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APPROXIMATIONS TO THE EXPECTED SAMPLE SIZE
OF CERTAIN SEQUENTIAL TESTS

By M. PoLLAK! AND D. SIEGMUND
Columbia University

This paper presents asymptotic formulae, lower and upper bounds for
the expected sample size of certain sequential tests of the parameter of an
exponential family of distributions. The tests involved are tests of power
one based on mixture-type stopping rules and tests for the detecting of
change in the underlying distribution. Analysis for incorrect assumptions
of the underlying distribution yields asymptotic formulae for such cases,
showing robustness of the original formulae. Monte Carlo results indicate
the validity of asymptotic formulae for sample sizes one would expect in
practical applications.

1. Introduction and summary. LetJdenote an open interval of real numbers.
Assume that for each § € J P, is a probability measure under which x,, x,, - - -
are independent random variables with probability density function ,(x) =
exp(f0x — ¥(#)) with respect to some o-finite measure ». Lets, = ¥ x, (n =
0,1, ...). Fora given 6,€J and F a probability distribution on J define

fx, 1) = §,expl(y — o)x — (¥ (y) — ¥(0:))] dF(y)
and
1) T = inf{n: f(s,, n) = a} ) (@>1).
Statistical applications of the stopping rule (1) have been discussed, for example,
in [9] (see also Section 5), where as a consequence of a simple argument due to
Wald it was shown that (cf. Lemma 6)
2) Py {T < o0} < 1/a (@a>1).
For these applications it is desirable to have approximations to E, T for 6 + 6,.
Previous investigations have focused for the most part on the asymptotic behavior
of E,T as 6 — 6, (cf. [3], [11], and [12]). However, it was pointed out in [12]
that there is reason to think that an asymptotic analysis of E,T as a — oo will
provide better numerical approximations for a wide range of values of ¢ and a.
In this paper we begin with such an analysis and indicate the accuracy of our
results by comparing them with some Monte Carlo simulations.

Putting 1(6) = (0 — 0,)¥'(6) — (¥(0) — ¥(6,)), we state our first result as

THEOREM 1. Let 0 + 0, be such that F' exists in a nezghborhood of 0 and is posi-
tive and continuous at §. Then as a — oo

(3) E,T = 2loga + log ((log a)/I(8)) — log (2x(F"(6))*/¥" (6))— 1]/21(6) +o(1) .
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1268 M. POLLAK AND D. SIEGMUND

REMARK. The approximate equality (denoted by =) appears in Theorem 1
because, following a tradition going back to Wald [13], we have neglected the
“excess over the boundary” log f(S,, T) — loga. A more detailed analysis
shows, at least whenever the distribution of X, is nonlattice, that the difference
between the left- and right-hand sides of (3) converges to a positive finite limit
which in principle can be evaluated in terms of ladder variable distributions.
We have not included this refinement because (a) the required analysis is quite
complicated, (b) the additional term obtained requires a computer for evaluation
in those cases in which evaluation is possible, and (c) the improvement in ac-
curacy is rather small, particularly in light of the investment of effort required.
Details of such an analysis with different applications will appear in [4]. Simple
(distribution dependent) upper bounds for this additional term are discussed in
Section 7.

Theorem 1 is proved in Section 2, and in Section 3 is given a slight variation
of Theorem 1 in which the random variables x,, x,, - - - may have a different
distribution than that defined by the density exp(fx — ¥(6)). Monte Carlo ap-
proximations to E, T are presented in Section 4 and compared with the analytic
approximations of Theorems 1 and 2. In Sections 5 and 6 we discuss the problem
of detecting a change in the parameter of a distribution and obtain results closely
related to Theorem 1. Miscellaneous remarks appear in Section 7.

2. Proof of Theorem 1. Before beginning the proof of Theorem 1 we make
several notational simplifications which we use throughout the rest of this paper.
Let 4 = E,x, and 0® = Var, x,. It is easy to see that 4 = ¥'(#) and ¢* = ¥"'(6).
By translating the x’s we may assume that ¥'(6,) = E, x, = 0. By putting
~ vy(dx) = h,(x)v(dx) so that under P, the random variables x;, x,, - - - have relative
to v, the probability density function hy(x)/hy(x) = exp[(§ — bo)x — (¥(f) —
¥(6,))], we may by relabelling the parameter space J assume that 6§, = 0 and
¥(4,) = 0. With these conventions we have f(x, f) = § exp[yx — t¥(y)] dF(y)
and /(6) = 09'(6) — ¥(9).

We defer until later several lemmas referred to in the proof of Theorem 1.

Without loss of generality assume that 6 > 0 and hence, by the strict con-
vexity of ¥, p = ¥’'(d) > 0.

It is shown in Lemma 1 below that E,T < co. By the definition of T
4 loga < 0s, — T¥(0) — 1/2log T

+ log [T* §, exp[(y — O)s; — T(¥(y) — W(O)]dF(y)] -
We proceed to analyse the different expressions in (4).

Let 0 < ¢ < 1bearbitraryand let 0 < d, < d, be positive numbers to be speci-
fied later. Letn, = (1 —e¢)(loga)/l(f) and A = {T > n,, max,, |n7’s, — p| < d,}.
Obviously Py(AY) < P{T < n)} + Py{max,, |[n~'s, — p| = 6,} and hence by
Lemmas 2 and 3 below, for some 2 > 0

) Py(A7) = O(a™%) (@— o).



SAMPLE SIZE OF SEQUENTIAL TESTS 1269

By Wald’s lemma
{4 (0s, — TY(0))dP,
(©) = §4 067 — ¢T) + TI(9)] 4P,
= I(0)E,T — 6 § 4o (sp — pT)dPy — I(6) § 4e T dP, .

By (5), the Schwarz inequality, Wald’s lemma for squared sums (cf. [2], page
23) and Lemma §
™) 0 < e TdPy < (B, TPy(A))! = 0(1) ,
and
8)  Suc(sy — uT)dPy < (Ef(s; — pT)Py(4)) = (E, To®P, A) = o(1)
as @ — oo, which together with (6) show that
©) {4 (65, — TV(®))dP, = I(B)E, T + o(1) (a— ).

Let0 < 5 < 1,and let §, < min (g, I(#)/6) be so small that forall |y — 6] < 9,
F'(y) exists,
(10) FOX1 -9 = F(y) = FO) + ),
and
A1) 3 —0ye*(l =) = ¥(y) — ¥(O) — (y — O)p = (y — 6’1 + 7).
Considering first that part of the integral over J in (4) which comes from |y —
6] < 4,, and using (10) and (11), we obtain (letting ¢(x) = (27)~* exp(—x?/2))

Tt $iy-o1<s, €XPI(y — O)sr — T(¥(y) — ¥(0)]4F(y)

. (sp — pT)?
(12) = @y exp<2a2(1 - 7;)T) r
X Slv—ﬂl<62 gp((az(l — nT)t l:y — 0 — (H%)])dﬁ'(y)
rlo¥(l — (ST — )uT)Z ,
< (2r/o¥(1 — 7))} exp (2———02(1 . ”)T) F(O)(1 + 1) -

It is shown in Lemma 4 that for sufficiently small 4,, d,, on 4
T4 § 055, €Xp[(y — O)sr — T(¥(y) — W(9))] 4F(y)

is majorized by a nonrandom quantity which converges to 0 as a — co. Hence
by (12)

§4 (log TH §, exp[(y — O)sy — T(¥(y) — W(O))]dF(y)) dP,
(13) < 1/2log (2z/0*(1 — 7)) + log F'(9)(1 + 1)

| + [20%(1 — IV (57 — #T)ITdPy + o(1) .
Moreover, by the definition of 4, Wald’s lemma for squared sums, and Lemma 5
(14) §u (57 — #TYYTdPy < m7Ey(sy — pT)?
=a'nE,T = o*(1 — &) ' 4 o(1).
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By integrating (4) with respect to P, over 4 and using (5), (9), (13) and (14) we
obtain as a — oo
I0)E,T = loga + 1/21logn, — 1/2log [2=(F'(6)(1 + 7))}/e*(1 — )]
=20 = =" + o) .
Since ¢ and 5 are arbitrary, this proves that the right-hand side of (3) is asymp-

totically a lower bound for E, T. If we neglect the “excess” E,log f(s;, T) —
log a, a similar argument completes the proof of Theorem 1.

LEMMA 1. E,T < oo.

ProOF. Let r = min (T, n) — 1, so that = + 1 is a stopping time. From the
definition of T

loga = 65, — W(O)r + 10g §,_.<s xp[(y — O)s. — 2(¥(y) — TO)]dF(y) .

Using the expansion W(y) = W(0) + (y — O)¥'(0) + 3(y — 0)»)¥"(¢), and as-
suming that ¢ is taken so small that |y — §|¥""(§) < 1 for all |y — 6| < 4, we
obtain
loga > 0(s. — p7) + 1(6)7 + 10g § s eXpl(y — O)(s. — p2)]dF(y) — 3.,
and hence by Jensen’s inequality
(15) loga = 6(s, — pr) + (I(8) — d)c + log F(6 — 3, 6 + &)
+ (¢ = O)(s. — p7),

where ¢ = § _, ., ydF(y)/F(0 — é, 6 + ). Hence
(16) (I(6) — 8yt < —€(s031 — (7 + 1)) + clxess — £

+ loga — log F(6 — 49,6 + 9) .
By Wald’s lemma and the Schwarz inequality E,(s.,, — u#(z + 1)) = 0 and
Ep(|%es — #]) S [Eo(S5 (% — #)9)]* = o(E,y(c + 1))t. Hence if § is so small
that /(f) — o > 0, we see from (16) that E,r remains bounded as n — oo, and
hence E; T < oo.

LEMMA 2. Forany 0 > O there exist 0 < 2 < 00, 0 < a < oo such that

P, {maxﬁ, “:1—" - pl = 6} < aexp(—4r).

Proor. Obviously

P, {max,,z,

i_ﬂ‘ga}§2n;rf’0{
n n

Forall ¢ >6 >0
Py{s, — np = no}
= Viey-nuzna) Xp[(0 — )5, — n(W(0) — V(£))] dP,
< exp[—n((x + 3)(§ — 0) — (¥(E) — VO)Pels, — np = nd},
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and hence since W(§) — ¥(6) ~ p(§ — 0) as & | 6, by choosing ¢ sufficiently
close to @, for some ' = (3, 6) > 0, P,{s, — nx = nd} < exp(—4'n). Analo-
gously one gets that P,{s, — nz < —nd} < exp(—4"'n) for some 2", so that for
some 2 = 4(3,60) > 0

17) Py{|s, — ny| = no} < exp(—4n) .

The lemma follows easily from (17) by summing over n = r.

LEMMA 3. Let 0 < ¢ < 1l and n, = (1 — ¢) loga/I(6). There exists 2 > 0 such

that
PT<n}=0@? as a—oo.

ProoF (cf. Lemmas 6 and 13 of [12]). For any x > 0
P{T < n)} < Pyls,, — pm = xan,t}
(18) + S(Tsnl,a,u—pnlaanlh exp [0snl — n, ¥(6)] dP,
< Pyfs,, — pny = xon,t}
+ exp[{(O)n, + Oxant]P{T < n)}.
Since by (2) Py{T < oo} < a™!, for x = ¢(I() log a)t/260, the second term on the

right-hand side of (18) is O(a=*/*). The required estimate for this choice of x for
the first term on the right-hand side of (18) follows easily from (17).

LEMMA 4. Given 6, < min (z, I(6)/6), for all 3, so small that the inequalities (20)
and (21) below are satisfied, on A

(19) Siw-0>s, T2 €Xp[(y — O)sp — T(¥(y) — ¥(0))] dF(y) < ¢(a) ,

where ¢(a) is nonrandom and — 0 as a — oo.

' Proor. By the mean value theorem ¥(y) = ¥(d) + (y — 6)¥'(§) for some §
between 6 and y. Since ¥ is strictly convex, ¥’ is strictly increasing and § is

an increasing function of y for y > 6. Hence we may take d, so small that for
ally = 6 + 9,

(20) ¥(y) = ¥(0) + (y — O)(¥'(0) + 24,)
and also
(21) 40, < 6, inf,g o, T"(x) .

Now split the range of integration in (19) into three pieces according as y < 0,
0<y<6—29,andy> 6 + 6, Denote the resulting integrals by I,, /,, and I
respectively. Then on A for sufficiently large a

(22) I, < Tiexp[—(O(n — d,) — ¥(0))T] < nt exp[—n,(I() — 9,0)] .
Also, by (20) on 4 for large a

(23) L= T*§a04,6Xpl(y — )1 + 0)T — T(y — 6)(p + 20,)] dF(y)
< ntexp(—0,0,n) .
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Using a two-term Taylor series expansion and (21), we find that on 4 for large a

I, < T* Socyco-s, eXP[T |y — 0|(6, — 3|y — 6]¥"(§))] dF(y)
(24) = T* Socyco-s, eXP[T|y — 01(3, — 20,)] dF(y)
< nt eXP(—5152”1) .
(22), (23), and (24) complete the proof.

LeEMMA 5. T ~ loga/l(6) in probability and for i = 1 or 2 E,T* ~ (log a/I(6))*

asa— oo.

Proor. That T is asymptotically at least as large as loga/I(f) in probability
follows easily from (4), (5), (12), and Lemma 4. Hence

liminf, ., E, T/(log a)* = (1(6))~* (i=1lor2),
and to complete the proof it suffices to show that
lim sup E, T?/(log a)* < (I1(8))~* i=1,2).

Reasoning as in the proof of Lemma 1 yields (16) with = replaced by 7' — 1.
The remainder of the argument is a straight-forward application of Wald’s
lemmas for the first and second moments.

For further reference we also record (cf. [2], page 40)

LEMMA 6. Let z,, z,,- - - be a nonnegative supermartingale sequence. Then
Pz, = b for some n =1} < Ez,/b (b > Ez,) .
REMARK. Since z, = f(s,, n),n = 1,2, ... is a nonnegative martingale under

P, with E;z, = 1, the inequality (2) is a special case of Lemma 6.

3. Case of incorrect distribution. It may occur that the random variables
Xy, X, - - - do not have the assumed probability density function exp(0x — ¥(8))
used in the definition (1) of the stopping rule 7. For example, it may be con-
venient to assume a normal model (¥(f) = 6%/2) even though the x’s are not
normal. If the x’s are subnormal in the sense that their probability density func-
tion (relative to Py o x,7%) is

(25) exp(dx — g(9)) ,

where g(f) < 6%/2 for all 4, then (2) continues to hold for T defined by (1) with
W) = 6°/2. (An example of the subnormal case occurs if the x’s assume the
values +1 and —1 with probabilities p and ¢ = 1 — p respectively and § =
$logp/q, so g(0) = log[(e’ + e7%)/2] < 6*/2.) Alternatively, according to Theo-
rem 2 of [10] if we use the normal model ¥(#) = 6%/2, then for random variables
having an arbitrary distribution with mean 0 and variance 1 the inequality (2)
holds approximately for measures F which are suitably concentrated about 0.
In this section we assume that under some probability measure P, x,, x,, - - -
are independent and identically distributed. We continue to assume that T is
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defined in terms of a mixture of probability density functions of the form
exp(6x — ¥(0)), as in (1). We do not assume, however, that this is the correct
density function so that (2) may or may not be true. Let ¢ and ¢ denote Ex,
and Var x, respectively. We shall assume that Ee’”s < oo for 4 in some neigh-
borhood of 0, although this assumption is much stronger than necessary.

THEOREM 2. Assume that p + O and that there exists § + O such that
(26) p=9(.

Assume also that F' exists in some neighborhood of 6 and is positive and continuous
at 8. If for some g* > 0

@7) T(y) z o
for all y in an interval of F-measure 1, then as a — oo

(28) E(T) = [2log a + log ((log a)/1(6))
— log (2= (F'(6))’/¥"(9)) — o°[¥"(0))/21(6) + o(1) -
ReEMARK. The condition (27) is always satisfied for the normal model ¥(y) =

%2, for in that case ¥”’(y) = 1. It is possible to give examples to show that
condition (27) cannot be completely eliminated.

An examination of the proof of Theorem 1 shows that only Lemma 3 required
that exp(fx — W(#)) be the correct probability density function. (On the other
hand, Lemma 3 applies not only to stopping rules defined by (1) but to any
stopping rule satisfying (2).) The following result may be used instead of Lemma
3 to complete the proof of Theorem 2.

LEMMA 7. Under the conditions of Theorem 2, for any 0 < ¢ < 1, there exists
0 > 0 such that

(29) P[T < (1 — ¢) (log a)/1(8)} < 2 exp(—d(log a)?) .

Proor. Using a two-term Taylor expansion, (26), and (27) we obtain the
following chain of inequalities:

log §, exp(ys, — n¥(y)) dF(y)
= 0s, — n¥(0) + log §, exp[(y — 0)s, — n(¥(y) — W(O))]dF(y)
< 0(s, — np) + nl(0)
+ log §, exp[(y — 0)(s, — np) — na*(y — 6)*/2]dF(y)
= 0(s, — ng) + nl(6) + (s, — npr)'[20°n
+ log §, exp[—1/2ng%(y — 0 — (s, — np)[na*)'] dF(y)
< 0(s, — np) + nl(0) + (s, — np)*[2¢’n .
Hence, letting ¢ = loga, n, = (1 — &)c/I(f), and B = {|s, — np| < d,¢* + d,n
for all n}, for all 4, and d, sufficiently small and n < n,, on B the preceding
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quantity is
< |0)(0,¢t + 0,n) + nl(0) + (1/2na?)\(d,%c + 20,d,¢ctn + d,'n%
< 10)|(0, ¢t + d,n) + n 1) + (1/26%)(0,%c + 20,0,¢ct + 0,’n,)
< —=¢2)k<ec,

so that B n {T < n;} = 0. Hence P{T < n,} = P({T < n,}} n B°) < P(B), and to
complete the proof it suffices to show that for some 6 > 0

(30) P(B°) < 2 exp(—act).
Let g(2) = log E[exp(A(x; — p))] and b = ,ct. Obviously for 2 > 0
P{s, — np = b + 0,n for some n}

@31) = Plexp[A(s, — ny) — ng(4)]
= exp[4b + n(4d, — g(2))] for some n}.

Now g(4) = O(2*) as 4 — 0 and hence for small positive 4 46, — g(4) > 0. For
any such 2 the right-hand side of (31) is majorized by

(32) Plexp[A(s, — np) — ng(4)] = exp(4d) for some n} < exp(—4d),

where the inequality (32) follows from Lemma 6. Putting b = d,c* and d = 49,
in (31) and (32) yields (30), which completes the proof.

4. Monte Carlo approximations. The following tables give 1000 run Monte
Carlo approximations to E, T together with the appropriate theoretical asymptotic

TABLE 1
x o is N1, W) =y*2, dF(y)=2(y)dy (v>0)
=0 (»r<0
7
a .30 .50 .75
Theory = Monte Carlo Theory = Monte Carlo Theory  Monte Carlo
20 87.7 94.1 28.1 30.9 11.6 14.7
100 128.3 133.8 42.7 4.6 18.1 20.7
1000 183.9 183.4 62.8 64.1 27.0 30.3
TABLE 2

x1 is N, 1), W) =y¥2, dFy)=g¢(y)dy (—oo <y < o)

@
a .30 .50 .75
| Theory = Monte Carlo Theory = Monte Carlo Theory = Monte Carlo
20 103.1 109.3 33.7 37.3 14.1 16.5
100  143.7 153.3 48.3 51.6 20.6 22.7

1000 199.3 207.5 68.3 72.0 29.5 30.9
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approximations from Theorem 1 or Theorem 2. In all cases Theoretical and
Monte Carlo results are in close agreement.

Tables 1 and 2 give results for a normal model and normally distributed x’s.

Let ¢(y) = (27)~ exp(—y*/2)-

It turns out that a slightly better agreement with the Monte Carlo results is
given by the asymptotic upper bound for E, T of Remark (a) in Section 7. For
example for the row a = 100 of Table 1 the asymptotic upper bounds are 136.8,
45.7, and 19.4 for 4 = .3, .5, and .75 respectively.

Table 3 gives results for a normal model and Bernoulli x’s. The measure F
is a N(0, 1) distribution as in Table 2. Similar results have been obtained for F
a half-normal distribution as in Table 1, but have not been included.

Table 4 deals with a Bernoulli model and Bernoulli x’s. The measure F is a
logistic distribution on #-space which arises from a uniform distribution on

p = exp(20)/(exp(26) + 1).

TABLE 3
Px=1}=p=1-Px= -1}, YO =42, dFy)=¢(y)dy
(#=2p-1)
]
a .30 .50
Theory  Monte Carlo Theory = Monte Carlo
20 104.1 110.4 34.7 37.6
100 144.7 146.5 49.3 53.3
1000 200.3 205.0 69.3 73.3
TABLE 4

Polxi=1}=p=1— Pop{x; = -1}, ¥(y) = logcoshy,
dF(y) = 2e2v dy/(e?v + 1)?
@ =121og(p/(1 —p)),p=2p—1)

7]
a .30 .50
Theory Monte Carlo Theory Monte Carlo
20 96.5 102.3 30.4 4.1
100 136.4 140.6 4.4 46.2
1000 191.2 189.9 63.5 66.0

5. Detecting a change in distribution. Let v be an arbitrary nonnegative
integer or + oo, and let w < 0 < 6. Let P¢) denote a probability under which
x,, - - - are independent, x,, - - -, x, with probability density function exp(wx —
¥(w)) and x,,,, x,,,, - -+ With probability density function exp(fx — ¥(6)). We
write P, for P{* and P, for P{,. We would like to find a stopping rule + which
takes on large values with high probability under P, and yet yields small values
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of E¢)(t — v|t > v) uniformly in (w, v) for a wide range of values of §. One
criterion, which differs only slightly from those considered in [1], [5], and [7],
is the following: given a > 0, subject to the condition that

(33) EXt=a forall 0 <0

choose ¢ insofar as possible to minimize

(34) sup,,, ECH(t — v|t > v)

over a wide range of values of . A special case of the class of stopping rules
suggested in [5], which in spirit go back to [7], is given by

(35) t = inf{n: max,,_, f(s, — &, n — k) = a},

where fis defined as in Section 2 relative to a measure F assigning unit meas-
ure to J N (0, co). By (2) and Theorem 2 of [5], (33) holds foralla > 1. Cor-
responding to our Theorem 1, we obtain

THEOREM 3. Let 0 > 0. Assume that F' exists in a neighborhood of 6 and is
positive and continuous at . Then as a — oo

sup,,, E5(t —v[t>v)
(36) = {2loga + log ((log a)/1(6)) — log (2= (F"(9))*/¥"(9))
— 1 + 2E,[miny, ., (05, — k¥(0))]}/21(6) + o(1) .
The symbol = has the same meaning as in Theorem 1. It may be shown (cf.
Lemma 11) that E,{min,g, ., [0s, — k¥(0)]} e[—1,0) and = —1.
The proof of Theorem 3 is similar to but somewhat more difficult than that
of Theorem 1. Several technical lemmas are deferred until the end of the proof.

PROOF OF THEOREM 3. 1t is easy to see from the definition (35) that
sup,,, ECu(t — vt > v) = EQ)r) .

Hence we may assume that x,, x,, - - - are independent with probability density
function exp(6x — W(6)), and write P,(E,) for P{)(EL)). :

The numbers §, < 4,, ¢, and 7 will play the same roles as in the proof of
Theorem 1. In additionlet 0 < e << 1,0< 8 < 1,

37 n, = (1 — ¢,) log a/I(6) , n, = (1 —¢)loga/l(9),
n, = (1 4 ¢) loga/I(0) .
and

A = {max,,gno

s—;_:u’<51}’ A2={n1<t<”2},

Ay = {maX,gg, |5, — kp| < 6,(n, — ny)},
4, = {maxn0<n§n2 maxn0§k<n f(sn — Sy N — k) < aﬂ} s

and 4 = A4, N A, N A; N A,. By Lemmas 2 and 3 and Lemmas 8-10 below, for
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sufficiently small ¢, there exists 2 > 0 such that
(38) Py(A°) = O(a™?) (@a— o).
Corresponding to (4) we have

loga < 0s, — t¥(0) — 1/21og¢
39) + log max, ., t* § ;00w EXP[(y — 0)s, — t(¥(y) — ¥(0))

— ysi + k¥ ()] dF(y) .

The first three terms on the right-hand side of (39) may be treated as in the
proof of Theorem 1. To estimate the final term we split the integral into three
parts according as0 < y < @ — 9, |y — 0| < d,,and y > 0 + 5, Now

MaXogs <o $y-aics, XPLY — s, — 1(E(Q) — W(O)) — ys, + KE(Q)] dF(y)
(40) = Yiwgo<s, XPLY — O)s, — (W (y) — U(0))]

X exp |:max0§,,<t y (k ?% — s,,)] dF(y) .

By the convexity of ¥, W(y)/y is increasing for positive y as is the nonnegative
quantity max,,, y[k(¥(y)/y) — s,]. Hence the right-hand side of (40) is major-
ized by
(41) exp[—mingg, ... {(§ + dy)s, — k¥ (0 + 9,)}

X Siy-o1<s, €XPL(y — O)s, — (¥ (y) — W(0)] dF(y) -
The integral in (41) is estimated as in the proof of Theorem 1, and we conclude
that on 4

maXog, o, t* § 1, 01<s, €XPL(Y — O)s. — t(¥(y) — W(0))
(42) — ysi + k¥(y)] dF(y)
= eXP[—minosm (60 + 3)s, — KT + 5} + e — )" ]

20°t(1 — 7)

X [22(F'(0)(1 + 7))’[o*(1 — )]t .
The same monotonicity argument applied to the integral over 0 < y < 6 — 4,
together with the inequality (24) shows that on 4, n 4,

MaXogkc: * Yocy<o-a, XPL(y — O)s, — (¥ (y) — ¥(6))
(43) — ys + KU()] dF(y)
< exp[—minyg, . (0s, — k¥(0))]nt exp(—3d,d,n,) .

We now turn to the integral over the range y > 6 + 4, On 4, n 4, N A4,

max, cice It §y5045, €Xp(y — O)s, — t(¥(y) — ¥(0))
— ¥ + k¥(y)]14F(y)
(44) < ntexp[—n{0(rz — 6,) — ¥(O)}]
X MaxX, cncn, MAX, oy f(S, — Sion — k)
< ntexp[—n,(I(0) — ,0)]a* — O as a — oo
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provided 4, and ¢ are so small that (1 — ¢) — 0,0/I(6) — 8 > 0. On 4, n 4,
forallm, < n<nand0 < k< n,

n
n—k

s, — kp
n, — n

(45) sn_sk_(n_k)#‘é
n—k

5y
n

§51(1_5+1>=53, say.

& — €
For given ¢, > ¢, we can take §, yet smaller if need be so that (20) holds with
d, in place of 4,. Then on 4, n 4, N 4,, by (45) and (20) with 4, in place of 9,
we obtain as in the proof of (23)

MaXogk<a, th Sy>o+62 exp[(y — 0)s. — t(¥(y) — ¥(0))
— ¥+ k¥ ()] dF(y)
(46) = MaXygh<q, {€XP[— 05, + k¥(0)]1 § 5510, eXp[(y — O)(s: — i)
— (0 = k)(¥(y) — YO)]I4F(y)}
< exp[—minygco (05, — k¥(0))]nst exp[—8,05(n, — my)] .
From (42), (43), (44), (46), and Lemma 11 it may be seen that if we separate
off the quantity

(5. — p1)20°(1 — 1) — mingg . [(0 + )5, — KW(0 + 6,)]

from the last term in (39), then the remaining quantity is asymptotically (as
a — oo) no larger than

1/2 log [27(F"(6)(1 + 7))*/o*(1 — )]

- and is majorized (on A) for all a by a random variable having finite expectation.
Hence we may integrate (39) over A, treat the first three terms as well as that
part of the fourth term which involves (s, — p)*/26%(1 — 7) as in the proof of
Theorem 1, and interchange the limit as @ — oo and the integral over 4 of the
remaining part of the fourth term to obtain

loga < I(0)E,t — ny/2 + § log [2x(F'(6)(1 + 7))*/e*(1 — p)]
(47) + [2(1 — 7)1 — o]
— E,[min,; ., (0 + 05)s5, — k¥(0 + 0,))] + o(1) .

Letting J, — 0, then ¢ and » — 0, from Lemma 11 we obtain (36) with the
inequality >. _

To prove the reverse inequality (ignoring the excess max,g, ., log f(s, — s,
t — k) — loga), observe that in place of (40), for each 0 < k < ¢ by the mean
value theorem there exists a number y,(|y, — 0| < d,) such that

Siv-o1<s, €XP[(y — O)s, — t(¥(y) — ¥(0)) — ysi + k¥ (y)]dF(y)
(48) = exp[—yi s + kK¥(yi)] Siy-01<s, €XPL(y — O)s.
— 1(¥(y) — ¥(O)]dF(y) -
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Taking the max over 0 =< k < tin (48), we may use monotonicity as before to
obtain an appropriate lower bound which allows the argument to proceed as
previously, completing the proof.

LEMMA 8. For some 2 > 0 P,{t < n)} + Py{t > n,} = O(a?*) as a— . (n,
and n, are defined in (37).)

Proor. The asserted bound for P,{tr < n,} follows at once from Lemma 2 and
the observation that by (35) P,{t < n,} < n, P,{T < n,}, where T is defined by (1).

Givene > 0,let § > 0 be so small that (1 + ¢)[(6 — d)(x — d) — ¥ (@ + 9)] >
1(6). Thenforn = n, = (1 + ¢)loga/I(6) on the event {max,, |n7's, — p| < d}
JGas 1) Z §iy-01<s €Xp[ys, — n¥(y)] dF(y)
= exp[n((6 — 3)(i — 8) — W(0 + O)IF(O — 6,0 + 9)
= exp[loga(1 + &)[(¢0 — 8)(x — ) — ¥(0 + O)IOIF(O — 3,0 + 5)
>a
for all sufficiently large a. Hence for large a

{t > nz} c {maxnznl Enﬁ - #] Z 5} ’

and Lemma 3 now completes the proof.

LEMMA 9. For arbitrary 6 > 0 there exists a A > 0 such that
(49) Py{max, ., |5 — pk| = on} = O(e~**) .

Proor. For ease of exposition assume that # = 0 (and hence x = 0). By
. Kolmogorov’s inequality for submartingales (cf. [2], page 24), for all £ > 0,
fel

Po{max,g,q, 5 = 0n} = P{max, g, exp(fs,) = exp(§on)}
< exp(—£om)Ey(exp (£s,)) = exp(—n(éd — V().

Now ¥(§) ~ £0"(0)/2 as § — 0 and hence for small positive § &6 — ¥(§) =
2> 0. This completes the proof.

LemMA 10. For arbitrary 8 > 0, for ¢, sufficiently small (and any ¢ < ¢,) there
exists a 2 > 0 such that
(50)  Py{max, c,g,,MaxX, oo f(S, — S n — k) Za’} =0(@*) as a—oo.

Proor. If we write T(a) to emphasize the dependence on a. of the stopping
rule defined by (1), then the probability on the left-hand side of (50) is major-
ized by

Ding<nsng Po{Max, <io, S(5p — 8o n — k) Z @} = Zno<n5n2 Py{T(@*) = n — ny},
from which (50) follows by Lemma 3.

LeMMA 11. Let 6 > 0 and y, = sup{y: yeJ, ¥(y) < y¥'(0)}. Then y, > 6
and Ej[mingg, ., (ys; — k¥ (y))] is a decreasing continuous function on (0, y,).
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Proor. That y, > ¢ follows at once from the (strict) convexity of ¥. For
0 < y < yg» by the strong law of large numbers

(51) Mming o (y5, — K¥(y))

is a.e. continuous and decreasing in y. (Its being decreasing in y follows from the
non-positivity of (51) so that for the k minimizing at y, s < k¥ (y)/y < k¥'(p)
for y = y (i.e., d(ys, — k¥(9))/dy < 0) whence ys, — k¥ (y) is decreasing in
on [y, y,) and the possibility of a different minimizing k for y > y only helps.)
Hence by the monotone convergence theorem it suffices to show that the random
variable (51) has finite expectation for arbitrary 0 < y <y Let 0 <& <.
Then for x > 0

Py{min,, .. (y5, — k¥(y)) < —x}
(52) = Pyfs, < —x/y + k¥(y)/y for some k}
= Polexp[(§ — O)se — k(¥(§) — W(9))] = exp[k[(§ — O)¥(y)/y
— (Y(E) — ¥(0))] + (6@ — &)x/y] for some k}.

Now since y < y, and (¥(¢§) — ¥(0))/(§ — 6) — ¥'(0) as § — 0, we may choose
& < A so that
E =¥y — (¥E) —¥@) =0.

Then by Lemma 6 the right-hand side of (52) is < exp(—(6 — &)x/y), and the
proof is completed by integration over x.

REMARK. If we set y = # and & = 0 in (52), we obtain
P,{Minyg . [65, — KT(B)] < —x} < exp(—=) *>0),
which after integration over x substantiates the remark following Theorem 3.

6. Detecting a change of distribution under a bounded error probability re-
striction. Under the same assumptions as in the preceding section, there may
arise situations in which the restriction (33) that we not stop “too soon” is not
strong enough. One may, for example, wish to consider only stopping rules ¢
for which for specified 0 < a < 1
(33) Pyfo <vi<a
for all w < 0, v < co. Under the restriction (53) it is impossible that
(54) Eg(o —v]o >v)

remain bounded as v — oo, but one might look for a stoppmg rule ¢ for which
(54) is asymptotically a minimum as v — co.

Given a (0 < @ < 1), let a,, a;, a,, - - - be nonnegative numbers such that
(55) Sap=a
and define

(56) o=inf{n: Y3 a,f(s, — s, n— k) + g, a =1},
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where f is defined as in Section 1. It is easy to see that the process within braces

in (56) is a supermartingale (martingale) under P{°)(P{%), and since Py,{o < v} =

P)fo < v} < PS){o < oo} foralle < 0andy < oo, (53) follows from Lemma 6.
For each v for which a, > 0, on {¢ > v} we have

57 c=inf{n:n>v, f(s, —s,n—v)=a .

Hence if we neglect the excess over the stopping boundary as in Theorems 1-3,
under the same conditions on F we obtain from (57) and Theorem 1 an asymp-
totic upper bound for E)(¢ — v|s > v) asv — oo along any sequence of values
for which a, > 0. If the sequence {a,} is sufficiently regular it is possible to
show that the dominant term of this bound is asymptotically correct, i.e.,

(58) ESY (o — v|a > v) ~ loga,I(0) (v — o) ;

but we have not been able to obtain a more detailed asymptotic expansion com-
parable to those of Theorems 1-3.
It is natural to conjecture that for any stopping rule ¢ satisfying (53)

(59) lim sup,_.. E¢Y)(e — v]|e > v)/logv = 1/I(0),

but we have not been able to prove this result. (By (58) equality is attained in
(59) for o of the form (56) with a, proportional to 1/y(logv)'+¢ for large v.)

7. Remarks. (a) As noted in Section 1, the right-hand side of (3) is strictly
speaking only an asymptotic lower bound for £, T. For particular distributions
one may use the method of proof of Theorem 1 together with arguments of
Wald [13] (which provide a bound for E,(x, — r)) to obtain asymptotic upper
~ bounds for E,(T). For example, in the case of normal variables (¥(6) = 6%/2)

if we add (1 + 2¢(0)/6®(6)) to the right-hand side of (3), we obtain an asymp-
totic upper bound. For variables assuming the values +1 and —1 with prob-
abilities p and ¢ = 1 — p respectively, for which 6 = 1/2log (p/q), ¥(6) =
—log 2(pq)}, and I(6) = plog p + qlogq + log?2, it suffices toadd (6 — W(6))/1(6)
to the right-hand side of (3).

(b) For applications in statistics it is important that £, T should be as small
as possible for a wide range of values of #. For a given 6 = 0, by using the
stopping rule (1) with F a measure assigning unit mass to the single point 6,
one may obtain E, T = log a/I(f) + O(1), which is smaller than (3) by a term
which is O(logloga) as a — co. However, this stopping rule requires prior
knowledge of ¢ and hence is impossible to implement in general. Thus it is an
interesting problem to describe precisely in what sense (3) is minimal as @ — oo
for stopping rules T satisfying (2). This question has been studied in [8], and
the results will be published soon.

A similar question of optimality arises in the analysis of the problem of Sec-
tion 5. G. Lorden [5] has obtained some results in this direction, although his
criterion is slightly different from ours.

(c) The inequality (33) is rather crude for stopping rules defined by (35)
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although it presumably does indicate the correct order of magnitude as @ — oo.
It would be interesting to obtain an asymptotic expression for E{7)(f) as a — oco.

(]
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