ON THE ASYMPTOTIC DISTRIBUTIONS OF SOME STATISTICS USED FOR TESTING $\Sigma_1 = \Sigma_2^{-1}$

BY KOCHERLAKOTA SUBRAHMANIAM

University of Manitoba

The asymptotic non-null distributions of four statistics, used for testing the hypothesis H_0 : $\Sigma_1 = \Sigma_2$, are developed. These expansions are obtained by the partial differential equations method of Muirhead (Ann. Math. Statist. 41 1002-1010). The procedure permits a simple extension of the results of Pillai and Nagarsenker (J. Multivariate Anal. 2 96-114).

1. Introduction. Consider two random matrices S_1 , S_2 which are independently distributed as Wishart (n_i, p, Σ_i) , i = 1, 2. Here the distribution of some statistics derived from the roots of the matrix $S_1S_2^{-1}$, $0 < f_1 \le f_2 \le \cdots \le f_p < \infty$, are examined. Let the roots of the matrix $\Sigma_1\Sigma_2^{-1}$ be $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_p < \infty$, and let $\Lambda = \text{diag } (\lambda_1, \dots, \lambda_p)$. Defining $\theta_j = f_j/(1 + f_j)$, $j = 1, 2, \dots, p$, Pillai and Nagarsenker [7] have obtained the hth moment of the statistic

$$(1.1) Y = \prod_{j=1}^{p} \theta_{j}^{a} (1 - \theta_{j})^{b}$$

as

(1.2)
$$K|\Lambda|^{-n_1/2}{}_2F_1[(n/2),(n_1/2)+ah;(n_1+n_2)/2+(a+b)h;I-\Lambda^{-1}],$$
 where

 $K = \{\Gamma_p(n/2)\Gamma_p(n_1/2+ah)\Gamma_p(n_2/2+bh)\}/\{\Gamma_p(n_2+(a+b)h)\Gamma_p(n_1/2)\Gamma_p(n_2/2)\}.$ In what follows,

$$n=n_1+n_2$$
, $M=I-\Lambda^{-1}$, $n_1=nk_1$, and $n_2=nk_2$.

By specializing to the case where (i) $a = n_1/2$, $b = n_2/2$, (ii) a = 1, b = 0, (iii) a = 0, b = 1, one can generate various statistics used for testing the hypothesis $H_0: \Sigma_1 = \Sigma_2$. These are considered in Sections 2, 3, and 4, respectively.

The asymptotic distributions are derived here by using the partial differential equations technique developed by Muirhead in [4] and exemplified to various situations in [5] and [6]. An earlier paper [3] by him details the equations satisfied by the hypergeometric function of matrix argument. These and related results have been extensively used in the present paper.

2. Asymptotic expansions for $-2 \ln W$, $-2\rho \ln W$. Anderson ([1], page 254) has discussed the null distribution of $-2\rho \ln W$, where

(2.1)
$$W = \left\{ \frac{n^n}{n_1^{n_1} n_2^{n_2}} \right\}^{p/2} \prod_{j=1}^{p} \theta_j^{n_1/2} (1 - \theta_j)^{n_2/2}$$

Received April 1974; revised December 1974.

Key words and phrases. Non-null distributions, asymptotic expansions, hypergeometric functions of matrix argument, partial differential equations.

¹ Research supported by NRC grant.

AMS 1970 subject classifications. Primary 62H10; Secondary 62E15.

with ρ being defined as

$$1 - \rho = \{n_1^{-1} + n_2^{-1} - 1\}(2p^2 + 3p - 1)/12(p + 1).$$

Pillai and Nagarsenker [7] look at the non-null distribution of the statistics $-2 \ln W$, $-2 \rho \ln W$ under two different conditions. We shall discuss the asymptotic distributions of these statistics in this section.

2.1. Asymptotic distribution of $-2 \ln W$. Referring to (1.2) in the special case when $a = n_1/2$, $b = n_2/2$ with h = -2it, we have the characteristic function (ch.f.) of $-2 \ln W$ as

(2.2)
$$\phi(t,\Lambda) = \phi_0(t)\phi_A(t,\Lambda)$$

where $\phi_0(t)$ is the ch.f. in the null case and $\phi_A(t, \Lambda)$ is the factor due to $\Lambda \neq I$. The expansion for $\phi_0(t)$ is given by

$$(2.3) \phi_0(t) = g^{-f/2} [1 + n^{-1}r(g^{-1} - 1) + n^{-2} \{s(1 - g^{-2}) + r^2(g^{-1} - 1)^2/2\}$$

$$+ n^{-8} \{u(g^{-3} - 1) + rs(g^{-1} - 1)(g^{-2} - 1) + r^3(g^{-1} - 1)^3/6\}],$$

where g = (1 - 2it), f = p(p + 1)/2, and

$$\begin{split} r &= p(2p^2 + 3p - 1)(k_1^{-1} + k_2^{-1} - 1)/24 \;, \\ s &= -f(p+2)(p-1)(k_1^{-2} + k_2^{-2} - 1)/24 \;, \\ u &= p\{(p+1)(2p+1)(3p^2 + 3p - 11) + 14\}(k_1^{-3} + k_2^{-3} - 1)/720) \;. \end{split}$$

This expansion can be obtained readily by applying equation (16) of Anderson ([1], page 205) to $\phi_0(t)$.

The remainder of this section is devoted to the expansion of $\phi_A(t,\Lambda)$ which is given by

(2.4)
$$\phi_{A}(t,\Lambda) = |\Lambda|^{-n_{1}/2} {}_{2}F_{1}[n/2, n_{1}g/2; ng/2; M].$$

Writing $\Lambda = \{I - 2P/n\}^{-1}$ and M = 2P/n, with P being a fixed matrix, it is seen that $\lim_{n\to\infty} \phi_A(t,\Lambda) = 1$ and hence

$$\phi_A(t, \Lambda) = \exp\{H(t, \Lambda)\} \approx 1 + Q_1/n + n^{-2}\{Q_2 + Q_1^2/2\} + n^{-3}\{Q_3 + Q_1Q_2 + Q_1^3/6\} + O(n^{-4}).$$

If $\mu_1, \mu_2, \dots, \mu_p$ are the roots of M, then the function $|I-M|^{-nk_1/2}\exp\{H(t,M)\}$ satisfies the system of partial differential equations (1.3) of Muirhead [3]. It is necessary to transform this system into the ones in terms of ρ_1, \dots, ρ_p , the roots of P. Note that $\rho_j = (n/2)\mu_j$. Without loss of generality, the first equation satisfied by H is considered:

$$\rho_{1}(1-2\rho_{1}/n)\left[\frac{\partial^{2}H}{\partial\rho_{1}^{2}}+\left(\frac{\partial H}{\partial\rho_{1}}\right)^{2}\right]+\frac{1}{2}\frac{\partial H}{\partial\rho_{1}}\left[4\rho_{1}k_{1}+\{ng-(p-1)\}\right]$$

$$(2.5) \qquad \qquad -2\rho_{1}\{1+k_{1}g-(p-3)/n\}+\sum_{j\neq 1}\rho_{1}(1-2\rho_{1}/n)/(\rho_{1}-\rho_{j})\right]$$

$$-\frac{1}{2}\sum_{j\neq 1}\frac{\rho_{j}(1-2\rho_{j}/n)}{(\rho_{1}-\rho_{j})}\left(\frac{\partial H}{\partial\rho_{j}}\right)$$

$$=2it(k_{1}-k_{1}^{2})\rho_{1}/(1-2\rho_{1}/n).$$

Substituting $H(t, M) = \sum_{k=1}^{\infty} Q_k(t, P)/n^k$ and equating like powers of n^{-1} in (2.5), the differential equations for Q_1, Q_2, Q_3 are

$$\begin{split} g \, \frac{\partial Q_1}{\partial \rho_1} &= \, 4 i t (k_1 \, - \, k_1^{\, 2}) \rho_1 \, , \\ g \, \frac{\partial Q_2}{\partial \rho_1} &+ \, 2 \left[\, \rho_1 \, \frac{\partial^2 Q_1}{\partial \rho_1^{\, 2}} \, + \, \frac{\partial Q_1}{\partial \rho_1} \left\{ 2 \rho_1 k_1 - (p-1)/2 - \rho_1 - \rho_1 k_1 g \, - \, \sum_{j \neq 1} \rho_1/2 (\rho_1 - \rho_j) \right\} \right. \\ & \left. - \, \sum_{j \neq 1} \left\{ \rho_1/2 (\rho_1 \, - \, \rho_j) \right\} \frac{\partial Q_1}{\partial \rho_i} \, \right] = \, 8 i t (k_1 \, - \, k_1^{\, 2}) \rho_1^{\, 2} \end{split}$$

and

$$\begin{split} g \, \frac{\partial \mathcal{Q}_{3}}{\partial \rho_{1}} + 2 \left[\rho_{1} \left\{ \frac{\partial^{2} \mathcal{Q}_{2}}{\partial \rho_{1}^{2}} + \left(\frac{\partial \mathcal{Q}_{1}}{\partial \rho_{1}} \right)^{2} \right\} + \frac{\partial \mathcal{Q}_{2}}{\partial \rho_{1}} \left\{ 2\rho_{1} k_{1} - (p-1)/2 - \rho_{1} - k_{1} \rho_{1} g \right. \\ & + \sum_{j \neq 1} \rho_{1}/2(\rho_{1} - \rho_{j}) \right\} - \sum_{j \neq 1} \left\{ \rho_{j}/2(\rho_{1} - \rho_{j}) \right\} \frac{\partial \mathcal{Q}_{2}}{\partial \rho_{j}} \right] \\ & + 2 \left[-2\rho_{1}^{2} \, \frac{\partial^{2} \mathcal{Q}_{1}}{\partial \rho_{1}^{2}} + \frac{\partial \mathcal{Q}_{1}}{\partial \rho_{1}} \left\{ (p-3)\rho_{1} - \sum_{j \neq 1} \rho_{1}^{2}/(\rho_{1} - \rho_{j}) \right\} \right. \\ & + \left. \sum_{j \neq 1} \left\{ \rho_{j}/(\rho_{1} - \rho_{j}) \right\} \frac{\partial \mathcal{Q}_{1}}{\partial \rho_{j}} \right] = 16 i t (k_{1} - k_{1}^{2})\rho_{1}^{3} \, . \end{split}$$

Imposing the boundary conditions $Q_1(0, P) = Q_2(0, P) = Q_3(0, P) = 0$ and the symmetry in ρ_1, \dots, ρ_n of the functions Q_1, Q_2, Q_3 , we have

$$\begin{split} Q_1 &= (k_1 - k_1^2)(g^{-1} - 1)\sigma_2 \,, \\ Q_2 &= 4(k_1 - k_1^2)[-\sigma_3(1 + k_1)/3 + g^{-1}\{k_1\sigma_3 + (\sigma_1^2 + \sigma_2)/4\} \\ &- g^{-2}\{\sigma_3(2k_1 - 1)/3 + (\sigma_1^2 + \sigma_2)/4\}] \,, \\ Q_3 &= -2(k_1 - k_1^2)[(1 + k_1 + k_1^2)\sigma_4 - 2g^{-1}\{3k_1^2\sigma_4 + 4k_1\sigma_3 + k_1\sigma_1\sigma_2\} \\ &- g^{-2}\{(6k_1 - 10k_1^2)\sigma_4 + (2 - 6k_1)\sigma_3 - 3\sigma_2/2 - (p - 2)\sigma_1^2/2 \\ &- (6k_1 - 2)\sigma_1\sigma_2\} - g^{-3}\{(5k_1 - 5k_1^2 - 1)\sigma_4 - 2(2k_1 - 1)\sigma_3 \\ &- 3\sigma_2/2 - (p - 2)\sigma_1^2/2 - 2(2k_1 - 1)\sigma_1\sigma_2\}] \,. \end{split}$$

Note here that $\int (\sigma_2 + 2\rho_i \sigma_1) d\rho_i = \sigma_1 \sigma_2$ (symmetric in ρ_1, \dots, ρ_p). The quantity $\sigma_i = \rho_1^j + \rho_2^j + \dots + \rho_p^j$.

Substituting for $\phi_0(t)$ and $\phi_A(t, \Lambda)$ in $\phi(t)$, to $O(n^{-4})$,

(2.6)
$$\phi(t) = g^{-f/2} [1 + n^{-1}(\alpha_0 + g^{-1}\alpha_1) + n^{-2}(\alpha_2 + \alpha_3 g^{-1} + \alpha_4 g^{-2}) + n^{-3} \sum_{j=0}^3 \alpha_{5+j} g^{-j}] + O(n^{-4}),$$

with α 's being defined as

$$\begin{aligned} k &= k_1 (1 - k_1) \;, \qquad \alpha_0 = -(r + k\sigma_2) \;, \qquad \alpha_1 = -\alpha_0 \;, \\ \alpha_2 &= -4k (1 + k_1)\sigma_3/3 + (r + k\sigma_2)^2/2 - s \;, \\ \alpha_3 &= k (4k_1\sigma_3 + \sigma_1^2 + \sigma_2) - (r + k\sigma_2)^2 \;, \\ \alpha_4 &= -k[4(2k_1 - 1)\sigma_3/3 + \sigma_1^2 + \sigma_2] + (r + k\sigma_2)^2/2 + s \;, \end{aligned}$$

$$\alpha_{5} = -u - 2k(1 + k_{1} + k_{1}^{2})\sigma_{4}$$

$$+ (r + k\sigma_{2})[4(1 + k_{1})k\sigma_{3}/3 + s - (r + k\sigma_{2})^{2}/6],$$

$$\alpha_{6} = 4kk_{1}[3k_{1}\sigma_{4} + \sigma_{3} + \sigma_{1}\sigma_{2}]$$

$$+ (r + k\sigma_{2})[(r + k\sigma_{2})^{2}/2 - s - 4k(1 + 4k_{1})\sigma_{3}/3 - (\sigma_{1}^{2} + \sigma_{2})k],$$

$$\alpha_{7} = 4k[(3k_{1} - 5k_{1}^{2})\sigma_{4} + \sigma_{3}(1 - 3k_{1}) - 3\sigma_{2}/4 - (p - 2)\sigma_{1}^{2}/4 - (3k_{1} - 1)\sigma_{1}\sigma_{2}]$$

$$- (r + k\sigma_{2})[s + (r + k\sigma_{2})^{2}/2 - 4k\{\sigma_{3}(5k_{1} - 1)/3 + (\sigma_{1}^{2} + \sigma_{2})/2\}],$$

and

$$\alpha_8 = u - 4k[(5k_1 - 5k_1^2 - 1)\sigma_4/2 - (2k_1 - 1)\sigma_3 - 3\sigma_2/4 - (p - 2)\sigma_1^2/4 - (2k_1 - 1)\sigma_1\sigma_2] + (r + k\sigma_2)[s + (r + k\sigma_2)^2/6 - k\{4(2k_1 - 1)\sigma_3/3 + (\sigma_1^2 + \sigma_2)\}].$$

Inverting (2.6), the distribution function of $-2 \ln W$ is

$$P\{-2 \ln W \le z\} = D_f(z) + n^{-1}\{\alpha_0 D_f(z) + \alpha_1 D_{f+2}(z)\}$$

$$+ n^{-2}\{\alpha_2 D_f(z) + \alpha_3 D_{f+2}(z) + \alpha_4 D_{f+4}(z)\}$$

$$+ n^{-3} \sum_{i=0}^{3} \alpha_{5+i} D_{f+2i}(z) + O(n^{-4})$$

where $D_{\nu}(z) = P\{\chi_{\nu}^2 \leq z\}$.

Pillai and Nagarsenker [7] have obtained this distribution function to the order $O(n^{-3})$. Their results in equation (5.35) agree with (2.7) up to the term n^{-2} .

2.2. Distribution of $-2\rho \ln W$. As before, we can obtain the ch.f. of $-2\rho \ln W$ as

(2.8)
$$\phi(t) = \phi_0(t)\phi_A(t, \Lambda)$$

where $\phi_0(t)$ is the ch.f. in the null case and $\phi_A(t, \Lambda)$ is the term due to non-null nature of the distribution $(\Lambda \neq I)$. The $\phi_0(t)$ factor can be expanded as in Anderson ([1], page 255), so that the term involving n^{-1} is not present in the expansion. This is achieved by choosing ρ appropriately.

The expansion of the statistic $-2\rho \ln W$ is given in terms of m and P where

$$P = mM/2$$
, $m = \rho n - 2\alpha$

and

$$\alpha = (k_1^{-1} + k_2^{-1} - 1)(2p^2 + 3p - 1)/12(p + 1).$$

It can be shown that to order $O(m^{-4})$,

$$(2.9) \phi_0(t) = g^{-f/2} [1 + m^{-2} w_2(g^{-2} - 1) + m^{-3} w_3(g^{-3} - 1) + O(m^{-4})].$$

In (2.9), the coefficients w_2 , w_3 are obtained from equation (11) of Anderson ([1], page 205). Writing $\tau_j = (k_1^{-j} + k_2^{-j} - 1)$,

$$\begin{split} w_2 &= f[(p-1)(p+2)\tau_2 - \tau_1^2(2p^2+3p-1)^2/6(p+1)^2]/24 \,, \\ w_3 &= p[(2p^2+3p-1)^3\tau_1^3/108(p+1)^2 - (p-1)(p+2)(2p^2+3p-1)\tau_1\tau_2/6 \\ &+ (p-1)(6p^3+21p^2+11p-19)\tau_3/30]/24 - p/45 \,. \end{split}$$

The non-null component is

$$\phi_{A}(t,\Lambda) = |\Lambda|^{-(m+2\alpha)k_{1}/2} {}_{2}F_{1}[m/2 + \alpha, mgk_{1} + \alpha k_{1}; mg/2 + \alpha; M].$$

As before, if M=2P/m, P being fixed, $\lim_{m\to\infty}\phi_A(t,2P/m)=1$. Hence $\phi_A(t,\Lambda)$ can be similarly expanded. The partial differential equations for H(t,M), in terms of $\rho_1, \rho_2, \dots, \rho_p$, where $\rho_i=m\mu_i/2$, can be written quite easily. An examination of these equations shows that the equations for Q_1, Q_2, Q_3 in this case can be obtained from those in Section 2.1,

$$\begin{split} Q_{\scriptscriptstyle 1} &= Q_{\scriptscriptstyle 1}{}^{\scriptscriptstyle 0} \,, \qquad Q_{\scriptscriptstyle 2} &= Q_{\scriptscriptstyle 2}{}^{\scriptscriptstyle 0} - 2\alpha k(g^{\scriptscriptstyle -2} - g^{\scriptscriptstyle -1})\sigma_{\scriptscriptstyle 2} + 2\alpha k(g^{\scriptscriptstyle -1} - 1)\sigma_{\scriptscriptstyle 2} \,, \\ Q_{\scriptscriptstyle 3} &= Q_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 0} - 2\alpha g^{\scriptscriptstyle -1}[Q_{\scriptscriptstyle 2} - 2(1-k_{\scriptscriptstyle 1})k(g^{\scriptscriptstyle -1} - 1)\sigma_{\scriptscriptstyle 3}/3] + 4\alpha k(g^{\scriptscriptstyle -1} - 1)\sigma_{\scriptscriptstyle 3}/3 \,. \end{split}$$

Here Q_1^0 , Q_2^0 , Q_3^0 are the solutions obtained in the previous section.

Substituting for the various quantities and solving the equations, the distribution function is obtained as

$$P\{-2\rho \ln W \leq z\} = D_f(z) + m^{-1}[\beta_0 D_f(z) + \beta_1 D_{f+2}(z)]$$

$$+ m^{-2}[\beta_2 D_f(z) + \beta_3 D_{f+2}(z) + \beta_4 D_{f+4}(z)]$$

$$+ m^{-3}[\sum_{j=0}^3 \beta_{5+j} D_{f+2j}(z)] + O(m^{-4}).$$

The coefficients in (2.10) are given by, $(k = k_1(1 - k_1))$,

$$\begin{split} \beta_0 &= -k\sigma_2\,, \qquad \beta_1 = k\sigma_2\,, \qquad \beta_2 = k^2\sigma_2^2/2 - 4k(1+k_1)\sigma_3/3 - 2\alpha k\sigma_2 - w_2\,, \\ \beta_3 &= -k^2\sigma_2^2 + 4k\{k_1\sigma_3 + \sigma_1^2/4 + (1+4\alpha)\sigma_2/4\}\,, \\ \beta_4 &= k^2\sigma_2^2/2 - 4k\{(2k_1-1)\sigma_3/3 + \sigma_1^2/4 + (1+2\alpha)\sigma_2/4\} + w_2\,, \\ \beta_5 &= -k[2(1+k_1+k_1^2)\sigma_4 + 8\alpha\sigma_3/3 - 4k(1+k_1)\sigma_2\sigma_3/3 \\ &\quad - 2k\alpha\sigma_2^2 + k^2\sigma_3^2/6 - w_2\sigma_2] - w_3\,, \\ \beta_6 &= 4k[3k_1^2\sigma_4 + k_1(1+4\alpha/3)\sigma_3 + \alpha^2\sigma_2 - (4k_1^2+1)k\sigma_2\sigma_3/3 - k\sigma_1^2\sigma_2/4 \\ &\quad - k(1+6\alpha)\sigma_2^2/4 + k^2\sigma_2^3/8 - w_2\sigma_2/4 + k\sigma_1\sigma_2 + (2\alpha/3)\sigma_3]\,, \\ \beta_7 &= 4k[(3k_1-5k_1^2)\sigma_4 + (1-3k_1+2\alpha/3-8k_1\alpha/3)\sigma_3 - (p-2+2\alpha)\sigma_1^2/4 \\ &\quad - (3+2\alpha+8\alpha^2)\sigma_2/4 - (3k_1-1)\sigma_1\sigma_2 \\ &\quad + k\sigma_2\{(5k_1-1)\sigma_3/3 + (3\alpha+1)\sigma_2/2 + \sigma_1^2/2 - k\sigma_2^2/8\} - w_2\sigma_2/4]\,, \\ \beta_8 &= 4k[(5k_1-5k_1^2-1)\sigma_4/2 - (2k_1-1)(1-2\alpha/3)\sigma_3 - (p-2-2\alpha)\sigma_1^2/4 \\ &\quad - (3-2\alpha-4\alpha^2)\sigma_2/4 - (2k_1-1)\sigma_1\sigma_2 \\ &\quad - k\sigma_3\{(2k_1-1)\sigma_3/3 + \sigma_1^2/4 + (1+2\alpha)\sigma_3/4 + k\sigma_2^2/24\} + w_2\sigma_2/4] + w_3\,. \end{split}$$

The equation (2.10) agrees with equation (5.51) of [7] up to term m^{-2} .

3. Asymptotic distribution of $Y = \prod_{j=1}^{p} \theta_j$. The ch.f. of $L_1 = n^{\frac{1}{2}} \ln \{Y/k_1^p\}$ has been shown by Pillai and Nagarsenker [7] to be

$$\phi(t) = \phi_0(t)\phi_A(t,\Lambda),$$

where

$$\phi_0(t) = k_1^{-it(np)\frac{1}{2}} \{ \Gamma_p[n/2] \Gamma_p[n_1/2 + itn^{\frac{1}{2}}] \} \{ \Gamma_p[n_1/2] \Gamma_p[n/2 + itn^{\frac{1}{2}}] \} .$$

The asymptotic expansion, to order $O(n^{-2})$, for $\phi_0(t)$ is

$$\exp(-pT_{1}t^{2})[1 - n^{-\frac{1}{2}}\{(it)T_{1}f + 2pT_{2}(it)^{3}/3\} + n^{-1}\{(it)^{2}(T_{2}f + f^{2}T_{1}^{2}/2) + (it)^{4}(2p/3)(T_{3} + T_{1}T_{2}f) + (it)^{6}(2p^{2}T_{2}^{2}/9)\}$$

$$(3.2) - n^{-\frac{3}{2}}\{(it)(2p^{3} - 9p^{2} + 11p)T_{2}/12 + (it)^{3}f(4T_{3}/3 + fT_{1}T_{2} + fT_{1}^{2}/6) + (it)^{5}p(4T_{4}/5 + 2fT_{2}^{2}/3 + 2fT_{1}T_{3}/3 + f^{2}T_{1}^{2}T_{2}/3) + (it)^{7}(4T_{2}p^{2}/9)(T_{3} + T_{1}T_{2}/2) + (it)^{9}(4p^{3}T_{2}^{3}/81)\}] + O(n^{-2}),$$

with $T_i = k_1^{-i} - 1$, f = p(p+1)/2. The expansion (3.2) is obtained by using the usual Barnes' approximation to logarithmic gamma function.

The second term of (3.1) is the non-null component given by

$$\phi_A(t,\Lambda) = |\Lambda|^{-n_1/2} {}_2F_1[n/2, n_1/2 + itn^{\frac{1}{2}}; n/2 + itn^{\frac{1}{2}}; M],$$

where $M = I - \Lambda^{-1} = 2P/n$, P being a fixed matrix.

Writing $\phi_A(t,\Lambda)=\exp\{H(T,\Lambda)\}$ and substituting in the equations satisfied by the hypergeometric function of matrix argument, we have the partial differential equations for H, in terms of the roots ρ_1, \dots, ρ_p of P. Expanding H(t, 2P/n) in terms of series $\sum_{k=1}^{\infty} Q_k(t,P)/n^{k/2}$, the differential equations for Q_1, Q_2, Q_3 are obtained. Following the procedure as before, to $O(n^{-2})$,

$$\phi(t) = \exp(-pT_1t^2)[1 - n^{-\frac{1}{2}}\{itA_1 + (it)^3A_2\}$$

$$+ n^{-1}\{(it)^2A_3 + (it)^4A_4 + (it)^6A_5\} - n^{-\frac{3}{2}}\sum_{j=1}^5 (it)^{2j-1}A_{j+5}]$$

$$+ O(n^{-2}),$$

where

$$\begin{split} A_1 &= T_1 f + 2(k_1 - 1)\sigma_1 \,, \qquad A_2 = 2pT_2/3 \,\,, \\ A_3 &= fT_2 + f^2T_1^2/2 + 2(k_1 - 1)\sigma_1\{2 + (k_1 - 1)\sigma_1\} + 2f(k_1 - 1)\sigma_1T_1 \,\,, \\ A_4 &= (2p/3)[T_3 + fT_1T_2 + 2(k_1 - 1)\sigma_1T_2] \,\,, \\ A_5 &= 2p^2T_2^2/9 \,\,, \qquad A_6 = p(2p^2 + 3p - 1)T_2/12 - 2(k_1 - 1)^2\sigma_2 \,\,, \\ A_7 &= f[4T_3/3 + fT_1T_2 + fT_1^3/6] + 8(k_1 - 1)\sigma_1[1 + (k_1 - 1)\sigma_1 + (k_1 - 1)^2\sigma_1^2/6] \\ &\qquad + 2f(k_1 - 1)\sigma_1[T_2 + fT_1^2/2 + 2T_1 + (k_1 - 1)\sigma_1T_1] \,\,, \\ A_8 &= 2p[2T_4/5 + fT_2^2/3 + fT_1T_3/3 + f^2T_1^2T_2/6] \\ &\qquad + (4p/3)(k_1 - 1)\sigma_1[T_3 + fT_1T_2 + 2T_2 + (k_1 - 1)\sigma_1T_2] \,\,, \\ A_9 &= (4p^2/9)[T_2T_3 + fT_1T_2^2/2] + 4p^2(k_1 - 1)\sigma_1T_2^2/9 \,\,, \qquad A_{10} &= 4p^3T_2^3/81 \,\,. \end{split}$$

Writing $x = L_1/(2pT_1)^{\frac{1}{2}}$, its density function is given by:

(3.4)
$$f(x) = \psi(x) + n^{-\frac{1}{2}} [qA_1 \psi'(x) + q^3 A_2 \psi^{(3)}(x)] + n^{-1} [q^2 A_3 \psi^{(2)}(x) + q^4 A_4 \psi^{(4)}(x) + q^6 A_5 \psi^{(6)}(x)] + n^{-\frac{3}{2}} [\sum_{j=1}^5 q^{2j-1} A_{j+5} \psi^{(2j-1)}(x)] + O(n^{-2}),$$

where

$$q = (2pT_1)^{-\frac{1}{2}}, \qquad \psi^{(r)}(x) = (d/dx)^r \psi(x)$$

and $\phi(x)$ is the standard normal pdf. The distribution function of (3.3) agrees with (6.15) of Pillai and Nagarsenker [7] up to the term n^{-1} .

4. Asymptotic distribution of $Y = \prod_{j=1}^{p} (1 - \theta_j)$. The ch.f. for the statistic $L_2 = n^{\frac{1}{2}} \ln \{Y/k_2^p\}$ has been given by Pillai and Nagarsenker [7] as

$$\phi(t) = \phi_0(t)\phi_A(t,\Lambda),$$

where

$$\phi_0(t) = k_2^{-it(np)\frac{1}{2}} \{ \Gamma_v[n/2] \Gamma_v[n_2/2 + itn^{\frac{1}{2}}] \} / \{ \Gamma_v[n/2 + itn^{\frac{1}{2}}] \Gamma_v[n_2/2] \} ,$$

and

$$\phi_A(t, \Lambda) = |\Lambda|^{-nk_1/2} {}_{2}F_{1}[n/2, nk_1/2; n/2 + itn^{\frac{1}{2}}; M],$$

with $M = I - \Lambda^{-1} = 2P/n$. As before $\phi_0(t)$ can be expanded to $O(n^{-2})$ as

$$\phi_0(t) = \exp\left(-pR_1t^2\right)\left[1 - n^{-\frac{1}{2}}\left\{(it)fR_1 + (it)^32pR_2/3\right\} + n^{-1}\left\{(it)^2f(R_2 + fR_1^2/2) + (it)^4(2p/3)(R_3 + fR_1R_2) + (it)^6(2p^2R_2^2/9)\right\} - n^{-\frac{3}{2}}\left\{(it)p(2p^2 - 9p + 11)R_2/12 + (it)^3f(4R_3/3 + fR_1R_2 + fR_1^2/6) + (it)^5p(4R_4/5 + 2fR_2^2/3 + 2fR_1R_3/3 + f^2R_1^2R_2/3) + (it)^7(2p^2R_2/9)(2R_3 + fR_1R_2) + (it)^9(4p^3R_2^3/81)\right\} + O(n^{-2}),$$

where $R_i = (k_2^{-i} - 1)$.

Setting up the partial differential equations for the *H*-function and expanding the latter in powers of $n^{-\frac{1}{2}}$ as $\sum_k Q_k(t, P)/n^{k/2}$, we have

$$\phi(t) = \exp(-pR_1t^2)[1 - n^{-\frac{1}{2}}\{(it)B_1 + (it)^3B_2\}$$

$$+ n^{-1}\{(it)^2B_3 + (it)^4B_4 + (it)^6B_5\} - n^{-\frac{3}{2}}\{\sum_{j=1}^5 (it)^{2j-1}B_{5+j}\}]$$

$$+ O(n^{-2}),$$

where

$$\begin{split} B_1 &= 2k_1\sigma_1 + fR_1 \;, \qquad B_2 &= 2pR_2/3 \;, \\ B_3 &= 2k_1\sigma_1(2+k_1\sigma_1) + f[R_2+fR_1^2/2+2k_1\sigma_1R_1] \;, \\ B_4 &= (2p/3)[R_3+fR_1R_2+2k_1\sigma_1R_2] \;, \qquad B_5 = 2p^2R_2^2/9 \;, \\ B_6 &= p[2p^2+3p-1]R_2/12-2k_1(k_1-2)\sigma_2 \;, \\ B_7 &= 8k_1\sigma_1(1+k_1\sigma_1+k_1^2\sigma_1^2/6) + f[4R_3/3+fR_1R_2+f^2R_1^3/6] \\ &\quad + 2fk_1\sigma_1(R_2+fR_1^2/2) + 4fR_1(k_1\sigma_1/2+1)k_1\sigma_1 \;, \\ B_8 &= p[4R_4/5+2fR_2^2/3+2fR_1R_3/3+f^2R_1^2R_2/3] \\ &\quad + 2k_1\sigma_1[2p/3][R_3+fR_1R_2] + 2k_1\sigma_1(2+k_1\sigma_1)(2pR_2/3) \;, \\ B_9 &= (4p^2/9)[R_2R_3+fR_1R_2^2+k_1\sigma_1R_2^2] \;, \qquad B_{10} &= 4p^3R_2^3/81 \;. \end{split}$$

The pdf of $x = L_2/(2pR_1)^{\frac{1}{2}}$ is given by

$$f(x) = \psi(x) + n^{-\frac{1}{2}} [q_1 B_1 \psi'(x) + q_1^{3} B_2 \psi^{(3)}(x)]$$

$$+ n^{-1} [q_1^{2} B_3 \psi^{(2)}(x) + q_1^{4} B_4 \psi^{(4)}(x) + q_1^{6} B_5 \psi^{(6)}(x)]$$

$$+ n^{-\frac{3}{2}} [\sum_{j=1}^{5} q_1^{(2j-1)} B_{j+5} \psi^{(2j-1)}(x)] + O(n^{-2}) ,$$

where

$$\psi^{(r)} = (d/dx)^r \psi(x)$$
, $q_1 = (2pR_1)^{-\frac{1}{2}}$,

and $\psi(x)$ is the standard normal pdf. This pdf agrees with (7.11) of Pillai and Nagarsenker to the term n^{-1} .

TABLE 1
Power of the tests for $p=2,\, \alpha=.05$

•			1					n = 48					u = 60		
			k_1					k ₁					k_1		
- 1	w 4	oko	 01	- ₩	-44	₩ 4	сию	₽ 62	-400	H4	ল ্প ক	cojeo	+ ∞	-4m	-44
							-2 ln W								
	.050	.050	.050	.050	.050	.050	.050	·	.050	.050	.050	.050	.050	050	050
	.083	.084	.087	060	680.	.143	.156	.174	.178	.170	.177	.198	.223	.227	.214
	.153	.148	.150	.177	.187	.367	.402	.332	.496	.486	.495	.555	.638	089	.653
	.078	.081	.081	9/0	.072	.123	.135	.146	.139	.128	.148	.166	.183	.174	. 158
	.148	.147	.143	.147	.146	.332	.368	.410	.417	.392	.441	.500	.567	.571	.530
							$-2\rho \ln W$	A							
-	.050	.050	.050	.050	.050	.050	.050	•	.050	.050	.050	.050	.050	.050	050
-	.097	.105	.129	.138	.132	.123	.169	.266	.293	.262	. 149	.223	.375	408	356
	.118	.118	.350	.435	.409	.254	.590	.906	.8672	.874	.447	.6012	666	.8395	806
-	.088	060:	660.	.102	860.	.110	.137	.190	.197	.176	.132	.178	264	.270	234
	.107	.148	.270	.330	.309	.257	.545	.941³	.8154	.8413	.397	.818	.9613	.9883	.803
							L 1								
•	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050	050
	.131	.146	.164	.166	.159	.188	.213	.240	.237	.223	.214	244	.276	.270	.252
,	204	.234	.271	.273	.260	.322	.375	.432	.422	.389	.379	4. 44.	.512	.494	.451
	.172	.194	.219	.216	.203	.265	.305	.345	.332	.304	.310	.358	.406	.387	.352
	. 292	.339	.390	.382	.354	.496	.585	.673	.636	.570	009	.710	.818	767	.677
							L_2								
•	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050
•	.039	.038	.037	.035	.034	.042	<u>\$</u>	740.	.043	.039	.046	.051	.054	.049	8
•	.058	090.	.062	.055	.049	.085	.097	.105	.092	.078	.103	.119	.130	.113	.095
•	<u>8</u>	.051	.051	940.	.042	.067	.075	.081	.072	.062	620.	.091	660	.087	0.74
•	.093	.102	.108	.093	620.	.160	.186	.203	.176	.146	.198	.232	.256	.221	. 183

TABLE 2 Power of the tests for $p=3,\,lpha=.05$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$n = 24$ $\lambda_3 \qquad \qquad k_1$	K	İ					$n = 48$ k_1					$n=60$ k_1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\$24 \$26 \$26 \$26 \$26 \$26 \$26 \$26 \$26 \$26 \$26		ko	1	-14	তাৰ	en/ko	→ k0	-ko	-44	W 4	olio	-401	ko	1
.050 .050 .050 .050 .050 .050 .050 .050						-2 ln V	A								
.111 .108 .105 .115 .119 .134 .133 .135 .146 .262 .230 .207 .273 .311 .349 .326 .318 .397 .100 .102 .102 .097 .093 .116 .122 .124 .120 .245 .231 .213 .236 .247 .318 .316 .314 .342 .326 .240 V .050 .050 .050 .050 .050 .050 .050 .050	1.0 .050 .050 .050	.050	.05		.050	.050	.050	.050	.050	.050	.050	.050	.050	.050	.05
. 262 . 230 . 207 . 273 . 311 . 349 . 326 . 318 . 397 . 100 . 102 . 102 . 097 . 093 . 116 . 122 . 124 . 120 . 245 . 231 . 213 . 236 . 247 . 318 . 316 . 314 . 342	2.0 .073 .067 .058	.058	.06		.065	.111	.108	.105	.115	.119	.134	.133	.135	.146	.149
.100 .102 .102 .097 .093 .116 .122 .124 .120 .245 .231 .213 .236 .247 .318 .316 .314 .342 .22 ρ ln W .050 .050 .050 .050 .050 .050 .050 .050	4.0 .123 .085 .042	.042	.073		.105	.262	.230	.207	.273	.311	.349	.326	.318	.397	.432
. 245 . 231 . 213 . 236 . 247 . 318 . 316 . 314 . 342 $-2\rho \ln M$. 050 . 051 . 051 . 052 .	1.5 .073 .071	.064	.058		.057	.100	.102	.102	.097	.093	.116	.122	.124	.120	.113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 128 . 101 . 061	.061	.065		620.	.245	.231	.213	.236	.247	.318	.316	.314	.342	.347
.050 .050 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>$-2\rho \ln \theta$</td><td>N</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>						$-2\rho \ln \theta$	N								
.058 .096 .024 .249 .226 .063 .135 .313 .369 .044 .113 .300 .374 .332 .058 .187 .495 .583 .028 .136 .417 .521 .456 .057 .255 .718 .837 .064 .084 .140 .159 .144 .072 .114 .211 .232 .050 .050 .050 .050 .050 .050 .050 .050 .151 .169 .190 .179 .170 .191 .215 .213 .243 .280 .323 .322 .322 .324 .356 .359 .243 .280 .323 .232 .234 .267 .300 .289 .254 .415 .475 .456 .416 .424 .496 .566 .536 .050 .050 .050 .050 .050 .050 .050 .05	1.0 .050 .050 .050	.050	.050		.050	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050
.044 .113 .300 .374 .332 .058 .187 .495 .583 .028 .136 .417 .521 .456 .057 .255 .718 .837 .064 .084 .140 .159 .144 .072 .114 .211 .232 L_1 .050 .050 .050 .050 .050 .050 .050 .151 .169 .190 .179 .170 .191 .215 .213 .243 .280 .323 .322 .302 .282 .326 .375 .369 .203 .231 .259 .252 .232 .234 .267 .300 .289 .356 .415 .475 .456 .416 .424 .496 .566 .536 .050 .050 .050 .050 .050 .050 .050 .050 .051 .049 .046 .034 .036 .052 .049 .042 .071 .072 .072 .103 .104 .07	2.0 .091 .082 .097	.097	.114		.119	.058	960:	.024	.249	. 226	.063	.135	.313	.369	.321
.028 .136 .417 .521 .456 .057 .255 .718 .837 .064 .084 .140 .159 .144 .072 .114 .211 .232 L_1 .050 .050 .050 .050 .050 .050 .050 .151 .169 .190 .179 .170 .191 .215 .213 .243 .280 .323 .322 .302 .282 .326 .375 .369 .203 .231 .259 .252 .232 .234 .267 .300 .289 .356 .415 .475 .456 .416 .424 .496 .566 .536 .12 .050 .050 .050 .050 .050 .050 .050 .051 .049 .046 .034 .036 .052 .052 .049 .042 .085 .08 .08 .079 .079 .066 .079<	2.25 .087 .079 .111	.111	. 141		.146	ġ.	.113	300	.374	.332	.058	.187	.495	.583	.497
.064 .084 .140 .159 .144 .072 .114 .211 .232 L_1 .050 .050	2.5 .079 .074	.126	.171		.176	.028	.136	.417	.521	.456	.057	.255	.718	.837	. 703
L_1 L_1 L_1 L_1 L_1 L_1 L_1 L_2 <t< td=""><td>1.5 .089 .076 .077</td><td>.077</td><td>980.</td><td></td><td>.092</td><td>.064</td><td>.084</td><td>.140</td><td>.159</td><td>144</td><td>.072</td><td>.114</td><td>.211</td><td>.232</td><td>.200</td></t<>	1.5 .089 .076 .077	.077	980.		.092	.064	.084	.140	.159	144	.072	.114	.211	.232	.200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					•	L_1									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.050	.050		.050	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050
.243 .280 .323 .322 .302 .282 .326 .375 .369 .203 .231 .259 .252 .232 .234 .267 .300 .289 .356 .415 .456 .416 .424 .496 .566 .536 L_z .650 .050 .050 .050 .050 .050 .050 .051 .049 .046 .034 .036 .052 .052 .049 .042 .085 .088 .088 .071 .059 .077 .080 .079 .066 .071 .072 .069 .058 .050 .077 .080 .079 .066 .141 .152 .153 .125 .103 .164 .180 .185 .152	2.0 .109 .121 .135	.135	.135		.125	.151	.169	.190	.190	.179	.170	. 191	.215	.213	.200
.203 .231 .259 .252 .232 .234 .267 .300 .289 .356 .415 .456 .416 .424 .496 .566 .536 L_z .650 .050 .050 .050 .050 .050 .050 .051 .049 .046 .034 .036 .052 .052 .049 .042 .085 .088 .088 .071 .059 .094 .100 .100 .082 .071 .072 .069 .058 .050 .077 .080 .079 .066 .141 .152 .153 .125 .103 .164 .180 .185 .152	4.0 .161 .183 .213	.213	.217		. 203	.243	.280	.323	.322	.302	. 282	.326	.375	.369	4
J_2 .415 .456 .416 .424 .496 .566 .536 L_2 .650 .650 .050 .050 .050 .050 .050 .050 .051 .049 .046 .034 .036 .052 .052 .050 .050 .085 .088 .088 .071 .059 .094 .100 .100 .082 .071 .072 .069 .058 .050 .077 .080 .079 .066 .141 .152 .153 .125 .103 .164 .180 .185 .152	1.5 .138 .154 .173	.173	.169		.153	.203	.231	.259	.252	.232	.234	.267	300	.289	.265
L_2 .050 .042 .042	. 219 . 253 . 292	. 292	.289		.264	.356	.415	.475	.456	.416	.424	.496	. 566	.536	.484
.050 .050 .050 .050 .050 .050 .050 .050						L_2									
.051 .049 .046 .034 .036 .052 .052 .049 .042 .042 .085 .088 .088 .071 .059 .094 .100 .100 .082 .071 .072 .069 .058 .050 .077 .080 .079 .066 .141 .152 .153 .125 .103 .164 .180 .185 .152	1.0 .050 .050	.050	.050		.050	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050
.085 .088 .085 .071 .059 .094 .100 .100 .082 .071 .072 .069 .058 .050 .077 .080 .079 .066 .151 .152 .153 .125 .103 .164 .180 .185 .152	2.0 .063 .052 .045	.045	.039	_	.037	.051	.649	946.	.034	.036	.052	.052	.649	.042	.038
.071 .072 .069 .058 .050 .077 .080 .079 .066 .141 .152 .153 .125 .103 .164 .180 .185 .152	.085 .074 .064	.064	.05	~	.046	.085	880.	.085	.071	.059	.094	.100	.100	.082	.068
. 141 . 152 . 153 . 125 . 103 . 164 . 180 . 185 . 152	1.5 .076 .065 .056	.056	ਤਂ	7	.042	.071	.072	690:	.058	.050	.077	080	620.	990.	.055
	3.0 .120 .108 .098	860.	.07	_	990.	.141	.152	.153	.125	.103	.164	.180	.185	.152	.124

5. Numerical comparisons. In this section some comparisons of the power of the tests based on the four statistics are presented. As the pattern of the performance would not be affected by the level of significance α , it was decided to confine the numerical evaluation to $\alpha=.05$. Various combinations of the noncentrality parameters λ_i , sample size ratios k_i and sample sizes were examined for p=2,3. Computationally the problem gets complicated for larger values of p, without really exhibiting any new trends. The results are obtained for the percentage points evaluated from the asymptotic central distributions and hence, to this extent, are approximate. Also, the values of λ_2 in some instances are smaller due to the fact that in these cases, the power tended to become greater than one. The pattern of the results is not violated due to this selection of the values of λ_2 . The results of our evaluation are summarized in Tables 1 and 2 for p=2,3 respectively.

An examination of the tables shows that while all the four tests are unbiased, their relative performance is markedly different for various regions. For small values of n (the total sample size), L_1 seems to perform much better than any of the other tests. But as n increases, the other tests, with the exception of L_2 , seem to improve considerably. Of all the four test procedures examined here, L_2 is by far the weakest. For increase in p, as one would expect, the power diminishes considerably for all the four procedures. For brevity, only small departures from the hypothesis of $\Lambda = I$ are tabled; the performance of all the tests improves for larger departures.

Acknowledgments. The author thanks the referee for making corrections on the original draft of the paper.

REFERENCES

- [1] Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis. Wiley, New York.
- [2] ERDÉLYI, A. (1956). Asymptotic Expansions. Dover, New York.
- [3] MUIRHEAD, R. J. (1970). Systems of partial differential equations for hypergeometric functions of matrix argument. *Ann. Math. Statist.* 41 991-1001.
- [4] MUIRHEAD, R. J. (1970). Asymptotic distributions of some multivariate tests. *Ann. aMth. Statist.* 41 1002–1010.
- [5] MUIRHEAD, R. J. (1972). On the tests of independence between two sets of variates. Ann. Math. Statist. 43 1491-1497.
- [6] Muirhead, R. J. (1972). The asymptotic noncentral distribution of Hotelling's generalized T_0^2 . Ann. Math. Statist. 43 1671-1677.
- [7] PILLAI, K. C. S. and NAGARSENKER, B. N. (1972). On the distributions of a class of statistics in multivariate analysis. *J. Multivariate Anal.* 2 96-114.

DEPARTMENT OF STATISTICS THE UNIVERSITY OF MANITOBA WINNIPEG, MANITOBA CANADA R3T 2N2