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ON EDGEWORTH EXPANSIONS WITH UNKNOWN
CUMULANTS!

By H. L. GrAY, W. A. CoBERLY AND T. O. LEWIS

Southern Methodist University, Texas Tech University
and NASA, Texas Tech University

In this paper a new method of approximating one distribution by an-
other is introduced. The method is essentially a modification of the Edge-
worth technique which eliminates the necessity of knowing the cumulants
of the distributions involved.

1. Introduction. The representation of one distribution function in terms of
another has been the subject of considerable research for some time. One of the
most prominent of such representations is the Edgeworth expansion which is
still a topic of interest (see [2] or [3]).

The most obvious application of such expansions is the calculation of a dis-
tribution function, F,, by means of known values or more easily obtainable
values of another distribution, F,. However, their value for this purpose has
been limited, primarily due to the difficulty in obtaining such expressions. Tables
(see [2]) have been produced in a number of places to alleviate this problem but
they are not readily available. Moreover, even if such tables were commonplace
they would not eliminate the difficulty since the cumulants of the distributions
F, and F, of rather high order are usually required.

In this paper it is shown how the general Edgeworth expansion can be uti-
lized in such a way as to eliminate the requirement for knowing the cumulants
without affecting the order of the error of approximation. In the particular
cases considered this error is in fact often reduced. Thus they suggest that the
expansion introduced in this paper may be preferable to the Edgeworth expan-
sion even when the cumulants are known.

2. Preliminaries. Let F( ; 2) and ® be probability distribution functions with

cumulants k; and «, respectively and let 8, = k, — «,, where we shall assume for
convenience that 8, = 8, = 0. In addition we assume

(1) lim,_, F(x; 1) = O(x)
for all x in the support of F( ; 2) and -
(2) B, = O(A-1/) , Pi=3,4,....

Then the Edgeworth expansion in terms of ®(x) corresponding to F(x; 4) is
defined by the following:

3) F(x; 2) ~ @(x) + 221 Qul(*; 4) 5
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where the Q’s are functions of 1 and x determined by the 8, and the derivatives,
{@™}, of ® and satisfying the relation Q,(x, ) = O(2~?).

In many instances (see [1] or [3]) the correspondence in (3) is an equality or
at least an asymptotic relation. In that event it is well known that

“) F(x; 2) — Fy(x; ) = O(2=+h7) |
where
®) Fo(x; 2) = ©(x) + X2, hy(HQ™(x) .

We shall tacitly assume that (4) holds through the remaining part of the paper.

If the cumulants associated with F( ; 1) or @ are difficult to calculate F,(x; 4)
is difficult to obtain. We shall now introduce a transformation on (5) which
will eliminate this difficulty when F( ; 2) and @ are known and hence produce
a more easily obtainable approximation of F(x; 4) in many instances.

3. A new approximation. In order to obtain the approximation we seek let
us rewrite (4) in the form

(©) F(x; 2) = O(3) + Tk g)Q®(x) + OF-#+07)

where (6) is just a rearrangement of (4) such that the m, are distinct, g,(2) # 0
are the resulting coefficients, and k is the resulting number of distinct m,.

Equation (6) suggests the following theorem which we state without proof.
The proof can be found in [1].

THEOREM 1. If F( ; 2) and @ are analytic functions in a domain R of the com-
plex plane and if the functions {®‘™} are bounded in R, then for each integer m

) Fm(x, 1) = @™(x) 4 D5, )™ (x) + O(1-=+7)
uniformly as A — co.
Now let us rewrite (6) and (7) as follows:
Q(x) = F(x; ) — 2t (AP ™ (x) — O(2=*+D7%)
(8) Dm(x) — F™(x; ) = — X1k, g (A)D™it™(x) — O(A~ "+
m=1,2,....

Treating F(x; 2) and the {g,(4)} as unknowns in equations (8) now leads us by
Cramér’s rule to define the approximation, F,(x, 1), of F(x; 2):

p iy 1y — H[PX), ¢i(x); P™(x)]
©) Fux d) = HJ[1,0; @™ (x)]

where
A B, oo B,
D™ (x) Ot (x) ... Dmth) ()
H,[A, B; (I)("”i)(x)] — . ( ) (x) . ( )

q)(m;c)(x) DOmtD(x) .. (I)(mk-;-k)(x)
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for all x such that the denominator is nonzero, where
T,(x, 2) = PDY(x) — FO(x, 2), i=1,..-,k,

and k and 7 are defined by equation (6).

One should note that the approximation (9) does not require the cumulants
associated with F( ; 1) or ® but makes use of the derivatives of the distribution
functions instead. From the equations in (8) one would hope that F(x; 2) —
F,(x; 2) = O(A~**+b7%), This turns out to be the case as the next theorem shows.

THEOREM 2. If Theorem 1 holds and F,(x; 1) is defined, then
Fn(x; 2) — F(x; 2) = O(A—+073) |

as A — oo.
Proor. From (6), (7) and (9)
. X H,Jeo(x, n, 2), e,(x, n, 2); P™(x)]
10 F (x; 2) = F(x; 2 kLo d ,
(10) (5 4) = Fx 4) + H1, 0; D™0(x)]
where
e, 1, A) = F,0(x, ) — FD(x,2) = O~ | i=0,1,...,k,

and F, is defined in (5).
Now since @(x) is not a function of 1 we can write (10) in the form

(11) F(x; 2) = F(x; 2) + Dhoo ei(x)e(x n, 2)

where the c,(x) are not functions of 4. The theorem therefore follows by ele-
mentary properties of the order function.

Theorem 2 establishes the fact that £,(x; ) and F,(x; 1) are asymptotically
equivalent. Whether or not this equivalence is representative of the relationship
between F,(x; 2) and F,(x; 4) for small n undoubtedly depends on the particular
@(x) and F(x; ). In general, for small n, from the viewpoint of accuracy,
neither approximation is preferred over the other and hence the choice of £,(x; 2)
or F,(x; ) would normally be based on which is the easier to obtain. The two
approximations are demonstrated in the following examples

ExampLE 1. Let @(x) be the N(0, 1) cdf and let

(12) F(x; 2) = {2, Atg(eAt + 2) dt,
where
1,
U) = — w u>0
9(u) YR ut~le >
=0, elsewhere.

Then

k,=0 i=1

= Zl'i/z(i — 1! i=3,4,....
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Moreover it is well known that F(x; 1) — ®(x) as 2 — oo for all real x. Further,
since @, = 1 and the remaining cumulants associated with @ are zero, we have
(13) B;,=0, i=1,2

= A-0m@G — 1!, i=3,4,..-.

Clearly the distributions here satisfy Theorem 2 and hence F,(x;4) and
F,(x; ) are asymptotically equivalent. Using (13), the Edgeworth expansion to
O(A~»+b7) can readily be calculated. On the other hand,

Fi™(x; 2) = 2D, 7g(U)]umzai+a
e
T
where D, denotes differentiation with respect to u. Thus both approximations
can be easily calculated. A comparison of these approximations is given in
Table 1 below. Both approximations seem adequate. However, F,(x, 4) ap-
pears better for small x, whereas F,(x; 2) is usually better in the tails of the
distribution. This is particularly significant if one realizes that £, uses no more
terms in the Edgeworth expansion than F, and hence, even when the cumulants
are easily obtained, £, may be more useful.

As has already been noted F,(x; 2) can be difficult to obtain without a table
of moments and a table of Edgeworth coefficients; however £,(x; 1) can be ob-
tained without such tables provided one can ascertain the order of coefficients
of ®‘™(x) in an expansion of the general form
(14) Fx; 2) = @©(x) + Lo ea(HQ™(x) -

These observations therefore seem to imply that £ is a reasonable alternative
to the Edgeworth approximation when the densities involved are known and in
many cases it may be more attractive.

ExAMPLE 2. As a final example let us consider the Student ¢ distribution.
That is, suppose ®@(x) is the N(0, 1) cdf and F(x; 4) is the Student ¢ cdf. Then
the central moments associated with F are given by

— -t Lk + HT(2/2) — k)
(13) Hy = AIIE T3/2) 2k <
Uaer = 0 2k+1<2,
and y, does not exist for r = 4.

Thus the Edgeworth expansion cannot be calculated for every 1. However,
since F,(x, 2) does not involve the moments, we can calculate it for each 2 by
simply utilizing the nonzero terms in the corresponding formal Edgeworth ex-
pansion to define the m, in (6). Utilizing the relationship

;::n=—01 (_ 1)m—l—i(mt_l)e_upuiul_llu=n:l’}+1

A4+ 2k — 1x
(14) Fo+(x, 2) = _( pae ) F(x, 2)
_ (=D + k- 1) Fk=3(x, 2),
A+ x?

F,(x, 2) can then be easily calculated.
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The accuracy of this approximation is considered in Table 2, which follows.
It appears to be quite satisfactory for the values considered, which included
some small 2, especially in the tails of the distribution.

A final remark should be made concerning (9). That is, one should note that
we have assumed H,[1, 0; ®™/(x)] = 0. However when that quantity is near
zero some numerical problems in calculating (9) may arise. In fact the entry
under 2 = 4, t = 1, and F, in Table 2 below is a good example of this remark.
Thus in these regions some caution should be taken by the user.

TABLE 1

2 X F ﬁl F1 ﬁz Fz ﬁ4 F4
5 1 0.84748 0.84135  0.84135 0.84599  0.84941 0.84885 0.84770
2 0.95902 0.97165 0.95310 0.96442 0.95850 0.95959 0.95804
3 0.99069 0.99422 0.99335 0.99202 0.98849 0.99090 0.99178
4 0.99812 0.99911 0.99967 0.99852 0.99866 0.99818 0.99783
15 1 0.84362 0.84135 0.84135 0.84325 0.84403 0.84381 0.84363
2 0.96528 0.97075 0.96331 0.96692 0.96511 0.96538 0.96521
3 0.99442  0.99575 0.99559  0.99476  0.99397  0.99444  0.99451
4 0.99930 0.99957 0.99980 0.99037 0.99946 0.99931 0.99927
25 1 0.84276 0.84135 0.84315 0.84257 0.84296 0.84283 0.84276
2 0.96763 0.97120 0.96645 0.96851 0.96753 0.96766 0.96760
3 0.99552 0.99634 0.99629 0.99569 0.99531 0.99553 0.99554
4 0.99955 0.99969 0.99983 0.99958 0.99963 0.99955 0.99954
100 1 0.84172 0.84135 0.84135 0.84169 0.84175 0.84172 0.84172
2 0.97214 0.97318 0.97185 0.97228 0.97212 0.97214 0.97214
3 0.99725 0.99746 0.99747 0.99727 0.99722 0.99725 0.99725
4 0.99984  0.99986  0.99990  0.99984  0.99985  0.99984  0.99984

(x = standardized gamma values)

TABLE 2
2 t F JA JA
4 1 .81305 .70992 .81079
2 .94194 .93634 .94704
3 .98003 .97101 97727
4 .99193 .99609 .99476
6 1 .82204 .83597 .82120
2 .95379 .94124 .95346
3 .98800 ' .99502 .98621
4 .99644 .99801 .99722
15 1 .83341 .83388 .83334
2 .96803 .96766 .96798
3 .99551 .99602 .99567
4 .99942 .99959 .99947
20 1 .83537 .83558 .83534
2 .97037 .97016 .97034
3 .99646 .99674 .99653
4 .99965 .99973 .99967

(¢t = non-standardized ¢ values)
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