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ON THE ASYMPTOTIC DISTRIBUTIONS OF SOME
STATISTICS USED FOR TESTING X, = 2,*

By KOCHERLAKOTA SUBRAHMANIAM
University of Manitoba

The asymptotic non-null distributions of four statistics, used for test-
ing the hypothesis Hy: 21 = X, are developed. These expansions are ob-
tained by the partial differential equations method of Muirhead (Ann. Math.
Statist. 41 1002-1010). The procedure permits a simple extension of the
results of Pillai and Nagarsenker (J. Multivariate Anal. 2 96-114).

1. Introduction. Consider two random matrices S;, S, which are independently
distributed as Wishart (n,, p, Z,), i = 1, 2. Here the distribution of some sta-
tistics derived from the roots of the matrix §,5,”, 0 < i< fi =< --- £ f, < o0,
are examined. Let the roots of the matrix £, %, be 0 < 4, <4, < --- <4, < o0,
and let A = diag (4,, - - -, 4,). Defining ¢, = f;/(1 + f;),j= 1,2, -- -, p, Pillai
and Nagarsenker [7] have obtained the Zth moment of the statistic
(1.1) Y =T13.0;"(1 —6;)
as
(1.2)  KIA[T2F[(n)2), (my)2) 4 ahs (m + m)[2 + (@ + D)k T — A7,
where

K = {Ly(n/2)T(m/2 + ah)L (/2 + bR)Y{L,(n; + (a 4 BTy (m/2)T,(ny/2)} -

In what follows,

n=mn, + ny, M=17I—A"1, n, ='nk,, and n, = nk, .

By specializing to the case where (i) a = n,/2, b = n,/2, (ii)) a = 1, b = 0, (iii)
a =0, b = 1, one can generate various statistics used for testing the hypothesis
H,: X, = %,. These are considered in Sections 2, 3, and 4, respectively.

The asymptotic distributions are derived here by using the partial differential
equations technique developed by Muirhead in [4] and exemplified to various
situationsin [5]and [6]. An earlier paper [3] by him details the equations satisfied
by the hypergeometric function of matrix argument. These and related results
have been extensively used in the present paper.

2. Asymptotic expansions for —21In W, —2pIn W. Anderson ([1], page 254)
has discussed the null distribution of —2p In W, where

@.1 w=1{1T }‘”2 TI2.. 0,431 — 0,y
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TESTING FOR X, = X, 917

with p being defined as
L—p={m+m™ — 1)@ +3p — D/12(p + 1)
Pillai and Nagarsenker [7] look at the non-null distribution of the statistics

—21In W, —2p In Wunder two different conditions. We shall discuss the asymp-
totic distributions of these statistics in this section.

2.1. Asymptotic distribution of —21n W. Referring to (1.2) in the special case

when a = ny/2, b = n,/2 with h = —2it, we have the characteristic function
(ch.f.) of —21In W as
(2:2) B(t, A) = o()pa(t, A)

where ¢,(¢) is the ch.f. in the null case and ¢ (¢, A) is the factor due to A == I.
The expansion for ¢,(r) is given by
(2:3)  $(t) = g1 + n7r(g™" — 1) + n¥s(1 — 97) + ri(97" — 1)72}
+ n7u(g™ — 1) 4 rs(g7 — I)(g™* — 1) + (97" — 1)7/6}],

where g = (1 — 2if), f = p(p + 1)/2, and

r=p2p* + 3p — D)k, + k' — 1))24,

s=—fp+2)(p — D™ + k7 — 1)/24,

u=plp + D2p + HEp* + 3p — 11) + 14}k, + k7 — 1)/720) .
This expansion can be obtained readily by applying equation (16) of Anderson
([1]. page 205) to ¢q(7).

The remainder of this section is devoted to the expansion of ¢ ,(7, A) which
is given by
(2.4) Pa(ts A) = |A[=2,F\[n]2, n,9/2; ng[2; M] .

Writing A = {I — 2P/n}~* and M = 2P/n, with P being a fixed matrix, it is seen
that lim,__, ¢,(¢, A) = 1 and hence
o4(t, A) = exp{H(t, A)} = 1 + Q,/n + n~*Q, + Q,%/2}
+ 70y + 0,0, + Q,°/6} + O(n™) .

If py, pty, - « -, p, are the roots of M, then the function |[I — M|~ exp {H(t, M)}
satisfies the system of partial differential equations (1.3) of Muirhead [3]. It is
necessary to transform this system into the ones in terms of p,, - - -, p,, the roots
of P. Note that p; = (n/2)p;. Without loss of generality, the first equation
satisfied by H is considered:

0H 1 0H
ol — zpl/n>[ + (& aplﬂ g o Mok (0 — (p = 1)
(2.5) — 2p{1 + kg — (p — 3)/n} + Zir 01 — 20,/m)/ (0, — 0,)]
_ 1 X 10_1(1 - 210_7/11) a_H
2 (01 — 05) <6p,~)

= 2it(k1 - kla)pl/(l - 2101/”) .
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Substituting H(z, M) = Y7, Q.(¢, P)/n* and equating like powers of n=*in (2.5),
the differential equations for Q,, Q,, Q, are

0 %% — 4irk, — ko,
90,

2
092 1 20, 70 1 Qo0 ke (p—1)2— p,— pkeG — g 0200 — 0)}
2
o, 9o, 90,
— Zin {04/2(00 — 07)} ‘;_3_1] = 8it(k, — k*)p,*
J
and

s 12072 1 (92} 4 g, — (p— 12— 0 — &
g 20, + Pl{aplz + <apl>} + 3101{ 01Ky (P )/ 0, 1019

+ w1 01/2(00 — 03)} — X jan{0/2(00 — p’)}g_%]

L0, | ;
+ zl:_zpl agzl + 5%{(17 — 3)or — X 0°(01 — p;)}

+ T losllen — 0} 32| = 161t — ko
0;

Imposing the boundary conditions Q,(0, P) = Q,(0, P) = Q,(0, P) = 0 and the
symmetry in p,, - - -, p, of the functions Q,, Q,, Q,, we have
0, = (ky — k(@9 — Do,,
Q, = 4k, — k[ —0,(1 + k))/3 + 97k, 0, +‘(al“‘ + 0,)/4}
— 97052k, — 1)/3 + (0" + 0,)/4}],
Qs = —2(k;, — k)[(1 + ky + k*)o, — 2973k, %0, + 4k,0, + k,0,0,}
— 97(6k, — 10k,%)a, + (2 — 6k,)o5 — 30,/2 — (p — 2)0,%2
— (6k, — 2)0,0,} — g7*{((Sk, — S5k* — 1)o, — 2(2k, — 1),
— 3052 — (p — 2)0,%/2 — 2(2k, — 1)0,0,)] .
Note here that § (s, + 2p,0,) do, = 0,0, (symmetric in p,, - - -, p,). The quan-
tity o; = o7 + 07 + -+ + o,
Substituting for @y(¢) and ¢ ,(¢, A) in ¢(z), to O(n~*),
(2.6)  4() = 971 + n" ey + 97'a,)
+ 07 ey + 07" + @,97) + 17 Fio a5,;979] + O(n7Y),
with a’s being defined as
k=k(l—k), ay = —(r + kay), a, = —a,,
ay = —4k(1 + ky)o,/3 + (r + kay)?/2 — s,
ay = k(4k,05 + 0 + ay) — (r + kay)?,
a, = —k[4(2k, — 1)0y/3 + 0, + a,] + (r + kop)*/2 + s,
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ay = —u — 2k(1 + k, + kMo,
+ (r + ka,)[4(1 + k)ko,/3 + 5 — (r + ko,)*/6],
ag = 4kk[3k,0, + 0, + 0,0,]
+ (r + ka))[(r + koy)*2 — s — 4k(1 + 4k))ay/3 — (0, + 0,)k],
a, = 4k[(3k; — 5k *)o, + o5(1 — 3ky) — 30,/4 — (p — 2)0,}/4 — 3k, — 1)a,4,]
— (r + kay)[s + (r + ko,))/2 — 4k{oy(Sk, — 1)/3 4 (o.* + 0,)/2}],
and
ay = u — 4k[(5k;, — 5k? — 1)o,/2 — 2k, — 1)o; — 30,/4 — (p — 2)5,%/4
— 2k, — D)o,0,] + (r + koy)[s + (r + ka,)*/6
— 4@k, — 1)ay/3 + (o7 + )]
Inverting (2.6), the distribution function of —2 In Wis
P{—2In W < z} = Dy(z) + n"a,Dy(2) + a, D, (2)}
(2.7) + n7 o, D(2) + a5 D;14(2) + @, Dy (2)}
+ 170 Xm0 Xsr i Dpiag(2) 4+ O(n™)

where D, (z) = P{y,? < z}.
Pillai and Nagarsenker [7] have obtained this distribution function to the order
O(n~®). Their results in equation (5.35) agree with (2.7) up to the term n~2.

2.2. Distribution of —2p1In W. Asbefore, we can obtain the ch.f. of —2pIn W
as

2-8) $(1) = Po(1)Pa(t; A)
where ¢(¢) is the ch.f. in the null case and ¢,(¢, A) is the term due to non-
null nature of the distribution (A = I). The ¢,() factor can be expanded as in
Anderson ([1], page 255), so that the term involving n~ is not present in the
expansion. This is achieved by choosing p appropriately.

The expansion of the statistic —2p In W is given in terms of m and P where

P =mM|2, m = pn — 2«

a = (k7 + k™ — 1)@+ 3p — D/12(p + 1) .
It can be shown that to order O(m~),
(2.9)  Su(t) = gL + m7wy(g™" — 1) + m7wy(g™* — 1) + O(m~)] .
In (2.9), the coefficients w,, w; are obtained from equation (11) of Anderson
([1], page 205). Writing r; = (k,~7 + k,~% — 1),
wy = fI(p — D(p + 2)7a — *(2p* + 3p — 1)’/6(p + 1)"]/24 ,
wy = pl(2p* + 3p — 1)%°/108(p + 1)* — (p — D)(p + 2)(2p* + 3p — 1)7i7y/6
+ (p — 1)(6p° + 21p* + 11p — 19)7,/30]/24 — p/45 .
The non-null component is
Pa(t, A) = |A|-mF2002 FilIm[2 + a, mgk, + ak,; mg[2 + a; M] .

and
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As before, if M = 2P/m, P being fixed, lim,, ., ¢,(¢, 2P/m) = 1. Hence ¢,(t, A)
can be similarly expanded. The partial differential equations for H(z, M), in
terms of p, p,, - --, p,, where p, = my,[/2, can be written quite easily. An ex-
amination of these equations shows that the equations for Q,, Q,, Q, in this case
can be obtained from those in Section 2.1,

0, =0°, 0, = Q) — 2ak(g~* — g7 Yo, + 2ak(g~' — 1)a,,
0, = 0 — 2a97'[Q, — 2(1 — k)k(97* — 1)o,/3] + 4ak(g~' — 1)ay/3 .
Here Q°, Q,°, Q; are the solutions obtained in the previous section.

Substituting for the various quantities and solving the equations, the distribu-
tion function is obtained as

P{—2p1n W < 2} = D (2) + m~[BD4(2) + B, D,44(2)]
(2.10) + m B D (2) + B3Ds4o(2) + BiDyrul2)]
+ M Dm0 Bor Ds1as(2)] 4 O(m™) .
The coefficients in (2.10) are given by, (k = k,(1 — k,)),

By = —ko,, B, = ka,, B, = k0?2 — 4k(1 + k))oy/3 — 2ako, — w,,
Bs = —k%,? + 4klk 0, + 0,74 + (1 + 4a)s,/4},
B, = k?a,%[2 — 4k{(2k, — 1)a4/3 + 0,/4 + (1 + 2a)5,/4} + w,,
Bs = —k[2(1 + k, + kYo, + 8ac,/3 — 4k(1 + k;)o,04/3
— 2kaoy® + k%6 — wyo,] — Wy,
Be = 4k[3ko, + ki(1 + 4a/3)o; 4+ a’c, — (4ky + 1)ko,05/3 — ko, %0,[4
— k(1 + 6a)e,}/4 + k'8 — w,0,/4 + ko,0, + (2a/3)0,] ,
B8, = 4k[(3k, — 5k®o, + (1 — 3k, + 2a/3 — 8k, a/3)0, — (p — 2 + 2a)0,}/4
— (3 + 2a + 8a%ag,/4 — (3k, — 1)o,0,
+ ko {(Sk, — 1)oy/3 + (Ba + 1)0,/2 4 0,2 — ka,’[8} — w,0,/4],
Bs = 4k[(5k, — Sk — 1)a,/2 — 2k, — 1)(1 — 2a/3)d; — (p — 2 — 2a)0,%/4
— (3 = 2a — 4a%)0,/4 — (2k, — 1)o,0,
— ko {(2k, — 1)ay/3 + 0,74 + (1 + 2a)0,/4 + ko,}[24} + w,0,/4] + w, .

The equation (2.10) agrees with equation (5.51) of [7] up to term m~2.

3. Asymptotic distribution of ¥ = []2_,6,. The ch.f. of L, = ntIn {Y/k?}
has been shown by Pillai and Nagarsenker [7] to be

(3.1 P() = ¢o(O)Pa(t, A) 5
where

$u(t) = k= PN [n)2]T,[m2 + itnd /(T [n,2]T [n)2 + itni]} .
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The asymptotic expansion, to order O(n~?), for @,(¢) is
exp(—pTt)[1 — n=¥(it)T, f + 2pT,y(it)*/3}
+ n~H(@Tof + f2T22) + (i0)'2p/3)(Ts + T, T, f) + (it)*(2p*T,*/9)}
(3.2) — n=¥(it)(2p* — 9p* + 11p)T,/12 + (it)’f(4T,/3 + fT,T, 4 fT,}/6)
+ (@)p(4T./5 + 2fTy'[3 + 2f T, Ty/3 + f*T\’T;/3)
+ (@' (AT, p/9) (T + T, To[2) + (ir)’(4p°Ty°[81)}] + O(n~),
with T, = k,=* — 1, f = p(p + 1)/2. The expansion (3.2) is obtained by using
the usual Barnes’ approximation to logarithmic gamma function.
The second term of (3.1) is the non-null component given by

4t A) = |A|=™"2,F\[nf2, n,[2 + itn}; n|2 + itn}; M],
where M = 1 — A-' = 2P/n, P being a fixed matrix.

Writing ¢ ,(t, A) = exp{H(T, A)} and substituting in the equations satisfied by
the hypergeometric function of matrix argument, we have the partial differential
equations for H, in terms of the roots p,, - - -, p, of P. Expanding H(t, 2P/n) in
terms of series } 5., Q,(t, P)/n*?, the differential equations for Q,, Q,, Q; are
obtained. Following the procedure as before, to O(n=?),

(1) = exp(—pT,t*)[1 — n~HitA, 4 (it)*4,}
(3.3) (0 g - (i), (0P A) — nmF D5, ()]
+ 0@,
where
A, = T,f + 2(k, — 1)o,, A, = 2pT,/3,
Ay = T, + f*T32 + 2(ky, — 1)o,{2 + (k, — 1)a,} + 2f(k, — 1)o, T,
A, = 2p/3)[T; + fT,T, 4 2(k, — 1)0,T,],
A, = 2p*T3)9 A, = p2p* + 3p — )T,/12 — 2(k, — 1)%0,,
A, = f[4Ty/3 + fT,T, + fT%/6] 4 8(k, — 1)o,[1 + (k, — 1)o, + (k, — 1)%6,%/6]
+ 2f(k, — )a,[T, + fT)}2 4 2T, + (k, — 1)0,T}],
Ay = 2p[2T,[5 + T3 + [T, T3 + [*TT/6]
+ (4p/3)(ky — V)o,[T, + fT,T, 4 2T, 4 (k, — 1)0,T,],
A, = (Ap*)9)[T,T; + fT,T,*2] 4 4p*(k, — 1), T /9, A,y = 4p°T 281 .
Writing x = L,/(2pT))}, its density function is given by:
fx) = $(x) + n7HgA P (x) + 4, ¢ (x)]
(3-4) + n A0 (x) + ¢ APD(x) + ¢° 4,40 (x)]

+ nH 35, ¢ A I (0)] + O,
where

g=@T)t,  ¢(x) = (dldx)"¢(x)
and ¢(x) is the standard normal pdf. The distribution function of (3.3) agrees
with (6.15) of Pillai and Nagarsenker [7] up to the term n~".
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4. Asymptotic distribution of Y = TJ2_, (1 — ¢,). The ch.f. for the statistic
L, = n*In {Y/k,} has been given by Pillai and Nagarsenker [7] as
(4.1) #(1) = Po()Pa(t; A) 5
where
$u(1) = ka= P HT [0)2]T, [ny/2 + itnt (T, [n/2 + itnt]T,[my/2]}
and
b4, A) = |A|="*12,F\[n[2, nk,[2; n|2 + itn}; M],
with M =1 — A-' = 2P/n. As before ¢,(f) can be expanded to O(n~?) as
$o(1) = exp(—pR,*)[1 — nH(iN)fR, + (it)"2pR,/3}
+ nHEFR + fRY[2) + (i)' Cp[3)(Ry + fR R;) + (i1)'(2p*Ry*[9)}
(4.2) — nH(ip(2p* — 9p + 1)R12 + (it)f(4Ry/3 + fR.R, + [R/6)
+ (@Y°p(4R,[5 4 2fR}[3 + 2fR, Ry/3 + f’R,’R,/3)
+ (i)' (2P°Ry[9)(2R; + fR,R;) + (i) (4p°R;’[81)}] + O(n?)
where R, = (k,7* — 1).
Setting up the partial differential equations for the H-function and expanding
the latter in powers of n~* as X, Q,(¢, P)/n*”?, we have
$(1) = exp(—pR, )1 — n~H{(ir)B, + (i1)'B}}
(4.3) + n7{(it)"By + (it)'B, + (it)°By} — n~HZ5, (i)' By, )]

+ O(n7?,
where

B, = 2k0, + fR,, B, =2pR)3,
B, = 2k,6,(2 + k,0)) + f[R, + fR?2 + 2k,0,R]],
B, = (2p/3)[R,; + fR,R, + 2k,0,R,], By, = 2p°R}/9 ,
B, = p[2p® + 3p — 1]R,/12 — 2k,(k, — 2)0,,
B, = 8k,0,(1 + k0, + k,%0,%/6) + f[4R,/3 + fR, R, + f*R?/6]
+ 2fk,0,(R, + fR?2) + 4fR\(k,0,/2 + 1)k,0,,
B, = p[4R,/5 + 2fR}/3 + 2fR,R,/3 + f?R,’R,/3]
+ 2k, 0,[2p/3][R; + fR,R;] + 2k,0,(2 + k,0,)(2pRy/3)
By = (4p*/9)[R. R, + fR, R + k,0,R,7], B, = 4p°R.}[81 .
The pdf of x = L,/(2pR,)} is given by
J(x) = ¢(x) + 17 g, B¢ (x) + ¢:°B, ¢ (x)]
(4.4) + 179" By 9P (x) + ¢,*BiPO(x) + 9 °B; 0 (x)]
+ 0 35 VB, ¢V (x)] + O,

¢ = (d]dx) P(x) 4= (2pR)7*,
and ¢(x) is the standard normal pdf. This pdf agrees with (7.11) of Pillai and
Nagarsenker to the term n~'.

where



923

TESTING FOR X, = Z,

STT=Ns 0ST=y SLT=% s WE=Nz STE=

€81° 1T 9ST I 86l 91 9LI° €0 981" 091" 60" €60° 801" TOI° €60 0 S'I
¥LO°  L80° 6607 160"  6LO° 907 T 180" SLOT  L90° W 90" IS0°  I1SOT 610 ST ST
$60°  €I1°  OST°  6II°  £0I° 80° T60°  SOI°  L60°  S80° 6Y0°  SSO° 790" 090"  8S0° oy 01
0" 6v0°  ¥SOT  ISO°  9h0° 6€0°  €0° VWO 0T O ¥EO©  SE0°  LEO° 80" 6£0° 0T 01
050"  0S0°  0SO°  0SO°  0SO° 0S0°  0S0°  0SO°  0SO°  0SO 0S0°  0S0°  0SO°  0SO°  0SO° 0l 01
T
L9 VOL°  8I8°  OILT 009 0LS* 969"  €L9°  S8S"  96p ¥SET T8 06" 6EET  T6T 0 S'I
wWEe 18T 90v"  8sET OlIE” YOET  TEET  S¥ET S0ET  S9T €T 91T 61T beIT T ST S'1
ISt web  TIST  vhbt 6LE” 68" Ty Ty SlET we (TR 75 AR V5 AN AR 1 oy 01
W ol 9T W vIT €T LET O €I sl 651 991" 91" opI°  IEl” 0T 01
050"  0S0°  0SO°  0SO°  0SO° 0S0° 050"  0S0°  0SO°  0SO° 0S0°  0S0°  0SO°  0SO°  0SO° 0l 01
T
T
€08° 886"  ¢I96°  8I8°  L6E” sI¥8"  3SI8°  eIb6"  SKST  LST 60" 0€€T  OLTT  svIT  LOT” 0f  S'I
XA (7 AR © AR V5 SR ) & LT L61° 061"  LEI"  OIT' 860°  TOI° 660" 060"  880° TSI
606"  <6€8° 666 109"  Lib W8 al98° 1906 065" VST 60y  sevt  oset  SIIT  SIT° o0y 01
95" 8OV"  SLET  €TTT 6bl° 9T 6T 99T 6910 €Il LT 81T 6TIT SOIT  L6O" 0z 01
050"  0S0°  0SO°  0SO°  0SO° 0S0°  0S0°  0SO°  0SO°  0SO 0S0° 050"  0SO°  0SO°  0SO° 0l 01
M U1 9z—
0SS°  ILST  L9S°  00S°  Ib° 6T LIy OlF 89T TEe 4 S S 54 A2 % SR 1Y 0f  S'I1
8SI°  PLI" €8T 991" 8pl° 81" 61" ovIT  seIt €Tl LT 90" 180" 180" 8LO° ST ST
€59° 089"  8€9°  §SS°  S6b” 98y 96b"  TEET  TOb  L9E” L8T  LLI°  OST°  8pI°  €SI° oy 01
vz e €T 861 UL oLl 8LI°  ¥LI°  9SI° bl 680° 060" .80  +80° €80 0T 01
050" 0S0°  0SO°  0SO°  0SO° 0S0°  0S0°  0SO°  0SO°  0SO' 0S0°  0S0°  0SO°  0SO°  0SO° 01 01
MU[T—
¥ § g £ 4 ¥ % % § ¥ ¥ $ § £ ¥
1y Ty Ty 74 4
09 = sy =1u ye=u

S0° = » ‘7 = d 40f 51591 oyt Jo somog

I HT4VL



KOCHERLAKOTA SUBRAHMANIAM

924

YeIT CS1T S81° 081" ¥91° €01 STIT  €S1T T Wl 990" 6L0° 860" 801" 0TI’ 0°¢ [ 01
660" 990" 6L0° 080" LLO" 00" 850" 690" TLO"  ILO° wo" LVOT  9S0°  €90°  9LO° [ 1 0'1
890" 780" 00T 001" 60" 660" JLO0" S80° 880" 80" 90" €S0° 90" vLO® 80 (V84 01 (U
860" TO° 6W0° TSOT  TSO” 9€0°  ¥€0° 90" 640"  1SO° LEO® 680" SHOT  TSOT  €90° 0'¢C 0’1 0°1
0S0° 0S0° 050" 0SO° 0SO0° 0S0° 0S0° 0SO° 0SO°  0SO° 0s0° 0SO° 0S0° 0SO" 0SO° 01 0’1 0°1
ks
T
¥8b°  9€ST 99T 96b  vTv° oty"  9sy*  SLyT  SI¥T  9sg” ¥9T° 68T  T6TT €STT 61T’ 0°¢ [ (U
§9¢" 68T 00" L9  ¥ET” TEC"  TCTT  6STT  I€TT €0T” €S1° 691"  €LT"  ¥S1°  SET° (9 [ 01
we'  69¢”  SLET  9TeT  T8T” e TCeT €TeT  08TT €V €0C"  LITT  €1TT €817 I9T° (V84 01 0'1
00C" €ITT SIT" 161" OLI® 6L1° 061" 061° 691" ISI” SCIT SETT SETT 1TTT 601" 0°¢C 01 01
0S0° 0S0° 0S0° 050" 0S0° 00" 0S0° 0SO° 0SO°  0SO° 0S0° 0S0° 0S0° 0S0° 0SO° 0°1 01 01
T
T
00C ¢e€C  T11T°  ¥IIT TLO° Wi° 6ST°  Oovl®  ¥80° 90" W60 980" LLOT 9.0 680" (3 (9! 01
€0L" L€8" 8IL™ €ST°  LSO° osy"  1T§T LIy 9€1°  870° 9LT*  ILT® 921" +$LO0° 6L0° (¥4 01 01
Levy"  €8S° S6b”  L8I°  8SO° e vLeT  00€T €117 WO° 91 I¥I° 111" 6L0° LSO° §T'T 01 01
Iece”  69¢”  €1€T  SEIT €90° 9T 6¥T° 70T 960 860" 611" ¥IT° L60" T8O" 160" 0°¢ 01 01
050" 0SO0° 0SO° 0SO° 0SO° 00" 0S0° 0SO° 0SO°  0sO° 0S0° 0SO° 0S0° 0SO° 0SO° 0’1 01 0’1
MU 97—
ve” e vieT  9IET  8IE” e 9eTt €I 1€TT svT 6L0° €90° 190" 101" 8TI” 0°¢ 1 01
10 SEN 174 S 74 Y 44 SR O €60° L60° TOT° TOI° 001" LSO" 860" ¥90° 1L0°  €LO° (3 S°1I 01
eyt LeeT  8IET  9TET  6bE” 11e"  €LT°  L0T"  0fT 9T’ SOI°  €L0° 0" S80° €Tl (V84 0°1 01
(4 S 4 SN < ) S 11 A 2 611" SIT° <OT° 801" III” §90° 190" 8S0°  L90°  €LO" 0°¢C 0°1 0'1
00" 0S0° 0S0O° 050" 0SO° 00" 050" 0SO° 0SO° 0SSO 050" 0S0° 0SO° 0SO°  0SO° 0°1 01 01
MU~
¥ % % £ % ¥ § % £ % i % ¢ £ %
.G\ G\ C\ wN NN .—N
09=1u gy =u e=u

S0° = © ‘¢ = d 40f s3s01 2y3 Jo somog

T HIdV.L



TESTING FOR X, = X, 925

5. Numerical comparisons. In this section some comparisons of the power
of the tests based on the four statistics are presented. As the pattern of the
performance would not be affected by the level of significance a, it was decided
to confine the numerical evaluation to @ = .05. Various combinations of the
noncentrality parameters 2, sample size ratios k; and sample sizes were examined
for p = 2, 3. Computationally the problem gets complicated for larger values
of p, without really exhibiting any new trends. The results are obtained for the
percentage points evaluated from the asymptotic central distributions and hence,
to this extent, are approximate. Also, the values of 4, in some instances are
smaller due to the fact that in these cases, the power tended to become greater
than one. The pattern of the results is not violated due to this selection of the
values of 1, The results of our evaluation are summarized in Tables 1 and 2
for p = 2, 3 respectively.

An examination of the tables shows that while all the four tests are unbiased,
their relative performance is markedly different for various regions. For small
values of n (the total sample size), L, seems to perform much better than any
of the other tests. But as n increases, the other tests, with the exception of L,,
seem to improve considerably. Of all the four test procedures examined here,
L, is by far the weakest. For increase in p, as one would expect, the power
diminishes considerably for all the four procedures. For brevity, only small
departures from the hypothesis of A = I are tabled; the performance of all the
tests improves for larger departures.
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