N '
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If we write z = d — 6, this expression is of the form e4**(a 4 bz + cz*) where
b and ¢ are O(N~') but 4 and a are O(1). This function has a maximum near
z = 0 at approximately z, = —3b/(Aa + ¢) which, to O(N~), is simply z, =
—1b/A. On inserting the values for b and 4 we have the result.

If C, is also invoked (equation (3.4)) the optimum is 6, + $9®(6,)/N{g" (0,)}*.

The estimate obtained by invoking C, is the same as that obtained by Lindley’
(1961), equation (2.22), for any distribution, not merely the exponential family,
but with quadratic loss. We have already seen above that C; essentially gives
this form of loss, so the agreement is not surprising.

An interesting question to ask is: when is the modified maximum likelihood
estimate, 6,, correct even to order N-!. From Theorem 2 this occurs only if
n'(6,) = 0 or n(d) is constant. In that case the utility function (3.3) is locally

(4.4) U(d, 0) = explg”(d)(6 — )] .

Rao (1962) has claimed certain second-order properties for maximum likelihood
estimates. In the discussion to that paper I pointed out that such claims depend
upon an implicit assumption about the loss structure. The same phenomenon
is exhibited here and only the (local) form (4.4) for a loss structure will result
in second-order optimality properties. This is in no way remarkable; what is
remarkable is that to first order the loss structure is irrelevant (Theorem 1).

5. Examples. Normal mean, known variance. Here
p(x]0) = (2m)~bet?,

assuming the known variance to be one. This is of the form (2.2) with G(6) =
e 4", so g(f) = —16*. Theorem I gives the optimum decision (under C, and
C,) to be x, and under C; this is correct to O(N~?') since g*¥(¢) = 0. To illustrate
the extra term without C, consider the case where n(d) = e~*. As g”(f) is con-
stant, this is a situation where maximum precision is required around d = 0,
relatively little notice being taken of errors at large d. Simple calculation from
Theorem 2 shows that the optimum decision is, to O(N~%), X(1 — N~'), pulling
the original value toward zero.

Normal variance, known mean. There, in its usual form with the known
mean taken to be zero,

Py | 9) = Qo) tetite,

¢ being the variance. To put it into the standard form above write x = —$?%,
so that x < 0, and # = ¢!, the precision. Then G(6) = 6* and g(f) = % log 4,
for # > 0. Theorem 1 gives the large sample decision as §,7* = —2x. Turning

this back into the original data {y,} and the variance ¢, the decision for ¢ is
(3, p2 + yd)/(n + ny), the usual mean-square modified by prior knowledge.
With C, in addition, Theorem 2 changes the value from 6, to 6,(1 + 2/N), which,

1 There are several errors in t-at paper, all springing from an error on line 4 of (2.18)—the 3!
there should be 2. This leads to a 6 in (2.22) which should be replaced by 2.
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in terms of the variance gives (3 y,! + y,%)/(n + n, + 2). The modification
reflects the common discussion about the appropriate divisor for the sum of
squares, see, for example, Evans (1964) and references therein. The modification
suggested by Theorem 2 without C, extends this idea. The “standard deviation”
of the utility function [ —n(d)g"(d)]~* is here [2d*/n(d)]}. With n(d) = d~*, with
a > —2, the spread increases with d, from zero to infinity, so that the smaller
values of the precision # are required to greater accuracy. The estimate, to
order N-!, is easily seen to be 6,1 — a/N), which, in variance terms is
(22 y + y))/(n + ny — a). The restriction to @ = —2 is needed, sincea < —2
would mean an increasing spread as d — 0, which would be unreasonable in
view of d and ¢ both being nonnegative. For many purposes the logarithm of
the precision is sensibly estimated with constant error. This corresponds to
a = 0 and leads back to the modified maximum likelihood estimate. So here
we have a case where that estimate does have reasonable second-order efficiency
properties.
Bernoulli sampling. Here

pxlp) = ¢°(1 — @)~

forx=0o0r1,and 0 < ¢ < 1. Writing @ = log {#/(1 — ¢)}, the log-odds, this
is in the standard form

p(x10) = (1 4 €)™

with G(f) = (1 + €)' and g(6) = —log(l + e’). Theorem 1 gives the usual
modified maximum likelihood estimate for ¢ (under C, and C,) to be x. In
Theorem 2, using C,, simple calculations show that to O(N~?) the optimum
decision for ¢ is 6, + sinh §,/N, where 6, = log {¥/(1 — %)}. As an example
where increased precision is required for values of ¢ large in absolute value (¢
near 0 or 1), take —n(d)g"(d) = (1 + e%)*/e’. Simple calculation gives 0, 4
2 sinh §,/N. Acting in opposite direction, giving more precision around ¢ = }
is —n(d)g"’(d) = e*/(1 + e*)*. This takes us back to the estimate 0,,.

6. Monotone utility functions. A limitation of the utilities given by (2.6) is
that they necessarily have the features of a density function: for example, the
utility typically tends to zero at the ends of the range of #. In many applications
utility cannot reasonably have this property: for instance, it may be increasing
in ¢, the larger @ being, the better the decision. Such a monotone property is
possessed by a distribution function and it is therefore tempting to see whether,
just as (2.6) imitates the density, (2.4), for §, we cannot make progress by
choosing a utility which imitates the distribution function for 6.

Consider therefore a utility function

(6.1) U, 6) = \"., e#G(1)"“K(x(d), n(d)) dt

which, for fixed d, is a distribution function for ¢ having hyperparameters x(d)
and n(d). (The expression could be generalized by not normalizing by K but
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using a general function F(d) as in (2.6). However, in most applications
lim, . U(d, 6) will not depend on d, and (6.1) has this property, the limit always
being 1.) Let ¢ be a random quantity having density (2.4) with hyperparameters
x(d) and n(d). Then (6.1) may be written U(d, 0) = p(¢ < 0), the tilde serving
to indicate the random quantity. It immediately follows that the expected utility
is p(¢ < 6); that is, the probability that one random quantity ¢—with hyper-
parameters x(d) and n(d)—is less than an independent random quantity ¢ having
the same distribution but with hyperparameters, x and N, say. Consequently
our expected utility is easily calculable whenever the distribution of the differ-
ence or ratio of two independent random quantities from the conjugate family
is easily calculable. An obvious case is where the conjugate family is normal,
for then the difference is also normal. This is an important, but rather special,
case. Fortunately there often exists a transformation which achieves approxi-
mate normality, so that the device is of some generality. We therefore consider
the normal case in detail. The paper by Berhold (1973) is relevant.

Suppose 6 has a posterior distribution which is N(z,, 0%), say. This will
happen in the first example in Section 5 of sampling from a normal distribution
of unknown mean, 6, and known variance. Let U(d, 6), for a fixed decision d,
be a normal distribution function with mean g, and variance o, —these two
quantities will depend on d. Then by the above argument the expected utility
involves the difference between two independent normal variables, which is
itself normal with mean p, — p, and variance ¢, + o,*>. The expected utility is
equal to the probability that this difference is negative, that is to @[(y, —
to)/(9.2 + 0)}], where @ is the standard normal distribution function.

Two applications of this class of utility functions have come to my notice.
The first is from the field of education where 6 is a measure of the true worth
of the subject, what is often called his true score: see Lord and Novick (1968).
It is sometimes supposed that the subject is good enough for some task, or for
some training if, and only if, ¢ exceeds some critical threshold level, g, say.
A test on the subject gives an observed score and, as a result, ¢ typically has a
posterior distribution which is normal, say N(z, 0,%). (r, will depend on the
observed score.) Using a utility function which is 1 for # > y, and 0 otherwise,
the expected utility is ®[(¢, — f4)/0,], and the subject is accepted if this exceeds
a critical value; that is, if g, > g, + Ao for some 4.

In criticism of this, it may be argued that to assume a subject with @ just a
little larger than g, is satisfactory but one with @ a little less is no good, is un-
realistic. Or, to put it differently, to suppose the utility has a discontinuity at
1, is inappropriate. The suggestion made here is to replace the discontinuous
utility by the normal distribution function with mean g, and variance ¢,>. (The
limit of this as ¢, — 0 is the original function.) The use of this would imply,
amongst other things, that subjects with ¢ > p, + 20, were almost certainly
satisfactory, and those with 6 < p, — 20, were almost certainly not. Subjects
with @ = p, were as likely to be satisfactory as not. By the above argument,
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the expected utility for a subject with a true score which is N(yx, a.?) is
Q1 — p)/(01® + 04*)].

It is of interest to compare the two expected utilities. For fixed p,, 1, .,
the use of the new function results in a decrease in expectation whenever y, > p,
and an increase whenever z, < g,. In words, if the cut-off on observed score is
high (2 > 0 above) the student will have to do even better with the new utility:
in the contrary case he need not do as well. (Of course, the cut-off value should
be determined using another utility function for rejection. A suitable form
might be one minus a distribution function: that is, p(¢ > ) in the notation
used above.) The change required can be easily calculated. Let ¢* be the mean
critical value when ¢, = 0, and p* + & be the value for the new utility func-
tion. Then

pr =t _ 1+ h—

g, (0 + o)

so that
h = (p* — po{(a® + a)fo, — 1} .
For small ¢, this is approximately (pz* — g,)0,2/20 2.

A second application is to the time, 4, available to complete a task. There
the expected time available had been used as a criterion, implicitly using a linear
utility. This is probably unrealistic. If the time is very short, then the utility
is low. It will not reasonably begin to rise until a certain minimum time is
available, and will most likely not rise much more after an adequate time is
available. If so, the distribution function form can again be used. Of course
the results may be quite different from these obtained using a linear utility.

In many situations—even within the exponential family—the distribution
of the difference of two random variables is not available explicitly and the
above approach can be used only numerically. However, an approximate method
is typically available. For example, with Bernoulli sampling, the conjugate
family is the Beta family and the log-odds provide a reasonable approximation
to normality: § = log {¢/(1 — @)}, in the notation used in the Bernoulli example
above, is approximately normal with mean log {(x + 1)/(N — x + 1)} and vari-
ance (x + 1)7' 4 (N — x 4 1)~%, when the conjugate family is written in the
form ¢*(1 — ¢)¥==. If a normal distribution function is a suitable utility func-
tion in terms of #, then the above methods are available. This amounts to the
use of a distribution function in terms of ¢, the basic parameter.

7. Several parameters. The above ideas extend without any serious difficulty
to the case of more than one real parameter. In particular, the use of a bivariate
normal distribution function for the utility of a decision that depends on two
quantities looks promising. However, conjugate utilities (whether of density or
distribution function form) for more than one parameter suffer from the same
defectas do conjugate probability distributions: namely, they do not have enough
hyperparameters. Generally, with k parameters we have (k- 1) hyperparameters.
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But to describe only the first- and second-order properties of k quantities we
need k(k + 3)/2 variables—a number greatly in excess of the number of available
hyperparameters. It is hoped to explore these ideas further in another paper.
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