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BOUNDS ON THE VARIANCE OF THE U-STATISTIC
FOR SYMMETRIC DISTRIBUTIONS WITH
SHIFT ALTERNATIVES

By BrRUCE McK. JOHNSON

The University of Connecticut

Sharp bounds on the variance of the Wilcoxon-Mann-Whitney U-sta-
tistic are obtained for the case of symmetric distributions and shift alter-
natives.

1. Summary. The two-sample problem with symmetric distributions and shift
alternatives (H,: F, = F,, H,: F, = F,(- — 0), F, symmetric) is a model which
is often encountered in practice. In this note we obtain sharp bounds on the
variance of the Wilcoxon-Mann-Whitney statistic U, as a function of p =
§ (1 — Fy(x)) dF,(x). These bounds are more restrictive than those obtained by
Birnbaum and Klose (1957) for the more general model of F, and F, stochasti-
cally comparable.

2. Introduction and results. The variance of the statistic U depends on two
parameters, 7? and ¢ in addition to p and the two sample sizes m and n. How-
ever, in the case under consideration y? = ¢*. Letc = (=, (1 — F(x + 0)) dF*(x),
for § > 0, say. Then if (=, (1 — F(x + d)) dF(x) = p, ¢ = y* 4 p* in the usual
notation, and ¢*(U) = mn[(m + n — 2)(c — p*) + (1 — p)p]. The bounds on
o*(U) are obtained from corresponding bounds on c¢. Let S be the class of con-
tinuous symmetric distributions and S, the subclass of S with unimodal densities.

THEOREM. If (=, (1 — F(x — 9))dF(x) = p €(0, ) and F is restricted to S, or
to S, then
) psce<p—3(1—=1-2p).

The lower bound is achieved for F rectangular. The upper bound while not
achieved is sharp.

3. Proof of the theorem. To establish the validity of (1) it will suffice to
consider only distributions F with support a finite interval and which are con-
tinuous and strictly increasing thereon. We introduce classes of functions $*(S,*)
on [0, 1] whose members are

h(u) = F(F~Y(u) + 0) — u,
for F e S(S,), and ¢ > 0. Then
) p =% (l — F(x + §)) dF(x) = & — {3 h(w) du
¢ =" (1 — F(x + 0))dF¥(x) = % — 2 \{ h(u)u du
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and the original problem is equivalent to evaluating the infimum and the su-
premum of

©) {§a h(uyu du: b e S*(S,%), o h(u) du = q}

for fixed g € (0, ).
The following properties of S*(S,*) are required. If heS*andh =1 —u

(i) & is nonnegative and continuous, A(x) + u is nondecreasing, and A(u,) =
h(u) — (g — wy) for 0 <, < w, < 1.
(i) # = (1 — h(u))/2 has a unique solution u*. If & e S,*, h(u*) = max h and
k is monotone to either side of u*.
(iii)y For0su<w*, u* <1 —u—h(@)<1—h0)and (1 — u — h(u)) =
h(u).
(iv) #(0) >0and h(x) =1 —uforl —hO) < u < 1.

Of the above, (i) and (ii) are obvious, (iii) follows from the symmetry of F, and
(iv) follows from F having compact support and (iii).
Let u* be as in (ii). Then

(3 h(u) du = §¥" h(u) du + §327 h(u) du + §i_4) A(4) du

and with the change of variable, u = 1 — v — h(v), in the second (first) integral
it follows from (iii) that

@) {3 h(u) du = 2 {8572 h(u) du + b2
=2 V40 () du — b2 .
where u* = (1 — b)/2 and h(u*) = b. A similar calculation yields
) s h(uyu du = } §§h(K) du — § \3=07 Bo(u) du — B12
=3 $sh(u)du — % iy B2(u) du + B312.

We first consider the case of % € S,*, or more precisely the subclass of $* for
which max & = h(u*). The scheme is to bound the supremum and infimum of

6)  {§&B B u)dus he Sy¥, u* = (1 — b)[2,2 {$=V72 h(u) du + b2 = g}
and
(N {Su-nph(@) dus; he Sg*, u* = (1 — 8)[2, 2 ({14 b(u) du — b°[2 = g}

respectively for fixed 5 and then to make the resulting bounds on ¢, via (2) and
(5), extreme by varying b. As 0 < h(u) < b it is obvious from the integral con-
dition of (6) and from (4) that both sets are vacuous for 5 ¢ [1 — (1 — 29)%, (29)}).
For b in this interval define

h=0, 05u<uy
=b, u,y, fu< (1 -05)2,
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where u; = 4 — ¢/2b — b/4, and

h=04+02—u, 1-02=u=u
=1 +b6)2—u,, u,=u=xl—52+u,
=1—u, 1—-024+u,=ugl,
where u, = (3 — ¢q)/(1 — b). It is easily checked that the &, satisfy the integral

condition of the appropriate set and 4, < b. Neglecting the question of whether
the A, are restrictions of members of S,* we assert that

=07 () du = bg[12 — b4
is an upper bound for (6) and that

Vinya o) du = 3(q — b°2)’/(1 — b) + /3
is a lower bound for (7). An elementary variational argument, essentially
(s + 1)? = s 4 ¢ for s, t = 0, and the condition # < b establishes the first asser-
tion. The same variational argument coupled with A(u) = b — (v — (1 — b)/2),
u = (1 — b)/2, which follows from (i), yields the second.
Accordingly, for 1 — (1 — 29)} < b < (29)},

8 F—q+@— bR —b) + B6<c<d—q+bg2— 12
The derivative of each side is positive and taking & = (2¢)! on the right and
b =1 — (1 — 2q9)! on the left, with ¢ = 1 — p, gives (1).
It remains to show that (1) is sharp. For b = 1 — (1 — 2¢g)3,
h=1—(1—29% (1—29)2¢<ux(i—2g
=1—u -2t usgl

is the restriction of the S,* function corresponding to § = 1 and F uniform on
[—2(1 — (1 —2g)}),2(1 — (1 — 29)h)].

For 1 — (1 — 2¢9)t < b < (29), h, is not the restriction of a member of S,*.
However, for such b and « sufficiently small

h,=a, 0fugsuy —«a
=at+@—uy,+a)b—a)a, uy—a<u=suy
=b, nw=<uz((l-05))2,

where u, = af2 + (b(1 — b/2) — q)/2(b — «), is the restriction of the S;* func-
tion corresponding to 6 = 1 and F having density 4 on |x| < (1 — 24,)/2b, a on
(1 —2u)/2b < |x] £ (1 — 2u,)/2b + u,/a, and O elsewhere. For fixed b, b, — h,
a.e.on [0, (1 — b)/2] as « — 0. Thus the upper bound cannot be improved. If
there exists F e S, and § > O for which the bound is achieved, then there are
F,, of the type we are considering, converging weakly to F for which

§— 20 h,ude = (1 — Fy(x + 9)) dF,X(x) - }(1 — (29)})
= §{ (1 — F(x + 3)) dF¥(x)
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and {} 4, (¥) du — q. Let u,* be as in (ii) and 4,(u,*) = b,. As the derivative of
the right side of (8) is positive, 4, — (2¢9)* and 4, (x) — 0 for 0 < u < (1 — (29)%)/2.
Now, 9 fixed and #,(u) — O easily imply F,~'(#) — — oo for such u, a contradic-
tion. Actually, the assumption that F is continuous may be dropped.

A similar argument applies for 4 e §*. From the last assertion of (i) and the
same variational argument used above it is clear that

sup {§§'=°72 A*(u) du; h e S*, u* = (1 — b)/2, 2 §{~* h(u) du + b*2 = g}
< (972 h(u) du,
where
h(u) =0 0=u<s (1 +0)2— (b2 + g)t
=1+82—u, A+ —-0F2+gt<us(1—0b)2.
For b < (2¢)* and such that the integral condition is satisfied
=k —q+ M2+ - b)2).
A calculation shows the right side to be increasing in » and to have the same

value as the right side of (8) at 5 = (2¢)}. As in the preceding case the bound
is not achieved.

If a lower bound which minorizes that obtained in the S,* case is possible it
must result from % ¢ S* with max & > A(u*). On the other hand, for fixed & it
is evident from the variational argument that max / should be as small as is
possible. This with the growth condition of (i) imply we need only consider %
with restrictions to [0, (1 — 5)/2] of the form

hy=(1+ )2 —((1+0)/2)" — g — b2)t, 05 u=((1+0)/2)"—q—2)}
=(1+82—u, (1+02)—q-02)tsu=x(l—05)2

forb <1 — (1 —29)t Ifb>1— (1 — 2g)* there are £ e S* with maxh = b

for which the integral of interest minorizes that of any 4’ with A'(u*) = b <

max #'. For such A,

c=%—q+ (1482~ (1+9)/2)0—q—b2H1 + )2 — q — b72)}
+ 31+ B2 — (1 + B2 — g — B2)}) — 56

A straightforward calculation shows c is minimized at 6 = 1 — (1 — 2g)#, that

is, for i, =1 — (1 — 29)* on [0, (1 — 24)#/2]. Thus the lower bound for S,* is

valid for S*.
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